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Abstract: The significance of discrete neural models lies in their mathematical simplicity and 
computational ease. This research focuses on enhancing a neural map model by incorporating a 
hyperbolic tangent-based memristor. The study extensively explores the impact of magnetic induction 
strength on the model’s dynamics, analyzing bifurcation diagrams and the presence of multistability. 
Moreover, the investigation extends to the collective behavior of coupled memristive neural maps with 
electrical, chemical, and magnetic connections. The synchronization of these coupled memristive maps 
is examined, revealing that chemical coupling exhibits a broader synchronization area. Additionally, 
diverse chimera states and cluster synchronized states are identified and discussed. 
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1. Introduction  

Discrete models, also known as discrete maps, serve as mathematical representations to describe 
how a system evolves at specific time intervals [1]. In contrast to continuous models that employ 
differential equations to describe a system’s behavior over time continuously, discrete maps use 
iterative equations. The simplicity of discrete models, owing to the absence of calculus or differential 
equations, makes them more accessible for comprehension, implementation, and analysis [2]. Their 
computational efficiency allows them to need fewer computational resources than solving intricate 
differential equations. These discrete models have many applications in diverse scientific and 
engineering fields. They can be used to study population dynamics [3], such as animal population 
growth and infectious disease spread, as well as in economic and financial systems [4,5]. Moreover, 
discrete maps can be used for exploring chaotic behavior in various systems wherein simple equations 
can yield unpredictable and intricate trajectories [6,7].  

Discrete models have offered valuable insights into the dynamic behavior of neural networks [8]. 
The simplicity of discrete models makes them suitable for understanding the complex interactions and 
dynamics of neural networks. These models facilitate investigation of various cognitive functions, 
sensory processing, and information propagation within the brain [1]. By discretely representing neural 
activity, researchers can analyze complex neural phenomena with more efficiency, leading to a deeper 
understanding of network behaviors. One significant application of discrete models in neuroscience is 
the study of synchrony and collective patterns in networks [9–12]. For example, Bashkirtseva et al. [10] 
studied the synchronization in the map-based Chialvo neuron model and reported a critical noise value 
for the synchronization of neurons. Sausedo-Solorio [11] studied the synchronization of Rulkov 
neurons with memory and synaptic delay. They found that anticipation or lag synchronization may 
emerge relying on delay time. Moreover, discrete models have been used for exploring phenomena 
such as neural firing patterns and synaptic plasticity [13–15]. For example, He et al. [14] described a 
new discrete neuron model based on the Huber-Braun neuron and discussed the effects of temperature-
dependent ion channels on the firing patterns. Wang et al. [15] analyzed the dynamics of a discrete-
time Chialvo neuron model through bifurcation diagrams and Lyapunov exponents.  

The discovery of the fourth electrical component, named memristor, has led many scientists to 
modify the existing dynamical system or suggest new systems [16]. As a result, numerous memristive 
continuous or discrete time systems have been introduced with various distinctive features, such as 
amplitude control [17,18]. Incorporating memristor in neural models helps reproduce the neural 
behaviors more accurately [19]. The memristor is an electrical component connecting the charge and 
magnetic flux [20,21]. Therefore, it can be used for considering the effects of electromagnetic 
induction [22]. The variation of neurons’ membrane voltage can change the distribution of the 
electromagnetic field around the membrane, which significantly impacts the neuron’s activities. 
Moreover, the memristors have memory, making them suitable for modeling the synaptic strengths of 
biological neurons [23]. The synaptic connections play a crucial role in information processing and 
learning [24]. Consequently, the neural network models have been improved using the memristor [25,26]. 

Several researchers have explored the effect of memristors on neuron models [27]. Xu et al. [28] 
introduced a 3D memristor-based Wilson neuron model that could represent asymmetric coexisting 
electrical activities and antimonotonicity. Qiao and Gao [29] used a Filippov-type Wilson neuron 
model to examine the effect of temperature and magnetic induction. They presented a complete 
analysis on the model by applying multiple nonlinear dynamic tools. Li et al. [30] represented different 
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coexisting periodic and chaotic attractors in the memristive Hindmarsh-Rose model. Lai et al. [31] 
proposed a new memristive neuron model with special chaotic properties and showed its application 
in image encryption. Gao et al. [32] improved a four-dimensional Filippov Hindmash-Rose with 
considering a memristive autapse with the threshold control strategy, which could cause the occurrence 
of sliding bursting, sliding limit cycle and coexisting attractors. In another study [33], they applied the 
analysis on a 4D Filippov hybrid neuron model and found the local stability and bifurcation conditions. 

The presence of memristors in neural networks can also influence their collective behaviors. 
Synchronization is the most important behavior in complex networks [34–36]. Hence, a large number 
of studies have been devoted to the study of synchronization in memristive neural networks [37–39]. 
Besides, other partial synchronization patterns, such as chimera state [40,41] and cluster 
synchronization [42,43], have special associations with neural processes [44]. Li et al. [45] studied the 
synchronization of two Rulkov maps coupled with a memristor synapse and showed complete and lag 
synchronization behaviors. Ramakrishnan et al. [46] found different collective behaviors such as 
imperfect synchronization, solitary state, cluster synchronization, and chimera states in coupled 
memristive neuron maps. Wang et al. [47] investigated the synchronization of memristive HR maps 
with electrical synapses, chemical synapses, inner linking functions, and hybrid synapses. They found 
that coupled maps could get synchronized via electrical and mixed synapses. 

In this paper, we investigate the effects of electromagnetic induction on the dynamics of a neural 
map model by adding the memristor to the model. The considered neural map model is a behavioral 
model proposed based on some physiological facts about the attention control mechanism and chaos 
intermittency. The model’s coefficients are related to the brain synapses’ weights regulated by the 
release of different neurotransmitters. Analyzing this model can help recognize inhibitory problems in 
people with Attention Deficit Disorder. Motivated by previous studies that suggest the advantages of 
memristors on neuron and neural models, we study this model with a memristor. We consider its 
dynamics under magnetic induction, which can help in studying the alternation of attention levels in 
different cases. To this aim, the bifurcation diagrams are plotted for different magnetic induction 
strengths and the dynamics is considered. The impact of the initial conditions and the coexisting 
dynamics is also explored. Besides the single map model, the dynamical behavior of coupled 
memristive neural maps is studied by applying different synapses such electrical, chemical and 
magnetic couplings. Various network patterns such the synchronization, cluster synchronization and 
chimera states are shown.  

2. Model 

We consider a discrete neural model, which was introduced by Baghdadi et al. in 2015 [48]. This 
model is described as follows, 

𝑥ሺ𝑛 ൅ 1ሻ ൌ 𝐵 tanhሺ𝑤ଵ𝑥ሺ𝑛ሻሻ െ 𝐴 tanhሺ𝑤ଶ𝑥ሺ𝑛ሻሻ      (1) 

where 𝐴, 𝐵 , 𝑤ଵ , and 𝑤ଶ  are the parameters by adjusting which the model represents a variety of 
dynamical behaviors. By setting 𝐵 ൌ 5.821 , 𝑤ଵ ൌ 1.487 , 𝑤ଶ ൌ 0.2223 , the bifurcation diagram 
according to 𝐴 is shown in Figure 1(a). It should be noted that the system has coexisting attractors in 
some values of the parameter 𝐴. In this figure, the red and blue colors correspond to the negative and 
positive initial conditions, respectively.  

A voltage-controlled memristor is generally described as,  
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𝑖ெ ൌ 𝑊ሺ𝜙ሻ𝑣ெ            (2) 

where 𝑖ெ is the electromagnetic induction current, 𝑣ெ is the neuron’s membrane potential, and 𝑊ሺ𝜙ሻ 
is the memristor memductance function. The neuron’s activation function is monotonically 
differentiable and bounded above and below. Hence, the hyperbolic tangent function has been widely 
used as the neuron’s activation function [49–51]. Therefore, 𝑊ሺ𝜙ሻ ൌ tanhሺ𝜙ሻ. 

The discrete model for the memristor can be obtained by applying the continuous discretization 
method to the continuous flux-controlled memristor models. A discrete memristor model was 
presented by [52] as,  

𝑖ሺ𝑛ሻ ൌ 𝑊൫𝜙ሺ𝑛ሻ൯𝑣ሺ𝑛ሻ ൌ tanh൫𝜙ሺ𝑛ሻ൯ 𝑣ሺ𝑛ሻ      (3) 

𝜙ሺ𝑛 ൅ 1ሻ ൌ 𝜙ሺ𝑛ሻ ൅ 𝜀𝑣ሺ𝑛ሻ 

where 𝜙 is the flux variable and 𝑣 and 𝑖 are the memristor’s voltage and current. More details about 
this memristor and its fingerprints can be found in [52]. Since the memristor contains nonlinearity and 
possesses memory effects, it complies with real memristive properties and can be used for the 
representation of more accurate neural dynamics and synaptic plasticity processes. 

Using the defined memristor, the memristive neural map model can be defined as, 

𝑥ሺ𝑛 ൅ 1ሻ ൌ 𝐵 tanhሺ𝑤ଵ𝑥ሺ𝑛ሻሻ െ 𝐴 tanhሺ𝑤ଶ𝑥ሺ𝑛ሻሻ ൅ 𝜇 𝑥ሺ𝑛ሻ tanh൫𝜙ሺ𝑛ሻ൯    (4) 

𝜙ሺ𝑛 ൅ 1ሻ ൌ 𝜙ሺ𝑛ሻ ൅ 𝜀𝑥ሺ𝑛ሻ 

where 𝜇 is the magnetic induction strength and 𝜀 ൌ 1 is set. In the following, we analyze the dynamics 
of the memristive map model and the collective behavior of coupled memristive maps. 

3. Dynamics of the memristive model 

The magnetic flux effects through the memristor can considerably influence the model dynamics. 
The bifurcation diagrams of the memristive model for different magnetic induction strengths (𝜇), 
according to the parameter 𝐴, are shown in Figure 1(b)–(d). To obtain the bifurcation diagrams the 
attractor-following method [33,53] is used, where the result of each iteration serves as the initial 
value of the next iteration. The forward and backward continuations are shown by red and blue 
colors. Comparing the bifurcation diagrams in presence of memristor with the original model 
(Figure 1(a)) suggests that as the magnetic flux strengthens, the region of multistability is extended. 
The coexisting attractors of the main model exist in the range 𝐴 ൏ 9.556 and 𝐴 ൐ 24.35, while in 
the memristive version, the coexisting attractors are visible for almost all 𝐴 values as 𝐴 ൐ 8.63 for 
𝜇 ൌ 0.1, 𝐴 ൐ 7.9  for 𝜇 ൌ 0.2  and 𝐴 ൐ 7.18 for 𝜇 ൌ 0.3 . Therefore, existence of the memristor 
promote multistability property.  

The presence of multiple stable states in multistability can provide different cognitive or 
perceptual interpretations, and studying the transitions between these states can provide valuable 
insights into the brain’s information processing and behavior generation. An important application of 
multistability is in understanding perceptual phenomena, where an ambiguous sensory input can cause 
oscillations between different interpretations [54]. Additionally, multistability is also relevant in 
decision-making processes, as the coexistence of multiple stable states corresponds to alternative 
decisions or choices [55]. Another example is the cognitive flexibility in which the brain is able to 
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switch rapidly between different mental states or cognitive processes [56]. The transition between 
several stable states helps to the brain’s adaptation to varying external demands. 

 

Figure 1. Bifurcation diagrams of the original neural map model (a), and its memristive 
version (b–d) for different magnetic induction effects as a function of 𝐴. (a) 𝜇 ൌ 0, (b) 
𝜇 ൌ 0.1, ሺcሻ 𝜇 ൌ 0.2, ሺdሻ 𝜇 ൌ 0.3. The bifurcations are obtained using attractor-following 
method (forward: red color and backward: blue color) using the initial condition [1,0]. 

In the following, the dynamics of the memristive model are investigated by setting 𝐴 ൌ 8. Figure 2 
shows the bifurcation diagram according to 𝜇. The blue, red, and cyan colors are related to ሾെ1, 0ሿ, 
ሾ1, 0ሿ, and ሾെ5, 4ሿ, respectively. It is seen that varying 𝜇 can considerably change the dynamics of the 
model. Moreover, the dynamics are highly dependent on the initial conditions. However, the 
probability of observing periodic dynamics is higher for stronger magnetic induction. The bifurcation 
diagram obtained by the forward continuation for two initial conditions [1,0] and [-1,0] are shown in 
Figure 2(b). It is notable that the bifurcation obtained with the fixed initial condition [1,0] is the same 
as one obtained by its forward continuation. Figure 3 illustrates the dynamics of the original model in 
𝐴 ൌ 8 (Figure 3(a)) and 𝐴 ൌ 9 (Figure 3(b)), and its variation under magnetic induction. In parts (a1) 
and (b1), the response of the original model is depicted where it is periodic in 𝐴 ൌ 8 and is chaotic in 
𝐴 ൌ 9. In parts (a2–a4) and (b2–b4), the magnetic induction is 𝜇 ൌ 0.02, 𝜇 ൌ 0.05, and 𝜇 ൌ 0.1, 
respectively. It is observed that in the case of 𝐴 ൌ 8, adding the memristor can increase the period of 
time series or induce chaos. Similarly, for 𝐴 ൌ 9, the memristor can change the chaotic dynamics and 
lead to different periodic behaviors and also different chaotic dynamics. Therefore, the dynamics are 
considerably affected by the memristor; however, increasing its strength has a different impact and is 
dependent on the original dynamics.  



17854 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 17849–17865. 

 

Figure 2. Bifurcation diagram of the memristive neural map model for 𝐴 ൌ 8 as a function 
of 𝜇. (a) The blue, red and cyan colors correspond to the initial conditions ሾെ1,0ሿ and ሾ1,0ሿ, 
and ሾെ5,4ሿ, respectively. (b) The forward continuation is used for the initial condition [1,0] 
(red) and [-1,0] (blue). 

 

Figure 3. Dynamics of the neural map model for (a) 𝐴 ൌ 8 and (b) 𝐴 ൌ 9 by adding the 
memristor with different strengths. (a1,b1) 𝜇 ൌ 0, (a2,b2) 𝜇 ൌ 0.02, (a3,b3) 𝜇 ൌ 0.05, 
(a4,b4) 𝜇 ൌ 0.1. The initial condition is ሾെ1,0ሿ. 
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Another notable point is that the basin of attraction of coexisting attractors is dependent on the 
strength of the magnetic induction. In order to show this, two basins of attraction corresponding to the 
periodic (blue) and chaotic dynamics (red) is depicted in Figure 4. In part (a), 𝜇 ൌ 0.1, and in part (b), 
𝜇 ൌ 0.25 is set. In smaller induction strengths, the basins are less dependent on 𝜙଴. As induction 
strength increases, the basins change and have more relation with the initial condition of the magnetic 
flux variable. The coexisting dynamics of the model for 𝐴 ൌ 8 and for different 𝜇 values are shown in 
Figure 5. In parts (a)–(c), the value of 𝜇 is set to 𝜇 ൌ 0.1, 𝜇 ൌ 0.2, and 𝜇 ൌ 0.51. The left panel refers 
to the initial condition ሾ1,0ሿ, and the right to ሾെ1,0ሿ. For 𝜇 ൌ 0.1, a chaotic and a periodic pattern 
coexist, while for 𝜇 ൌ 0.2, two periodic dynamics with different patterns and periods coexist. By 
setting 𝜇 ൌ 0.51, the coexistence of period dynamics and a fixed point is observed. 

 

Figure 4. Basin of attraction of coexisting periodic (blue) and chaotic (red) dynamics in 
memristive neural map model for 𝐴 ൌ 8. (a) 𝜇 ൌ 0.1, (b) 𝜇 ൌ 0.25.   

 

Figure 5. Coexisting dynamics of the memristive neural map model for A=8. (a) 𝜇 ൌ 0.1, 
(b) 𝜇 ൌ 0.2, (c) 𝜇 ൌ 0.51. The left and right panels show the time series corresponding to 
the initial conditions ሾ1,0ሿ and ሾെ1,0ሿ, respectively.  
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4. Coupled memristive neural maps 

In addition to the dynamics of the neural map model, the memristor can remarkably change the 
collective behavior of the coupled maps. A network of non-locally coupled neural maps can be 
described by, 

𝑥௜ሺ𝑛 ൅ 1ሻ ൌ 𝐵 tanhሺ𝑤ଵ𝑥௜ሺ𝑛ሻሻ െ 𝐴 tanhሺ𝑤ଶ𝑥௜ሺ𝑛ሻሻ ൅ 𝜇 𝑥௜ሺ𝑛ሻ tanh൫𝜙௜ሺ𝑛ሻ൯  

൅ 𝑔௘ ෍ ሺ𝑥௝ሺ𝑛ሻ െ 𝑥௜ሺ𝑛ሻ
௜ା௉

௝ୀ௜ି௉

ሻ ൅ 𝑔௖ሺ𝑣௦ െ 𝑥௜ሺ𝑛ሻሻ ෍
1

1 ൅ exp െ𝛽൫𝑥௝ െ 𝜃௦൯

௜ା௉

௝ୀ௜ି௉,
௜ஷ௝

 , 

𝜙௜ሺ𝑛 ൅ 1ሻ ൌ 𝜙௜ሺ𝑛ሻ ൅ 𝑥௜ሺ𝑛ሻ ൅ 𝑔௠ ෍ ሺ𝜙௝ሺ𝑛ሻ െ 𝜙௜ሺ𝑛ሻሻ

௜ା௉

௝ୀ௜ି௉

, 𝑖 ൌ 1, … , 𝑁, 𝑃 ൌ 10 

(5)

where 𝑁 ൌ 100. The network is considered to be a ring of neural maps with non-local coupling where 
each map is connected to its 𝑃 ൌ 10 nearest neighbors from right and left. 𝑔௘, 𝑔௖, and 𝑔௠ represent 
the coupling strength for the electrical, chemical, and magnetic coupling. The effect of each coupling 
type is investigated separately. Three different scenarios are considered: 1) the coupling is 
electrical (𝑔௖ ൌ 𝑔௠ ൌ 0), 2) the coupling is magnetic (𝑔௘ ൌ 𝑔௖ ൌ 0), 3) the coupling is chemical 
(𝑔௘ ൌ 𝑔௠ ൌ 0). At first, the complete synchronization is examined by computing the numerical error: 

𝐸 ൌ൏
1

ሺ𝑁 െ 1ሻ
෍ ඥሺ𝑥௜ െ 𝑥ଵሻଶ

ே

௜ୀଵ

൐௧ 
(6)

Besides the synchronization error, a statistical factor of synchronization (𝑅) [57] is also computed 
which is based on the mean field theory, as follows:  

𝐹 ൌ
1
𝑁

෍ 𝑥௜

ே

௜ୀଵ

 

𝑅 ൌ
൏ 𝐹ଶ ൐ െ൏ 𝐹 ൐ଶ

1
𝑁 ∑ ሺ൏ 𝑥௜

ଶ ൐ െ൏ 𝑥௜ ൐ଶሻே
௜ୀଵ

 
(7)

where ൏൉൐ denotes the time average. The synchronization can be detected when this synchronization 
factor is equal to 1.  

The synchronization is investigated by varying 𝜇 and the coupling strength. The results for 
different coupling types are shown in Figure 6, where in the first row 𝑃 ൌ 10 and in the second row 
𝑃 ൌ 25. The dark blue color indicates the synchronous area, and the black shows the instability. 
Figure 6(a1) represents the synchronization error by varying the electrical coupling strength (𝑔௠ ൌ
𝑔௖ ൌ 0) for different 𝜇 values. There are some small synchronization regions in smaller coupling 
strengths. In part (b1), the magnetic coupling ( 𝑔௘ ൌ 𝑔௖ ൌ 0 ) is examined. This figure has a 
synchronous area referring to very small 𝜇  values. In contrast to the two mentioned couplings, 
chemical coupling ( 𝑔௘ ൌ 𝑔௠ ൌ 0 )) results in a larger synchronization area (Figure 6(c1)). 
Consequently, it can be concluded that synchronization is achievable in wider regions of parameters 
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through chemical coupling. Comparing the first and the second rows shows that changing the network 
structure has a small impact on the results. By increasing 𝑃, the synchronization is still reached in a 
small area via electrical coupling (Figure 6(a2)). Moreover, the instability occurs in smaller couplings. 
In the case of magnetic coupling (Figure 6(b2)), increasing 𝑃  has a small effect and the 
synchronization happens only in small 𝜇  values, and instability occurs in smaller couplings. For 
chemical coupling (Figure 6(c2)), the synchronization area is significantly larger than other couplings. 
Parts (d)–(f) of Figure 6 shows the synchronization factor 𝑅 in red, computed for three coupling types 
and for 𝜇 ൌ 0.5. The synchronization error is also shown in blue color. It is seen that for electrical 
coupling, synchronization happens in a small region in 0.004 ൏ 𝑔௘ ൏ 0.0095 . In contrast, for 
chemical coupling 𝑅 factor equals 1 in 0.0005 ൏ 𝑔௖ ൏ 0.0045 and 0.021 ൏ 𝑔௖ ൏ 0.05 representing 
synchronization in larger area. In magnetic coupling, some coupling strength ሺ𝑔௠ሻ results in 𝑅 ൌ 1, 
however the synchronization error is not zero. The reason is that in these coupling strength values, the 
systems are attracted by two fixed points. Hence, 𝑅 ൌ 1 do not represent complete synchronization. 

 

Figure 6. (a–c) The synchronization error of coupled memristive neural maps as a function 
of 𝜇  and coupling strength for (a) electrical coupling ( 𝑔௠ ൌ 𝑔௖ ൌ 0 ), (b) magnetic 
coupling (𝑔௘ ൌ 𝑔௖ ൌ 0), (c) chemical coupling (𝑔௘ ൌ 𝑔௠ ൌ 0). The first and second rows 
correspond to two different network structures where in the first row 𝑃 ൌ 10 and in the 
second row 𝑃 ൌ 25. (d–f) The synchronization error (E) and the synchronization factor (R) 
as a function of coupling strength for 𝜇 ൌ 0.5 . (d) electrical coupling, (e) magnetic 
coupling, (f) chemical coupling.  
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In the next step, we search for the collective behaviors in coupled maps before reaching complete 
synchrony. The initial conditions for the 𝑥 state variables of all systems are set to 𝑥ሺ0ሻ ൌ െ1, while 
the initials of the 𝜙 are randomly chosen from ሾ0 1ሿ. In Figure 7, the map models are coupled with 
electrical coupling. In Figure 7(a), a chimera pattern is shown for 𝜇 ൌ 0.4 and 𝑔௘ ൌ 0.007. In this 
pattern, most systems are located in two clusters, and a few are not synchronous with the clusters. 
Figure 7(b) shows that while the synchronous clusters have periodic dynamics, the asynchronous 
systems are chaotic. For a bit stronger coupling, the asynchronous systems disappear and two clusters 
are formed. A two-cluster state is shown in Figure 7(c). The periodic time series of the clusters are 
shown in Figure 7(d).  

 

Figure 7. Dynamical behavior of electrically coupled neural map models (a) 
spatiotemporal pattern and the time snapshot for 𝜇 ൌ 0.4  and 𝑔௘ ൌ 0.007 , (b)  the 
corresponding time series of part (a). (c) spatiotemporal pattern and the time snapshot for 
𝜇 ൌ 0.4 and 𝑔௘ ൌ 0.009, (d) the corresponding time series of part (c). 

Figure 8 shows two cluster synchronization states when the systems are coupled with magnetic 
coupling. In part (a), the systems form four different clusters for 𝜇 ൌ 0.1 and 𝑔௠ ൌ 0.03; the time 
series are shown in part (b). By raising the coupling strength, four clusters are converted to two clusters. 
Figure 8(c) shows the pattern for 𝑔௠ ൌ 0.08 with the corresponding time series of the clusters shown 
in part (d). Figure 9 represents the network’s magnetic coupling pattern for other 𝜇 values (𝜇 ൌ 0.5). 
In this case, for low magnetic inductions, the systems are attracted by the fixed points, and 
oscillation death happens. Therefore, the pattern can be called chimera death (Figure 9(a)). The 
systems are returned to chaotic oscillating for larger induction strengths. Figure 9(c) shows an 
example of asynchronous chaotic oscillation for 𝑔௠ ൌ 0.07. The time series of the chaotic firing 
is shown in Figure 9(d).  
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Figure 8. Dynamical behavior of magnetically coupled neural map models (a) 
spatiotemporal pattern and the time snapshot for 𝜇 ൌ 0.1  and 𝑔௠ ൌ 0.03 , (b)  the 
corresponding time series of part (a). (c) spatiotemporal pattern and the time snapshot for 
𝜇 ൌ 0.1 and 𝑔௠ ൌ 0.08, (d) the corresponding time series of part (c). 

 

Figure 9. Dynamical behavior of magnetically coupled neural map models (a) 
spatiotemporal pattern and the time snapshot for 𝜇 ൌ 0.5  and 𝑔௠ ൌ 0.04 , (b)  the 
corresponding time series of part (a). (c) spatiotemporal pattern and the time snapshot for 
𝜇 ൌ 0.5 and 𝑔௠ ൌ 0.07, (d) the corresponding time series of part (c). 
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Figure 10. Dynamical behavior of chemically coupled neural map models (a) 
spatiotemporal pattern and the time snapshot for 𝜇 ൌ 0.1  and 𝑔௖ ൌ 0.002 , (b)  the 
corresponding time series of part (a). (c) spatiotemporal pattern and the time snapshot for 
𝜇 ൌ 0.1 and 𝑔௖ ൌ 0.005, (d) the corresponding time series of part (c). 

 

Figure 11. Dynamical behavior of chemically coupled neural map models (a) 
spatiotemporal pattern and the time snapshot for 𝜇 ൌ 0.1  and 𝑔௖ ൌ 0.04 , (b)  the 
corresponding time series of part (a). (c) spatiotemporal pattern and the time snapshot for 
𝜇 ൌ 0.4 and 𝑔௖ ൌ 0.03, (d) the corresponding time series of part (c). 
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Finally, the patterns obtained with chemical coupling are shown in Figure 10. In Figure 10, 𝜇 
is set to 0.1. In this case, for very small chemical coupling, synchronous clusters are organized 
(Figure 10(a),(b)). By slightly increasing the coupling, the systems are all synchronous, as shown in 
Figure 10(c) for 𝑔௖ ൌ 0.005, and have periodic behavior (Figure 10(d)). For stronger couplings, some 
of the systems are oscillating periodically, and some of them are attracted to a fixed point. An example 
of this state is shown in Figure 11(a),(b) for 𝑔௖ ൌ 0.04. Finally, by increasing the coupling, the systems 
are again synchronous and oscillate periodically. Other than the synchronous and cluster synchronous 
states, the chemically coupled systems can represent the chimera state. Figure 11(c) shows a chimera 
state for 𝜇 ൌ 0.4 and 𝑔௖ ൌ 0.03. It can be observed that there are synchronous and asynchronous 
groups. The time series corresponding to the synchronous and asynchronous groups are shown in 
Figure 11(d). 

5. Conclusions  

This paper presented a modified memristive neural map model using a hyperbolic memductance 
function. By introducing the memristor to a neuron model, the magnetic induction effects can be 
considered, which remarkably affect the model’s behavior. Hence, in this paper, the dynamics of the 
neural model were investigated according to the magnetic induction strength. It was shown that varying 
the magnetic induction strength changes the dynamics, so its increment leads to the extension of 
multistable regions. The memristive model showed multistability in some parameter values where the 
original model was not multistable. Different regions’ basins also varied as the magnetic induction was 
strengthened. The collective dynamics of the coupled memristive maps were also examined under 
electrical, chemical, and magnetic coupling. The behavior of the network was also under consideration 
in the asynchronized areas. The chimera state and the cluster synchronization state were observed for 
the electrical coupling and the chemical coupling. In contrast, cluster synchronization and chimera 
death states emerged for magnetic coupling. Finally, it was demonstrated that chemical coupling leads 
to a larger synchronization region. However, the considered chemical synapse contained a 
simplification of ignoring the time delay. We will consider the time delay and investigate its effects in 
our future work. Moreover, we assumed the network free of noise, which can affect the neural activities 
remarkably. For example, it can lead to occurrence of phenomena like coherence resonance [58,59]. 
In coherence resonance phenomenon, a specific noise intensity can lead to a maximized regularity in 
the network. In the future works, we will consider the proposed memristive model under noisy 
disturbance and study its impacts.  
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