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Abstract: After over three years of COVID-19, it has become clear that infectious diseases are difficult 
to eradicate, and humans remain vulnerable under their influence in a long period. The presence of 
presymptomatic and asymptomatic patients is a significant obstacle to preventing and eliminating 
infectious diseases. However, the long-term transmission of infectious diseases involving 
asymptomatic patients still remains unclear. To address this issue, this paper develops a novel Markov 
process for infectious diseases with asymptomatic patients by means of a continuous-time level-
dependent quasi-birth-and-death (QBD) process. The model accurately captures the transmission of 
infectious diseases by specifying several key parameters (or factors). To analyze the role of 
asymptomatic and symptomatic patients in the infectious disease transmission process, a simple 
sufficient condition for the stability of the Markov process of infectious diseases is derived using the 
mean drift technique. Then, the stationary probability vector of the QBD process is obtained by using 
RG-factorizations. A method of using the stationary probability vector is provided to obtain important 
performance measures of the model. Finally, some numerical experiments are presented to demonstrate 
the model’s feasibility through analyzing COVID-19 as an example. The impact of key parameters on 
the system performance evaluation and the infectious disease transmission process are analyzed. The 
methodology and results of this paper can provide theoretical and technical support for the scientific 
control of the long-term transmission of infectious diseases, and we believe that they can serve as a 
foundation for developing more general models of infectious disease transmission. 

Keywords: coronavirus disease 2019 (COVID-19); asymptomatic patients; Markov process; quasi-
birth-and-death process (QBD); performance evaluation 
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1. Introduction 

In recent years, large-scale epidemic outbreaks involving asymptomatic patients have attracted 
widespread attention, especially COVID-19 since the end of 2019, which poses a huge threat to global 
human health, life safety and economic development. Due to the significant hazards caused by 
infectious diseases, countries have to adopt appropriate prevention and control strategies to contain 
virus transmission once an outbreak occurs. For example, some countries have implemented measures 
such as closing schools and businesses to restrict gatherings, and locking down cities to limit mobility 
(UK Government. Coronavirus (COVID-19): guidance and support. https://www.gov.uk/coronavirus. 
Accessed March 17, 2023). Evidently, rapid control of the outbreak became an important issue.  

Asymptomatic carriers of infectious diseases pose significant challenges for epidemic control, 
especially the COVID-19 pandemic. They are individuals who tested positive for the disease but do 
not have any clinical symptoms that they can perceive [1]. Based on this meaning of asymptomatic 
patients, we refer to pre-symptomatic patients and those who are asymptomatic throughout the duration 
of their illness collectively as asymptomatic patients in this work. While asymptomatic carriers may 
not be screened or diagnosed, they can still carry the virus and become a potential source of infection. 
Those patients may have longer exposure times and contact with more people than symptomatic 
patients, as they are unaware of their infection. Therefore, asymptomatic carriers are difficult to detect 
and isolate in a timely manner so that they directly cause the high transmission rate due to their hidden 
transmission characteristics. Neglecting the infection caused by asymptomatic carriers has led to 
continued transmission and repeated outbreaks in some countries and regions [2]. Some studies have 
shown that the existence of asymptomatic carriers is one of the important and key reasons for the 
difficulty in controlling the COVID-19 pandemic [3–5]. Therefore, it is an important topic to study the 
mechanisms of transmission with asymptomatic carriers and to find the key factors during the long-
term transmission process of infectious diseases, so as to predict epidemic trends and develop effective 
prevention and control strategies. 

At present, research on the mechanisms of transmission with asymptomatic carriers mainly 
focuses on two classes: qualitative analysis and quantitative analysis. We review recent studies on 
infectious diseases with asymptomatic patients through taking COVID-19 as an example. For the first 
class, several scholars reviewed the characteristics of asymptomatic COVID-19 patients, mainly 
concerning contagiousness [6–8], infectious characteristics [8–10] and proportion of asymptomatic 
patients among all COVID-19 patients [8]. In terms of contagiousness, Nelson [11] and Yu et al. [12] 
found that asymptomatic patients are also infectious and there are cases of interpersonal infection. For 
the infectious characteristics study, Han et al. [13] and Hu et al. [14] found that asymptomatic patients 
had longer durations of virus presence, which posed a greater risk of infection. He et al. [15] found 
that asymptomatic patients had lower infection rates than symptomatic patients, and that patients 
infected by asymptomatic patients were more likely to be asymptomatic patients. Chen Yi et al. [16] 
found that the viral infection rates were about 6.30% and 4.11% for contact with symptomatic and 
asymptomatic patients, respectively. Zhou et al. [17] found that some asymptomatic patients 
transformed into symptomatic patients, and some patients remained asymptomatic patients. Kimball 
et al. [18] studied the proportion of asymptomatic patients who are transformed to symptomatic 
patients. Lauer et al. [19] observed that asymptomatic patients transformed to symptomatic patients 
after approximately 5 days of latency. For the problem of the proportion of asymptomatic patients, 
several authors investigated the proportion of asymptomatic patients in various sizes of the population 
of COVID-19 patients. Wu et al. [20] reviewed 72,314 patients with COVID-19 and found that the 
proportion of asymptomatic patients was about 1%. Using an example of 565 COVID-19 patients, 
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Nishiura et al. [21] employed a Bayes theorem to estimate that the proportion of asymptomatic patients 
was 30.8%. Day [22] illustrated that the proportion of asymptomatic COVID-19 patients may reach 
four-fifths based on a published sample of 166 COVID-19 patients in China.  

For the second class of study, the quantitative study, considering the transmission process of 
COVID-19 with asymptomatic patients, most research used dynamical system theory, simulation or 
the complex network approach. Using dynamical systems theory, Sang Maosheng et al. [23] and 
Agrawal et al. [24] developed a modified susceptible–infectious–recovered (SIR) model to fit the 
transmission trend of COVID-19 considering asymptomatic patients. Masaki et al. [25] constructed a 
new mathematical model called SIIR model and found that the conditions for population immunity 
became more restrictive when considering the limited duration of immunity in asymptomatic patients. 
Some scholars [26–30] explored the effect of infection rates in asymptomatic patients on the 
transmission of COVID-19 or the effectiveness of control strategies by the basic reproduction number 

0R . Riyapan et al. [31] and Iaa et al. [32] proposed a modified SIR model considering asymptomatic 
patients and found that COVID-19 will die out when the basic reproduction number is less than 1 and 
will continue to exist when the basic reproduction number is bigger than 1. Simulation methods have 
also been used to study the COVID-19 transmission process, supporting the inference of potentially 
infected individuals based on the temporal and location information of their activities. Zhan et al. [33] 
estimated the basic reproduction number for the COVID-19 transmission process on the Diamond 
Princess by the simulation method. Yu et al. [34] estimated the number of asymptomatic patients and 
their transmission rate based on a machine learning simulation method. By means of the complex 
network approach, some scholars studied the COVID-19 transmission process. Chen et al. [35] set up 
a novel COVID-19 transmission model through considering asymptomatic patients based on the 
complex network approach to make accurate forecasts of epidemic trends in the presence of incomplete 
information. Stella et al. [36] developed a complex network model to study the impact of asymptomatic 
patients and control measures on transmission while capturing the interactions of symptomatic and 
asymptomatic COVID-19 patients separately. 

To study the transmission process of COVID-19 with asymptomatic patients, the construction of 
SIR models by using dynamic systems theory is necessary to parameterize the probability of exposure, 
infection, recovery, death, etc. for representing the change in the health status of the infected person. 
It is inferior for individual spatial movement and interaction processes, i.e., the heterogeneity of contact 
exposure among individuals. Therefore, the SIR-based models are only suitable for studying the 
infectious disease transmission process in a short time [37,38]. The simulation method is closer to the 
real situation and can support the analysis of temporal transmission mechanisms of infectious diseases 
and the design of appropriate interventions. However, the acquisition of a large amount of real 
individual trajectory data as a support is a challenge [39]. Using the complex network to simulate the 
contact among transmission subjects can reflect the variability of individual contacts in the social 
network structure. Unfortunately, it cannot represent the spatio-temporal spread of the disease well [38]. 
To quantitatively study the long-term transmission of infectious diseases with asymptomatic patients, 
it is necessary to develop a new mathematical model that depicts the characteristics of people with 
cross-regional movement in real life, that is, an infectious disease transmission process with spatial 
movement and interaction, and there is no limit to the number of susceptible persons. To our knowledge, 
there is still a lack of effective methods to discuss the stability of the long-term transmission and 
conduct system, and to provide performance analysis for the infectious disease transmission process 
with asymptomatic patients.  

The motivation of this work is to study a long-term transmission process with realistic 
characteristics that can be used to analyze the mechanism of asymptomatic carriers. To this end, we 
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develop a new two-dimensional Markov process of infectious disease by means of the level-dependent 
continuous-time quasi-birth-and-death (QBD) process with infinite-state space. This Markov process 
can characterize interindividual interactions on infinite scales for patient groups containing both 
symptomatic and asymptomatic patients [40,41]. On the one hand, this Markov process, as a stochastic 
process, can better reflect stochasticity and suitability for stability analysis compared to deterministic 
models. On the other hand, the two-dimensional structure can reflect the complex interindividual 
interactions among symptomatic and asymptomatic patients during spatio-temporal transmission. 
Therefore, it is suitable for analyzing the long-term transmission process of infectious diseases with 
asymptomatic patients. Based on the actual situation of infectious diseases and some studies in the 
literature, the level on the infinite state space is used to represent symptomatic patients and the phase 
on the finite state space is used to represent asymptomatic patients. Such a level-dependent Markov 
process can reflect the different stages of the long-term transmission process of infectious diseases. 
Furthermore, to deal with the level-dependent QBD processes of infectious disease with infinite-state 
space, we use the RG-factorizations to find a feasible solution. Additionally, we develop two effective 
RG-factorization algorithms to obtain the feasible solution that can numerically analyze performance 
measures of this system of infectious disease. 

The main contributions of this study are summarized as follows: 
1) We develop a new two-dimensional continuous-time QBD process with an infinite-state space 

in the context that infectious diseases spread over a long time. This Markov process represents the 
status and transfer rate in different types of patients in the long-term and also expresses the spatial 
movement and interaction of individuals. 

2) We provide a method based on the mean drift technique to obtain a simple sufficient condition 
for the stability of the proposed Markov process. The stationary probability vector is obtained by using 
RG-factorization. Additionally, we develop two algorithms to obtain and discuss some key 
performance measures of this system.  

3) We conduct some numerical analysis to verify the feasibility of the proposed model by using 
the real data in the context of the COVID-19 epidemic and discuss how some key parameters affect 
the key performance measures of this system.  

The remainder of this paper is organized as follows. In Section 2, we describe the infectious 
disease transmission process with asymptomatic patients and introduce the basic parameters. 
Section 3 establishes a Markov process of infectious disease considering asymptomatic patients. 
Section 4 obtains the stationary probability vector of the proposed model by using RG-factorizations 
and computes some key performance measures of the system by means of the stationary probability 
vector. Section 5 designs two algorithms to get the stationary probability vector and analyzes 
performance measures of the system. Section 6 provides numerical cases to verify the feasibility of the 
model and analyzes the impact of some key parameters on performance measures and infectious 
disease transmission. Section 7 makes conclusions and presents future research. 

2. Problem description 

In this section, we describe the infectious disease transmission process with asymptomatic 
patients, and give the relevant symbols and parameters used in the modeling.  

In the infectious disease transmission process with asymptomatic patients, there are four types of 
patients: symptomatic, asymptomatic, cured and dead patients as shown in Figure 1. Symptomatic 
patients refer to patients with confirmed infectious diseases who have relevant symptoms. According 
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to the meaning of asymptomatic patients, they include pre-symptomatic patients and patients who 
always had no relevant symptoms during their illness. Both symptomatic and asymptomatic patients 
are collectively referred to as infected patients. Asymptomatic patients may be transformed into 
symptomatic or cured patients. The end of disease progression in symptomatic and asymptomatic 
patients may be cured or death.  

 

Figure 1. Four types of patients in the infectious disease transmission process with 
asymptomatic patients. The icon defined by the patient type in this figure is represented 
consistently throughout the next figures. 

In the next, we give the detailed transmission process and assumptions, which are used to set up 
a Markov process of infectious disease. 

1) The first appearance process of patients: We assume that the interval length of the number 
of symptomatic patients from 0 to 1 in an observation region is exponentially distributed with mean 
1/ Aτ , and the interval length of asymptomatic patients from 0 to 1 is exponentially distributed with 
mean 1/ Bτ . 

2) The infection process of patients: We assume that the infection process of patients is a 
Poisson process, which is consistent with Giri [42] and Alawiyah [43]. Both symptomatic and 
asymptomatic patients have the ability to transmit the disease to others, resulting in the generation of 
new cases that include both symptomatic and asymptomatic individuals. In the condition that a 
symptomatic case exists, the infection rates of generating a symptomatic and an asymptomatic patient 
are denoted by AAλ  and ABλ , respectively. Similarly, in the condition that an asymptomatic case 
exists, the infection rates of generating a symptomatic and an asymptomatic patient are denoted by 

BAλ  and BBλ , respectively. The infection process of an infectious disease is shown in Figure 2. 

 

Figure 2. The infection process of a Markov process for an infectious disease. In Figure 2(a), 
the left side of the arrow indicates the situation before infection, the right side indicates the 
possible situation after infection, and the number on the arrow indicates the infection rate. 
Figure 2(b) is similar to Figure 2(a). 

3) The disappearance process of patients: The findings of Davies [44,45] showed that the 
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infection period of COVID-19 fits an exponential distribution. In line with the literature, we assume 
that the interval length of symptomatic patients from being identified to being cured or death is 
exponentially distributed with mean 1/ Aμ  , and the interval length of asymptomatic patients from 
being identified to self-healing is exponentially distributed with mean 1/ Bμ  . The disappearance 
process of infected patients is shown in Figure 3. It is worth noting that the disappearance of 
symptomatic patients can be followed by cured patients or dead patients. However, the disappearance 
of asymptomatic patients can only be followed by cured patients. Realistically speaking, asymptomatic 
patients generally go through a symptomatic phase before they die. 

 

Figure 3. The disappearance process of infected patients. In Figure 3(a), the left side of the 
arrow indicates the situation before disappearance, the right side indicates the situation after 
disappearance, and the number on the arrow indicates the disappearance rate. Figure 3(b) 
is similar to Figure 3(a). 

4) The transformation process of patients: Based on the setting that pre-symptomatic patients 
are also asymptomatic, some studies have found that asymptomatic patients can transform into 
symptomatic patients, but symptomatic patients cannot transform into asymptomatic patients [17,46,47]. 
Pasetto [48] shows that the mean duration that infected patients stay in the incubation period is 
exponentially distributed. Based on it, we assume that the interval length of transformation from 
asymptomatic patients to symptomatic patients is exponentially distributed with mean 1/ γ .  

5) Limited number of asymptomatic patients: According to the literature [20–22], the 
asymptomatic patients gradually transform to symptomatic patients as the epidemic evolves. Therefore, 
we reasonably assume that the number of symptomatic and asymptomatic patients takes values in 
{0,1,2, }   and {0,1,2, , }M  , respectively. Note that this assumption can simplify the model 
construction, proof and analysis. 

6) Independence: We assume that all the random variables described above are independent of 
each other. 

According to He et al. [15] and Chen Yi et al. [16], the infection rates and the interval length differ 
in different types of patients. Therefore, four different types of infection rates are assumed in 
Assumption (2), and the two different types of disappearing rates are assumed in Assumption (3). 
Although in this paper we describe the infectious disease transmission process by Poisson process and 
exponential distribution, our mathematical modeling can be easily extended, for example, from 
Poisson process to Markovian arrival processes (MAPS) in Assumption (2) and from exponential 
distribution to phase type (PH) distribution in Assumption (3).  

Using the key parameters assumed above, in the next section we can develop a new Markov 
process of infectious disease with infinite-state space. 
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3. Markov process of infectious disease 

In this section, we model the infectious disease transmission process as a Markov process. 
Specifically, this Markov process is a continuous-time level-dependent QBD process with an infinite 
state space.  

Let ( )AN t  and ( )BN t  be the number of symptomatic patients and asymptomatic patients at 
time t  , respectively. Based on the assumptions, ( ) {0,1, 2, }AN t ∈    and ( ) {0,1, 2, , }BN t M∈   

( ) ( )( ){ }, : 0A BN t N t t ≥  . Therefore, it is known that ( ) ( )( ){ }, : 0A BN t N t t ≥   is a continuous-time 

Markov process with a state space of 

 
0
Level  ,

k

k
∞

=

Ω =  (1) 

where the Level  k  denotes the set of states in level k , for details:  

 { }Level  ( ,0), ( ,1), ( , 2), , ( , ) , 0.k k k k k M k= ≥  (2) 

Based on the problem description and using the states in all Levels, we can give the state transition 
relations for this Markov process ( ) ( )( ){ }, : 0A BN t N t t ≥ , as shown in Figure 4. 

 

Figure 4. The state transition relations for the Markov process. In Figure 4, the infection 
process, the disappearance process and the transformation process are shown by red, green 
and blue arrows, respectively. If the system is in the state where the arrow starts at a certain 
moment, it will later transit to one of the states where the arrows end. The symbols on the 
arrows indicate the transition rates. 



17829 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 17822–17848. 

Further, according to the state transition relation given in Figure 4, the infinitesimal generator of 
this Markov process can be obtained. This infinitesimal generator contains a great deal of the 
information about our proposed Markov process, and the model analysis and solution in this paper are 
carried out based on this infinitesimal generator [49]. The infinitesimal generator can be written as 

 

0,0 0,1

1,0 1,1 1,2

2,1 2,2 2,3

1, , , 1

,

n n n n n n

A A
A A A

A A A
Q

A A A− +

 
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 
 

=  
 
 
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 

  

  

 (3) 

where ,i jA   are all square arrays of order 1M +  . To easily give the details of ,i jA  , let 

, ( ) ( )n i A AA AB B BA BBa n iμ λ λ γ μ λ λ= + + + + + +  , ,n i AB BBb n iλ λ= +   and ,n i AA BAd n iλ λ= +  . Using ,n ia  , 

,n ib  and ,n id , we can give the details of ,i jA  as follows: 
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When 1k ≥ , 
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Based on this state transition relation and infinitesimal generator, we can know that the Markov 
process of infectious disease is a level-dependent QBD process with an infinite state space. Specifically, 
a state within a given level can only transition to other states in the same level or in the adjacent levels. 
Moreover, the process exhibits an infinite state space that arises from the infinite number of levels. 
Finally, the process is level-dependent, as the state transition matrices differ across levels. 

For the level-dependent QBD process we propose, it is easy to prove its stability. When A AAμ λ> , 
this QBD process of infectious disease ( Q  ) is irreducible and positive recurrent. Thus, the QBD 
process of infectious disease is stable. We give details of the proof process in the appendix. 

4. Stationary probability vector and performance measures 

In this section, we present how to use the RG-factorization method to obtain the stationary 
probability vector of the QBD process proposed in this paper and provide some important performance 
measures of the model based on the stationary probability vector. RG-factorization is an efficient way 
of solving infinite dimensional (or large) systems of linear equations. More details about RG-
factorization can be found in the literature [50,51]. 

Let , ( )i jP t  be the probability that the process is at state ( , )i j  at time t . We have 

 , ( ) { ( ) , ( ) }.i j A BP t P N t i N t j= = =  (9)
 

When the QBD process of infectious disease is stable, let ,i jπ  denote the stationary probability 
that the process is at state ( , )i j . ,i jπ  can be obtained by 

 , ,lim ( ),i j i jt
P tπ

→∞
=  (10) 

After that, we denote the stationary probability vector that the process is at level i  by iπ . For 
any integer i  = 0, 1, 2, …, we have 

 ( ),0 ,1 ,2 ,, , , , ,i i i i i Mπ π π π=π   (11) 
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and the stationary probability vector π  of this process is
 

 ( )0 1 2, , , .=π π π π   (12) 

Using the RG-factorizations method [49], we can calculate the stationary probability vector of 
this QBD process. Therefore, we give the U −  , R −   and G −   measures of the QBD process 
respectively. 

 1
, , 1 1 1,( ) , 0,k k k k k k k kU A A U A k−

+ + += + − ≥  (13) 

 1
, 1 1( ), 0,k k k kR A U k−

+ += − ≥  (14) 

 1
1 , 1( ) , 1.k k k kG U A k−

+ −= − ≥  (15) 

Note that the matrix sequence { }, 0kR k ≥  is the smallest non-negative solution to the system of 
nonlinear matrix Eq (16): 

 , 1 1, 1 1 2, 1 0, 0.k k k k k k k k kA R A R R A k+ + + + + ++ + = ≥  (16) 

Similarly, the matrix sequence { }, 1kG k ≥  is the smallest non-negative solution to the system of 
nonlinear matrix Eq (17): 

 , 1 1 , , 1 0, 1.k k k k k k k k kA G G A G A k+ + −+ + = ≥  (17) 

Once the matrix sequence { }, 0kR k ≥  or { }, 1kG k ≥  is given, for 0k ≥  we have 
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k k k k k

U A R A
A A G

+

+ +

= +
= +

 (18) 

By following the method described in Chapter 1 of Li [49], we can factorize the infinitesimal 
generator of the level-dependent QBD process as 

 ( ) ( ),U D LQ I R U I G= − −  (19) 

where, 

 1 2diag( , , ),D oU U U U=   (20) 
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 
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 
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 (22) 

The 1 2diag( , , )oU U U   denotes the diagonal matrix composed of oU , 1U , 2U , …. 
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After that, using this UL-type RG-Factorization and R-measure sequence { }, 0kR k ≥ , we have 

 0 0 1 1, 1,k kR R R k−= ≥π π    (23) 

 , 0,k kc k= ≥π π  (24) 

where c  is the normalization constant such that the sum of the stationary probabilities of all states 
is 1. And the positive constant c  is uniquely given by  

 
0 0 0 1 1

1

1 .
k

k

c
R R R

∞

−
=

=
+π e π e    (25) 

In Eq (23), kπ  represents the stationary probabilities vector of level k  before normalization. 

0π  can be uniquely determined by the system of linear  Eq (40). 

 0 0,0 0 1,0

0

( ) 0
.

1
A R A+ =

 =

π
π e

  (26) 

In the remainder of this section, we provide performance analysis of the infectious disease 
transmission process with asymptomatic patients by means of the stationary probability vector of the 
QBD process of infectious diseases. Therefore, we can use this stationary probability vector π  to 
provide some useful performance measures as follows: 

i. Average number of symptomatic patients 

 0

0 0 1 1
1

[ ]

          ,
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k
k

E N k

kc R R R

∞

=

∞

−
=

=
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
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 (27) 

where, lim ( )A At
N N t

→∞
= , a.s. 

ii. Average number of asymptomatic patients 
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where, lim ( )B Bt
N N t

→∞
= , a.s.; ( )0,1,2, , T

B M=f  . 

iii. Average infection rate from symptomatic patients to symptomatic patients 
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iv. Average infection rate from symptomatic patients to asymptomatic patients 
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v. Average infection rate from asymptomatic patients to symptomatic patients 
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vi. Average infection rate from asymptomatic patients to asymptomatic patients 
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where, ( )0,1,2, , 1,0 T
B M= −g  . 

vii. Average transition rate from asymptomatic patients to symptomatic patients 
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5. Design of solution algorithms 

This section provides two efficient algorithms for computing the stationary probability vector of 
the QBD process of infectious disease. And we use this stationary probability vector to compute the 
important performance measures of the QBD process. 

Given the infinite state space of the QBD process, it is critical to first identify the maximum 
truncation level and the R-measure sequence { , 0}kR k ≥  in order to obtain the stationary probability 
vector ( π ). For this purpose, we propose an algorithm based on the method of Bright and Taylor [52], 
which enables the determination of the maximum truncation level K  and all R-measure { , 0}kR k ≥ .  

Based on Bright and Taylor [52], we derive two key results as follows: 
a) An important UD-type representation of kR . 

 
1

1
2

0 0
, 1,l i

l
l l i

k k k
l i

R U D k−

−∞
− −
+

= =

= ≥ ∏  (34) 

where 

 0 1
, 1 1, 1( ) , 1,k k k k kU A A k−

+ + += − ≥  (35) 

 0 1
1, 1, 1( ) , 1,k k k k kD A A k−

− − −= − ≥  (36) 

 1 1
1 1

2 2 3 2 2 2
[ ] , 0,l l l l l

l l l l l l l
k k k k k k k

U U U I U D D U k+ +
+ −

+ + + ⋅ + +
= − − ≥  (37) 

 1 1
1 1

2 2 2 2 3 2
[ ] , 0.l l l l l

l l l l l l l
k k k k k k k

D D D I U D D U k+ +
+ −

− − − − − ⋅
= − − ≥  (38) 

Note that, using this UD-type representation, the rate matrix { }, 1kR k ≥  is determined directly 
from the original data matrices , 1k kA + , 1, 1k kA + + , 1,k kA − , and 1, 1k kA − − , 1k ≥ . 

b) A backward iterative recursive representation of kR . 
As soon as KR  is obtained from the UD-type representation, we have 

1
, 1 1, 1 1 1, 2( ) , 1, 2, ,1,0.k k k k k k k kR A A R A k K K−

+ + + + + += − − = − −          (39) 

Based on a) and b), we propose an algorithm to determine the appropriate maximum truncation 
level K  and obtain the R-measure { },0kR k K≤ ≤ . 

To determine the maximum truncation level K , we iteratively compute the sum of the stationary 
probabilities of the level K  until it is sufficiently small, i.e., Kπ ε<e . ε  denotes the controllable 
accuracy by the user, where we make 2010ε −= . In addition, we define a sequence of positive integers 
{ : 0}k kς ≥  for iterative computation. The algorithm for determining the maximum truncation level 
and the R-measure is summarized in Algorithm 1. 
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Algorithm 1: Calculate K  and kR  
Input: Parameter AAλ , ABλ , BAλ , BBλ , γ , Aμ  and Bμ . 
Output: K  and kR  
1) Step 0: Initialization 
Let 10n nς =  and initialize setting n =1 as the initial value. 
2) Step 1: Calculate the rate matrix KR  
Let nK ς= , and calculate KR  according to Eq (34). 
3) Step 2: Determine other rate matrices ({ ,0 1}kR k K≤ ≤ − ) by backward iteration 
Compute of 1KR − , 2KR − , …, 2R , 1R , 0R  according to Eq (39). 
4) Step 3: Compute the stationary probability vector 0π  
Compute 0π  by solving the linear equation system (26) 
5) Step 4: Calculate the normalization constant c  
Using the vector 0π  and the R-measure { ,0 }lR l K≤ ≤ , we can compute 

 1

0 0 0 1 1
1

1 .K

k
k

c
R R R

+

−
=

=
+π e π e    (40)

6) Step 5: Check if the accuracy is satisfied 
If for a positive integer nK ς= , it satisfies 
 1 ,K ε+ <π e  (41)
(called stop condition), where 1 0 1K o Kc R R R+ =π π  , then let nK ς= , and go to Step 6. Otherwise, 
let 1n n= +  and substitute to calculate 10( 1)n nς = + , return to Step 1; 
7) Step 6: Output K  and { ,0 }kR k K≤ ≤  
The algorithm stops, and a maximum truncation level nK ς=   and a sequence of R-measures 
{ ,0 }kR k K≤ ≤  are obtained as its output. 

Once we have determined the maximum truncation level K   and R-measure { ,0 }kR k K≤ ≤  
using Algorithm 1, we need to further compute the stationary probability vector and some other 
important performance measures of the model. Therefore, we design Algorithm 2 as follows. 

Algorithm 2: Compute stationary probability vector π  and performance measures 
Input: Parameter K , { ,0 }lR l K≤ ≤ , 0π , and c . 
Output: [ ]AE N , [ ]BE N , A Ar → , A Br → , B Ar → , B Br →  and BAr  
1) Step 1: Calculate the stationary probability vector 
When 1 1k K≤ ≤ + , based on Eqs (23) and (24), we can compute 
 0 0 1 1,k kc R R R −=π π   (42)
and according to Eq (26), we can calculate 
 0 0.c=π π  (43)

Continued on next page 
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Algorithm 2: Compute stationary probability vector π  and performance measures 
2) Step 2: Calculate the important performance measures 
We use Eqs (44)–(50) in Algorithm 2 to calculate the measures [ ]AE N  , [ ]BE N  , A Ar →  , A Br → , 

B Ar → , B Br → , BAr . 
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 [ ] ,A A A AAr E N λ→ = ⋅  (46)
 [ ] ,A B A ABr E N λ→ = ⋅  (47)
 [ ] ,B A B BAr E N λ→ = ⋅  (48)

 
0

,
K

B B k B BB
k

r λ→
=

= ⋅π g  (49)

 [ ] .BA Br E N γ= ⋅  (50)
3) Step 3: Output the important performance measures  
Stop algorithm, output these performance measures: [ ]AE N  , [ ]BE N  , A Ar →  , A Br →  , B Ar → , 

B Br → , BAr . 

6. Numerical experiments 

In this section, we give some numerical examples to demonstrate the feasibility of the proposed 
model in this paper and highlight the impact of key parameters on some important system performance 
measures.  

6.1. Data setting 

We conduct numerical experiments using COVID-19 as an example to verify the feasibility of the 
model. As obtaining actual data about asymptomatic patients can be challenging from publicly 
available information, we set the benchmark values of the model parameters based on previous studies. 
Specifically, He et al. [15] reported that the infection risk ratio between symptomatic and asymptomatic 
patients is approximately 3.9:1, i.e., ( ) / ( ) 3.9 /1AA AB BA BBλ λ λ λ+ + =  . In addition, about 85% of 
patients infected by symptomatic patients are symptomatic themselves, leading to 

/ 0.85 / 0.15AA ABλ λ =  . Furthermore, roughly 50% of patients infected by asymptomatic patients 
become symptomatic, i.e., / 0.5 / 0.5BA BBλ λ =  . According to the results of Lauer et al. [18], the 
average duration for asymptomatic patients to become symptomatic is 5 days, which we make the 
parameter 1/ 5γ = . We assume that these values remain constant throughout the observation period, 
which corresponds to the homogeneous Markov process. 

After consulting relevant experts, referencing the research findings from literature [15,18], and 
taking into account the system stability conditions, we set the parameter values to be as follows: 

1.5Aτ =  , 3Bτ =  , 3.4AAλ =  , 0.6ABλ =  , 0.51BBλ =  , 0.51BAλ =  , 0.2γ =  , 6Aμ =   and 1Bμ =  . 
Subsequently, we give some numerical experiments to investigate the impact of various parameters on 
the average number of symptomatic and asymptomatic patients. We also analyze the effect of non-drug 
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interventions and vaccines. Note that, the parameters A Ar → , A Br → , B Ar → , B Br →  and BAr  are closely 
related to [ ]AE N   and [ ]BE N   according to Eqs (29)–(33), thus we only observe [ ]AE N   and 

[ ]BE N  in our numerical experiments. 

6.2. Experiment results 

1) Case 1: Let’s take BBλ   as 0.3, 0.5 and 0.7, respectively, and observe the impact of AAλ  
varying in the interval [2.9, 3.9] on [ ]AE N  and [ ]BE N . The numerical results are shown in Figure 5. 

 

Figure 5. The impact of AAλ  on the average number of COVID-19 patients. 

Figure 5 shows the impact of the infection rate of symptomatic patients infecting and generating 
symptomatic patients ( AAλ ) on the average number of symptomatic patients and asymptomatic patients 
when the system is stable. The blue, red and green lines in Figure 5 represent the cases in which the 
rate of asymptomatic patients infecting and generating asymptomatic patients ( BBλ ) is set as 0.3, 0.5 
and 0.7, respectively. In Figure 5(a), each line shows that the average number of symptomatic patients 
increases as AAλ  increases. In addition, by comparing the three lines, we can observe that a larger 

BBλ  leads to a higher average number of symptomatic patients. Similarly, Figure 5(b) shows that the 
average number of asymptomatic patients also increases as AAλ  and BBλ  increase. 

Based on the results shown in Figure 5, it can be concluded that the proposed method is feasible 
for modeling the long-term infectious disease transmission process. We can estimate the average 
number of symptomatic and asymptomatic patients by using our proposed model. The numerical 
experiments demonstrate that decreasing the infection rate of both symptomatic and asymptomatic 
patients can decrease the average number of symptomatic and asymptomatic patients. This suggests 
that certain non-drug interventions, such as implementing social distancing measures, can effectively 
control the transmission of infectious diseases by reducing the infection rates.  

2) Case 2: Let’s take Bμ   as 1.1, 1.3 and 1.5, respectively, and observe the impact of Aμ  
varying in the interval [5, 6] on [ ]AE N  and [ ]BE N . The numerical results are shown in Figure 6. 
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Figure 6. The effect of Aμ  on the average number of COVID-19 patients. 

Figure 6 shows the impact of the disappearance rate of symptomatic patients ( Aμ ) on the average 
number of symptomatic patients and asymptomatic patients. The blue, red and green lines in Figure 6 
represent the cases in which the disappearance rate of asymptomatic patients ( Bμ ) is set as 1.1, 1.3 
and 1.5, respectively. Each line in Figure 6(a) shows that the average number of symptomatic patients 
decreases as Aμ  increase. In addition, comparing the three lines shows that the larger the value of 

Bμ , the smaller the average number of symptomatic patients. Similarly, Figure 6(b) shows that the 
average number of asymptomatic patients also decreases as Aμ  and Bμ  increase. 

Based on the results in Figure 6, increasing the disappearance rate of symptomatic and 
asymptomatic patients can result in a decrease in the average number of symptomatic and 
asymptomatic patients. This shows the effectiveness of non-drug interventions, such as screening and 
isolation, in controlling the spread of infectious diseases by increasing the disappearance rates.  

3) Case 3: Let’s take Bμ  as 1.1, 1.3 and 1.5, respectively, and observe the impact of γ  varying 
in the interval [0, 1] on [ ]AE N  and [ ]BE N . The numerical results are shown in Figure 7. 

 

Figure 7. The impact of γ  on the average number of COVID-19 patients. 

Figure 7 shows the trend in the average number of symptomatic patients and asymptomatic 
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patients when the transition rate from asymptomatic patients to symptomatic patients (γ ) increases. 
The blue, red and green lines in Figure 7 represent the cases where the disappearance rate of 
asymptomatic patients ( Bμ ) is given as 1.1, 1.3 and 1.5, respectively. Each line in Figure 7(a) indicates 
that the average number of symptomatic patients increases as γ  increases. Furthermore, comparing 
the three lines reveals that the larger the value of Bμ , the smaller the average number of symptomatic 
patients. In contrast, Figure 7(b) demonstrates that the average number of asymptomatic patients 
decreases as γ  and Bμ  increase. 

According to the results in Figure 7, increasing the transition rate from asymptomatic patients to 
symptomatic patients leads to an increase in the average number of symptomatic patients and a 
decrease in the average number of asymptomatic patients. Due to the higher infection rate of 
symptomatic patients compared to asymptomatic patients, and the longer duration of infection caused 
by asymptomatic patients, the impact of increasing the transition rate on controlling the transmission 
of infectious diseases may vary depending on the specific circumstances.  

4) Case 4: Let’s take Aμ  as 5, 6 and 7, respectively, and observe the impact of Bμ  varying in 
the interval [0, 1] on [ ]AE N  and [ ]BE N . The numerical results are shown in Figure 8. 

 

Figure 8. The impact of Bμ  on the average number of COVID-19 patients. 

Figure 8 illustrates the trend in the average number of symptomatic patients and asymptomatic 
patients as the disappearance rate of asymptomatic patients ( Bμ ) increases. The blue, red and green 
lines in Figure 8 represent the cases in which the disappearance rate of asymptomatic patients ( Aμ ) is 
given as 5, 6 and 7, respectively. Each line in Figure 8(a) shows that the average number of 
symptomatic patients decreases as Bμ  increases. The same trend is observed in Figure 8(b), where 
the average number of asymptomatic patients decreases as Bμ  increases. Furthermore, the decline in 
the average number of symptomatic and asymptomatic patients is notably faster within the range 
of 0.4–0.6 compared to other values. 

Based on the findings in Figure 8, increasing the disappearance rate of asymptomatic patients 
results in a decline in the average number of symptomatic and asymptomatic patients. Notably, there 
exists a specific range where increasing the disappearance rate of asymptomatic patients can lead to a 
more substantial reduction in the average number of patients compared to other scenarios. Therefore, 
it is advisable to identify this range prior to implementing non-drug interventions, as it can contribute 
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to more cost-effective control of the infectious disease transmission process. 
5) Case 5: In order to examine the impact of non-drug intervention strategies and vaccines on 

infectious disease transmission, we introduce two variables: w  and v , representing the effects of 
non-drug interventions and drug interventions (e.g., vaccines) on the infection rate of disease, 
respectively. Additionally, let 1β   and 2β   be the weights representing the effects of non-drug 
interventions and drug interventions on the infection rate of infectious disease, respectively. Obviously, 

1 2 1β β+ = . Based on this, we have 

 1 2
1 1' ( )
w v

λ β β λ= +  (51) 

where 'λ  denotes the infection rate considering the impact of both non-drug interventions and drug 
interventions, and λ  denotes the infection rate without considering them. In this situation, we set the 
benchmark parameter value for the infection rate without considering the impact of non-drug 
interventions and drug interventions. Under different situations, we examine the impact of v  on the 
COVID-19 transmission in three cases: 1 0.5β =  , 2 0.5β =  ; 1 0.2β =  , 2 0.8β =  ; and 1 0.8β =  , 

2 0.2β = .  
Figure 9 gives the impact of v   on the [ ]AE N   and [ ]BE N   under different w   in various 

weight combination cases. The blue, red and green lines in Figure 9 represent the cases where the effect 
of non-drug interventions on the infection rate of disease ( w ) is set as 1, 1.5 and 2, respectively. Each 
line in Figure 9(a) shows that the average number of symptomatic patients decreases as v  increases. 
Furthermore, comparing the three lines reveals that the average number of symptomatic patients 
decreases as w  increases. The same trend is observed in Figure 9(b), where the average number of 
asymptomatic patients also decreases as v  and w  increase. According to the results in Figure 9, 
both non-drug interventions and drug interventions contribute to a decrease in the average number of 
symptomatic and asymptomatic patients, thus effectively controlling the transmission of infectious disease. 

Based on the stability and the numerical analysis, we can know that the infectious disease 
transmission process with asymptomatic patients is stable when AA Aλ μ< . Controlling the infection 
rates and disappearance rates of symptomatic and asymptomatic patients can affect the average number 
of symptomatic and asymptomatic patients when this infectious disease transmission process is stable. 
Therefore, while paying attention to the control of symptomatic patients, the screening and control of 
asymptomatic patients should not be neglected. Specifically, the average number of symptomatic 
patients increases with AAλ , ABλ , BAλ , BBλ  and γ ; and decreases with Aμ  and Bμ . The average 
number of asymptomatic patients increases with AAλ , ABλ , BAλ  and BBλ ; and decreases with γ , 

Aμ  and Bμ . Therefore, if the control strategies can decrease the parameters AAλ , ABλ , BAλ  and 

BBλ   or increase the parameters Aμ   and Bμ  , it can be helpful for the scientific control and 
management of the epidemic. Increasing γ   is effective for controlling transmission caused by 
asymptomatic patients, but not for transmission caused by symptomatic patients. Furthermore, there 
exists an optimal interval in which increasing Bμ  can more effectively control the transmission of 
infectious diseases. Therefore, decisions on how to control γ  and Bμ  should be made based on the 
specific situation. Both non-drug interventions and drug interventions can influence the parameters of 
the infectious disease transmission. The above findings are in line with those in the existing related 
literature [26–30]. In addition, we consider the impact of transmission from asymptomatic patients on 
the system. Based on the research results of this paper and the specific situation of the region, it is 
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recommended to regulate the intensity of infectious disease control strategies and the level of drug 
interventions at an optimal level to achieve effective and cost-efficient control of infectious diseases. 

 

 

 

Figure 9. The impact of v  on the average number of COVID-19 patients. 

7. Conclusions and future research 

In this paper, we developed a new Markov process of infectious disease with infinite-state space 
to study the stable condition of an infectious disease system, which is based on the continuous time 
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level-dependent QBD process. Compared to existing studies, we considered the long-term impact of 
asymptomatic patients on the transmission process of infectious diseases. We gave a simple sufficient 
condition for the stability of the model by using the mean drift technique. We obtained the stationary 
probability vector by means of RG-factorizations. Using this stationary probability vector, we gave 
some important performance measures of this model. Finally, we verified the feasibility of this paper 
by using some numerical experiments through taking COVID-19 as an example. The effects of some 
key parameters on the stationary probability of the model and the role of two types of patients on the 
transmission of infectious diseases were also quantitatively analyzed based on performance analysis. 
The modeling technique proposed in this paper is operational and general. It can be applied to other 
infectious diseases if they consist of symptomatic and asymptomatic patients and both types of patients 
can infect and generate the two types of patients. Therefore, the methodology and results of this paper 
can provide some useful theoretical basis and technical support for the long-term scientific prevention 
and control of infectious diseases. 

In future studies, the proposed model in this paper can be extended in the following ways:  
1) In the framework of the homogeneous Markov process, the patient infection and disappearance 

processes can be extended from Poisson processes to Markovian arrival processes (MAPS), whose 
purpose is to reflect the burstiness and short-time clustering characteristics of infectious diseases.  

2) Extending the patient infection and treatment process from a homogeneous Poisson process to 
a non-homogeneous Poisson process, i.e., the parameters can vary over time. 

3) Develop a data-driven Markov process by deriving the infection, cure and death rates of 
patients in the model based on the actual data of infectious diseases. 

4) Apply Markov decision process to study optimal control strategies in infectious disease prevention 
and control, e.g., vaccine input strategy, isolation intensity strategy, economic strategy and etc. 
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Appendix 

In this appendix, we use the mean drift technique to provide a simple sufficient condition for the 
stability of the QBD process. Ensuring model stability is essential for the analysis of the model.  

Theorem A1. When A AAμ λ> , this QBD process of infectious disease (Q) is irreducible and 
positive recurrent. Thus, the QBD process of infectious disease is stable. 

Proof. Let , 1 , , 1k k k k k k kA A A− += + +A  , where k   denotes the k  th level, 1k ≥  . Let 
( )i AB B BBh k iλ γ μ λ= + + + , i AB BBo k iλ λ= + . Then, kA  can be written as follows: 
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Note that it is easy to see that kA  is a finite state and irreducible birth-death process, so this 
process must be positive recurrent and stable. Therefore, this birth-death process kA  has the stable 
state and stationary probability vector.  

Let ( ) ( ) ( ) ( ) ( )
0 1 2( , , , , )k k k k k

Mα α α α=α   be the stationary probability vector of kA . Then, from the 
characteristics of the stationary probability vector, we can obtain 

 ( ) ( )
, 1 , , 1( ) 0,k k

k k k k k k kA A A− += + + =α Α α  (A1) 

 ( ) 1,k =α e  (A2) 

where e  is a column vector of ones with a suitable size. 
According to Eq (A1), we have  
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From Eq (A1) and the first term in Eq (A3), we have 
( ) ( )
0 1( ) ( ) 0,k k

AB Bkα λ α γ μ− + + =
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From Eq (A1), the second term in Eqs (A3) and (A4), we have 
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Similarly, we can obtain Eqs (A5) and (A6) to get ( )k
lα . 
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After that, depending on Eqs (A2) and (A6), we can obtain 
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Using the aforementioned description, we can obtain the stationary probability vector ( )kα  for 
the birth-death process kΑ . Subsequently, we can leverage this vector to discuss the stable conditions 
of the QBD process proposed in this paper. In particular, we analyze two key rates when discussing 
the stable state: the upward mean drift rate and the downward mean drift rate. 

The upward mean drift rate: mean drift rate from level k  to level 1k +  
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The downward mean drift rate: mean drift rate from level k  to level 1k −  
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According to the mean drift technique, a QBD process is positive recurrent if its downward mean 
drift rate is greater than its upward mean drift rate. Therefore, we proceed to calculate 
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In Eq (A8), M  is a fixed value, so ( ) ( ) ( )( ) ( ) ( )
1 2 2k k k

BA BA M BAMα λ γ α λ γ α λ γ+ + + + + +  is a 
finite value. If 0A AAμ λ− >   and k   tends to positive infinity, ( )A AAk μ λ−   will tends to positive 
infinity. Therefore, when k  tends to positive infinity, Eq (A8) must be larger than 0. This means that 
the downward mean drift rate of the QBD process Q   is greater than its upward mean drift rate. 
Therefore, Q  is positive recurrent and stable. This completes the proof. 
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