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Abstract: Modeling soil moisture as a function of meteorological data is necessary for agricultural 

applications, including irrigation scheduling. In this study, empirical water balance models and 

empirical compartment models are assessed for estimating soil moisture, for three locations in 

Colombia. The daily precipitation and average, maximum and minimum air temperatures are the input 

variables. In the water balance type models, the evapotranspiration term is based on the Hargreaves 

model, whereas the runoff and percolation terms are functions of precipitation and soil moisture. The 

models are calibrated using field data from each location. The main contributions compared to closely 

related studies are: i) the proposal of three models, formulated by combining an empirical water 

balance model with modifications in the precipitation, runoff, percolation and evapotranspiration terms, 

using functions recently proposed in the current literature and incorporating new modifications to these 

terms; ii) the assessment of the effect of model parameters on the fitting quality and determination of 

the parameters with higher effects; iii) the comparison of the proposed empirical models with recent 

empirical models from the literature in terms of the combination of fitting accuracy and number of 

parameters through the Akaike Information Criterion (AIC), and also the Nash-Sutcliffe (NS) 

coefficient and the root mean square error. The best models described soil moisture with an NS 

efficiency higher than 0.8. No single model achieved the highest performance for the three locations.  
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The VJRAM, HDG0 and HDG0 models achieved the lowest AIC values for Naranjal, Calarcá and 

Balboa weather stations, respectively, with NS values of 0.895, 0.653 and 0.983, respectively. The 

proposed modifications improved soil moisture simulation at the three locations. 

Keywords: soil moisture model; evapotranspiration; hydrology; effective rainfall; Hargreaves model; 

coffee crop; simulation model 

 

1. Introduction  

Soil moisture (SM) is an important variable in water and energy fluxes occurring at the interface 

between land surface and atmosphere [1–4]. SM influences the surface energy, and it is a key feature 

in the partitioning of the net radiation into sensible heat and latent heat [1,5], the partitioning of rainfall 

into runoff, percolation and evapotranspiration [1,6], the plant photosynthesis and respiration [7–10], 

plant transpiration [10,11] and plant growth and physiological state [12–14]. SM is widely used in 

several disciplines, including: earth system dynamics, water resource management, agriculture, 

forestry and soil science [15,16]. In agriculture, SM is used for studies on crop production and for 

determining irrigation requirements [7,17–19]. In the event of soil moisture stress, productivity is 

seriously affected, and the plant has to consume more energy to take water from the soil [7,20]. 

SM models allow for the reduction of regular measurements of soil moisture, which is expensive 

and time consuming. In addition, soil moisture is only measured in special cases [21,22]. Physically-

based models are based on the water transport in the soil-plant-root system, and they use the mass 

balance of soil water in the crop root zone, with terms for effective precipitation ( 𝑃𝑒𝑓 ), 

evapotranspiration (𝐸), runoff (𝑅) and percolation (𝐺). These terms aim at providing realistic estimates 

of these physical processes. Extensive field data (including soil characteristics) are required for 

estimating model parameters, so its applicability is limited [23]. The empirical models emerged later, 

using the balance of the water mass with nonlinear functions related to 𝑃𝑒𝑓, 𝐸, 𝑅 and G, aimed at 

obtaining an accurate estimation of the SM; however, a realistic estimation of physical processes is not 

intended [22,24]. They use available meteorological data, requiring few or no soil characteristics, their 

tuning is simple and they can achieve high performance with high r2 values [22,25]. 

In [22], an empirical model is proposed for estimating soil moisture in a Himalayan watershed. It 

comprises the classical soil water balance. However, simplified empirical relations are used for 

infiltration, evapotranspiration and percolation: i) the infiltration term is a function of only rainfall, 

and it comprises a power law relation; ii) the percolation term is a function of only soil moisture and 

infiltration; iii) the evapotranspiration term is a function of only air temperature, soil surface 

temperature and wind speed. Therefore, the input variables of the model are rainfall, wind speed, air 

temperature and soil surface temperature. The model is calibrated with measurements from three sites 

at the lesser Himalaya for three soil depths. The performance of the model decreases as the depth of 

the soil increases. 

In [26], a set of simplified models is proposed for estimating the soil moisture, and it is calibrated 

to data from Taranaki, New Zealand. Each model comprises a first-order differential equation, with 

empirical terms depending on rainfall, soil temperature, soil moisture and day length. A loss term is 

included, which depends on soil moisture level, soil, the temperature of the soil and the length of the 

day. The models were calibrated with data from ten locations in the Taranaki region in New Zealand. 
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Despite their simplicity, the models can be used for sites with different soil characteristics and soil 

moisture dynamics. The negative soil moisture term proved significant in sites with soil moisture levels 

above field capacity, whereas the term involving temperature and daylight proved significant in sites 

with soil moisture levels below field capacity. 

In [21], an adaptive neurofuzzy inference system (ANFIS) is used for estimating soil moisture at 

the Istanbul Bolge station in Turkey, considering the classical ANFIS model and its coupling with three 

bioinspired metaheuristic optimization methods: ANFIS coupled with the whale optimization 

algorithm (ANFIS-WOA), ANFIS coupled with the krill herd algorithm (ANFIS-KHA) and ANFIS 

coupled with the firefly algorithm (ANFIS-FA). The input variables are the daily air temperature, 

relative humidity, wind speed, sunshine hours and soil temperature. The models were calibrated with 

data from Turkey, 2008–2009. The SM estimation with hybrid models (ANFIS-WOA, ANFIS-KHA 

and ANIFS-FA) achieved a significantly lower estimation error compared to the classical ANFIS 

model. Furthermore, the performance of the model for different soil moisture intervals was: 15–25% 

(first interval), 25–35% (middle interval) and ≥35% (last interval). Hybrid models had better 

performance for the last interval and worst performance for the middle interval. The ANFIS-WOA 

model had the best performance, considering each of the three SM intervals and considering the entire 

SM range.  

In [7], a simple model is used for estimating soil moisture and calculating irrigation requirements, 

in the Sikkim state of India. The model comprises a discretized soil water balance model, with an 

effective rainfall term, an evapotranspiration term and a constant term; a multiplicative coefficient is 

incorporated into the rainfall and evapotranspiration terms. The effective rainfall term is a nonlinear 

piecewise function of rainfall. The input variables of the model are rainfall, daily maximum and 

minimum temperatures, relative humidity, wind speed, precipitation and sunshine hours. The model 

was calibrated with data from three meteorological stations located in different parts of the Sikkim 

state, from the 2015–2016 period, and then validated using data from the 2016–2017 period. The 

determination coefficients were 0.76, 0.66 and 0.63 for the stations. Additionally, irrigation 

requirements for cabbage, mustard green leaves, potato, broccoli and cauliflower were calculated for 

the three locations. 

In this work, several empirical models are used for estimating soil moisture in three locations of 

Colombia, considering limited weather data. The input variables are the daily maximum, minimum 

and average air temperatures, and precipitation. The first model (HDG0) is based on water balance and 

the Hargreaves model is used for the evapotranspiration term, while the runoff and percolation 

components are functions of precipitation and soil moisture. The second model (VJRAM) is based on 

water balance, where the evapotranspiration term uses the Hargreaves model and the runoff and 

percolation terms are functions of precipitation. The third model (K) is a simple compartment model, 

involving terms related to gain from rainfall and soil moisture loss, considering daylight and 

temperature effects. In addition, two models are proposed, formulated by combining the first model 

with modifications in the precipitation, runoff, percolation and evapotranspiration terms, using 

functions recently proposed in the current literature. Each model is calibrated using data from each 

location, and the fitting quality of the models is compared for each location. Compared to previous 

related studies on SM modeling using empirical models, the main contributions of this paper are 

the following: 

i) Based on the model in [27], a new model is proposed with terms from the recent literature. 



17750 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 17747–17782. 

ii) The effect of model parameters on the fitting quality is assessed and the parameters with higher 

effect are determined.  

iii)  The proposed models and the empirical models found in the recent literature are compared in 

terms of the combination of fitting accuracy and number of parameters, through the Akaike 

Information Criterion (AIC). 

2. Soil moisture models 

Precipitation turns into runoff, percolation and evapotranspiration, so that the soil moisture 

dynamics depends on these components [25,28,29]. Furthermore, a part of precipitated water 

evaporates into the atmosphere before it reaches the top soil layer [1], and the other part is retained by 

plant cover [30–32]. The part of precipitation that can be used by the plant root is known as effective 

precipitation [1]. 

Soil moisture (SM) is influenced by topography, soil properties (soil texture, drainage capability 

and soil density), vegetation and meteorological conditions (e.g. precipitation, temperature, wind 

speed) [1,33–35]. SM exhibits spatial variation due to its dependence on local soil characteristics [25]. 

Soil density influences root growth, movement of air and water through the soil and infiltration rates [7]. 

Additionally, the vegetation type and density affect the soil water content and soil hydrological 

processes [12]. Precipitation and temperature are considered as the meteorological variables with 

major effect on SM [22,33], and there is a strong correlation of soil moisture with temperature and 

precipitation [36]. SM decreases with air temperature, wind speed and solar radiation through 

evapotranspiration [22].  

The water balance model considers the partition of precipitation into effective precipitation 

(infiltration), runoff, percolation and evapotranspiration, so that the soil moisture dynamics depend on 

these terms [28]. Evapotranspiration is commonly estimated with the Penman-Monteith (PM) model, 

which comprises air temperature, air relative humidity, wind speed and solar radiation as input 

variables. However, evapotranspiration can also be estimated with the Hargreaves (HG) model, 

mainly in the case where measurements of air relative humidity, wind speed and solar radiation are 

missing [24,37–39]. It can provide a satisfactory representation of evapotranspiration, achieving high 

values of the determination coefficient [39], and it has proven effective in estimating rainfall with 

effectiveness indexes similar to those of the PM model (see [24]). 

2.1. Water balance and evapotranspiration models 

The water balance is [3,24,40]: 

𝐷
𝑑𝑊

𝑑𝑡
= 𝑃𝑒𝑓,𝑘 − 𝐸𝑘  − 𝑅𝑘 − 𝐺𝑘. 

The term 𝐷 is the product of soil depth and porosity, 𝑊 is the soil moisture, 𝑃𝑒𝑓 is the effective 

rainfall, 𝐸 is the evapotranspiration, 𝑅 is the streamflow divergence (runoff) and 𝐺 is the loss of 

groundwater through deep percolation. The 𝐷 coefficient can be combined with the coefficients of 

𝑃𝑒𝑓,𝑘, 𝐸𝑘, 𝑅𝑘 and 𝐺𝑘, so that: 

𝑑𝑊

𝑑𝑡
= 𝑃𝑒𝑓 − 𝐸 − 𝑅 − 𝐺.                                       (1) 
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Evapotranspiration can be expressed as in Eq (2) [24,25]: 

𝐸 = 𝑓(𝑊)𝐸𝑇0,                                            (2) 

where 𝑓(𝑊)  is a function of 𝑊  and 𝐸𝑇0  is the reference evapotranspiration [mm/day]. 𝐸𝑇0  is 

usually calculated through the Penman-Monteith equation derived by the United Nations Food and 

Agriculture Organization (FAO), but the Hargreaves equation can be used for the case that solar 

radiation, air relative humidity and wind speed are not available [24,37,38,41,42]: 

𝐸𝑇0 = 0.0018(𝑇𝑎𝑣𝑔 + 17.8)(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
0.5𝑅𝑎,                        (3) 

where 𝑇𝑎𝑣𝑔 (°C) is the daily averaged air temperature (°C); 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 are the daily maximum 

and daily minimum air temperature (°C); 𝑅𝑎 is the extraterrestrial radiation. The 𝑅𝑎 equations are 

provided in [42]. The Hargreaves model in Eq (3) can be combined with a constant term and a 

multiplicative coefficient (see [42]): 

𝐸𝑇0 = 𝑚𝑎𝑥{0, 𝑘𝐸10.0018(𝑇𝑎𝑣𝑔 + 17.8)(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
0.5𝑅𝑎 − 𝑘𝐸2},         (4) 

where 𝑘𝐸1  and 𝑘𝐸2  are constant coefficients. All the coefficients, not only 𝑘𝐸1  and 𝑘𝐸2 , can be 

fitted to experimental data (see [39,41]). Some examples of the term 𝑓(𝑊) in Eq (2) are [24,27]: 

𝑓(𝑊) = 𝑊; 𝑓(𝑊) =
𝑊

𝑊𝑚𝑎𝑥
; 

𝑓(𝑊) = {
𝑘𝑒𝑊 +

𝑘𝑐𝑏

𝑘𝑝
𝑊  𝑓𝑜𝑟  𝑊 < 𝑘𝑝

𝑘𝑒𝑊 + 𝑘𝑐𝑏   𝑓𝑜𝑟  𝑊 ≥ 𝑘𝑝
, 

where 𝑊𝑚𝑎𝑥, 𝑘𝑒, 𝑘𝑐𝑏 and 𝑘𝑝 are positive constants. 

2.2. VJRAM model  

Effective rainfall, runoff and percolation for unshaded coffee are represented as [43]:  

𝑃𝑒𝑓 = 0.92𝑃; 𝑅 = {
0.027𝑃 𝑓𝑜𝑟 𝑃 ≥ 20𝑚𝑚

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,  

𝐺 = {
9.94𝐿𝑛(𝑃) − 11.84 𝑓𝑜𝑟 𝑃 > 0.972

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

 

However, the measurements given in [43] and [32] indicate that 𝑃𝑒𝑓, 𝑅 and 𝐺 exhibit a dead 

zone for low rainfall values, so that the above relations can be improved as: 

𝑅 = {
𝑘𝑅(𝑃 − 𝑃𝑅)   𝑓𝑜𝑟 𝑃 ≥ 𝑃𝑅

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
; 𝐺 = {

𝑘𝐺1𝐿𝑛(𝑃) − 𝑘𝐺1𝐿𝑛(𝑃𝐺)   𝑓𝑜𝑟 𝑃 > 𝑃𝐺
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

; 

where 𝑘𝑅  𝑃𝑅  𝑘𝐺1  and 𝑃𝐺   are constant. In [44], the evapotranspiration is expressed as 𝐸 =

𝐸𝑇0(𝑊 𝑘𝑤𝑠⁄ ), where 𝑘𝑤𝑠 is a constant, and several equations are suggested for 𝐸𝑇0. Using the above 

expressions, the VJRAM model is given by Eq (1) with 𝑃𝑒𝑓, 𝐸, 𝑅, and 𝐺 terms defined as: 
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[
 
 
 

𝑃𝑒𝑓 = 𝑘𝑝𝑃

𝐸 = 𝐸𝑇0𝑊

𝑅 = 𝑚𝑎𝑥{0, 𝑘𝑅1𝑃 − 𝑘𝑅2}

𝐺 = 𝑚𝑎𝑥{0, 𝑘𝐺1𝐿𝑛(𝑃) − 𝑘𝐺2}]
 
 
 

,                                  (5) 

where 𝐸𝑇0 is given by Eq (4). The parameters to be estimated are: 𝑘𝑝, 𝑘𝑅1, 𝑘𝑅2, 𝑘𝐺1, 𝑘𝐺2, 𝑘𝐸1 

and 𝑘𝐸2. 

2.3. K models 

The K8 model is the model (8) in [26]: 

 
𝑑𝑊

𝑑𝑡
= −𝛼1𝑊 − 𝛼1𝑏𝑊(

𝛼1𝑐+𝛼1𝑑𝑇𝑎𝑖𝑟

20
) (

𝐷𝐿

12
) + 𝛼2𝑃 + 𝛼2𝑏𝑃 (

30

𝑊
).              (6) 

The term 𝑊  is the soil moisture, 𝑃  is the precipitation (mm), 𝑇𝑎𝑖𝑟  is the air temperature in 

degrees Celsius, 𝐷𝐿  is the day length (hours), whereas 𝛼1 , 𝛼1𝑏 , 𝛼1𝑐 , 𝛼1𝑑 , 𝛼2  and 𝛼2𝑏  are 

constant parameters to be estimated. In order to overcome the lack of soil temperature data, the 

relationship 𝑇𝑠 = 𝛼1𝑐 + 𝛼1𝑑𝑇𝑎𝑖𝑟  where 𝑇𝑠  is the soil temperature, taken from [45]. The 

−𝛼1𝑏𝑊(𝑇𝑠 20⁄ )(𝐷𝐿 12⁄ ) term represents the soil moisture loss due to transpiration and evaporation, 

whereas the −𝛼1𝑊 term represents runoff and percolation. The day length (𝐷𝐿) equation is given in 

[46]. The model requires daily precipitation and daily average air temperature as input data. The 

parameters to be estimated are: 𝛼1, 𝛼1𝑏, 𝛼1𝑐, 𝛼1𝑑, 𝛼2, and 𝛼2𝑏.  

The K7 model is a combination of model (7) from [26] with the 𝛼2𝑃 term: 

𝑑𝑊

𝑑𝑡
= −𝛼1𝑊 − 𝛼1𝑏𝑊(

𝛼1𝑐+𝛼1𝑑𝑇𝑎𝑖𝑟

20
) + 𝛼2𝑃 + 𝛼2𝑏𝑃 (

30

𝑊
).              (7) 

The parameters to be estimated are: 𝛼1, 𝛼1𝑏, 𝛼1𝑐, 𝛼1𝑑, 𝛼2 and 𝛼2𝑏. 

2.4. HDG0 model 

The HDG0 model is given by Eq (1) with 𝑃𝑒𝑓, 𝐸, 𝑅 and 𝐺 terms [27]: 

[
 
 
 
 

𝑃𝑒𝑓 = 𝑘𝑝P; 

𝐸 = 𝐸𝑇0
𝑊

𝑊𝑚𝑎𝑥
;

𝑅 + 𝐺 = 𝑃 (
𝑊

𝑊𝑚𝑎𝑥
)
𝑚

+ 𝛼𝑊,   𝑚 > 1  ]
 
 
 
 

 ,                               (8) 

where 𝑊𝑚𝑎𝑥 is the capacity of soil to hold water; 𝑚, 𝑊𝑚𝑎𝑥, 𝛼, and 𝜇 are constants. Substituting 

the 𝑃𝑒𝑓, 𝐸 and 𝑅 + 𝐺 expressions into Eq (1), gives: 

𝑑𝑊

𝑑𝑡
= 𝑘𝑝𝑃 − 𝐸𝑇0

𝑊

𝑊𝑚𝑎𝑥
− 𝑃 (

𝑊

𝑊𝑚𝑎𝑥
)
𝑚

− 𝛼𝑊 

𝑚 > 1. 

In [27], the Thornthwaite formulas are used for 𝐸𝑇0, whereas we use Eq (4). The parameters to be 

estimated are: 𝑘𝑝, 𝑊𝑚𝑎𝑥, 𝑚, 𝛼, 𝑘𝐸1 and 𝑘𝐸2.  
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2.5. HDG4 model 

The HDG4 model is obtained by combining the HDG0 model with modification of the terms given 

in Table 1. 

Table 1. Models for runoff, groundwater recharge and effective rainfall. 

Model Reference 

𝑹 + 𝑮 = 𝑮;  

𝑮 = 𝒂𝑾𝒃,  

where 𝒂 > 𝟎, and 𝒃 > 𝟏 are constant. 

[24] 

𝑷𝒆𝒇 = 𝜶𝑷𝜷 

𝑹 + 𝑮 = 𝑮; 

 𝑮 =  [𝒆𝒙𝒑(𝒌𝟏𝑷
𝒏)][𝒆𝒙𝒑(𝒌𝟐𝑾) ] 

where 𝜶, 𝜷 are constant, in the range [𝟎  𝟏]; 𝒌𝟏 > 𝟎, 𝒌𝟐 > 𝟎, and 𝒏 < 𝟏 are 

constant. 

 

[22] 

𝑹 = 𝑷𝑾𝒄 

𝑮 = 𝒂𝑾𝒃 

where 𝒂, 𝒃, and 𝒄 are constant. 

 

[3] 

𝑹 + 𝑮 = 𝑷(
𝑾

𝑾𝒎𝒂𝒙
)
𝒎

+ 𝜶𝑾 

where 𝑾𝒎𝒂𝒙, 𝒎, 𝜶, are constant. 

[27] 

 

𝑮 = 𝑪𝑬
−𝒃𝑬𝑭𝑪𝑬

𝒃𝑬𝑾 

where 𝑪𝑬, 𝒃𝑬, and 𝑭 are constant 

(Potential recharge empirical model). 

[47] 

 

𝑹 = {

(𝑷 − 𝒄𝟏)
𝟐

𝑷 + 𝒄𝟐
  𝒇𝒐𝒓  𝑷 > 𝒄𝟏

𝟎  𝒇𝒐𝒓  𝑷 ≤ 𝒄𝟏

 

where 𝒄𝟏 and 𝒄𝟐, are constant (Curve number method) 

 

[25,48] 

𝑹 + 𝑮 = 𝜶𝟏𝑾 

Where 𝜶𝟏 is constant. 
[26] 

𝑷𝒆𝒇 = 𝒌𝒑𝑷; 

𝑹 = {
𝒌𝑹𝑷   𝒇𝒐𝒓 𝑷 ≥ 𝑷𝑹
𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

; 

𝑮 = {
𝒌𝑮𝟏𝑳𝒏(𝑷) − 𝒌𝑮𝟐   𝒇𝒐𝒓 𝑷 > 𝑷𝑮

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 

[43] 
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where 𝒌𝒑, 𝒌𝑹, 𝒌𝑮𝟏, 𝒌𝑮𝟐, 𝑷𝑹, and 𝑷𝑮 are constant. 

 

Runoff (R) and percolation (G) terms vanish for precipitation lower than some threshold [44,48], 

whereas the effective precipitation data given in [32] indicate that 𝑃𝑒𝑓 vanishes for rainfall below 

some threshold. Then, we consider the dead zone function of precipitation: 

�̅� = {
𝑃 − 𝑃𝑙𝑖𝑛𝑓   𝑓𝑜𝑟 𝑃 > 𝑃𝑙𝑖𝑛𝑓 

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

where 𝑃𝑙𝑖𝑛𝑓 is a positive constant. The soil moisture time series for Balboa (Figure A3) indicates that 

for SM lower than a threshold, the rate of decrease in SM is overly slow. To account for this, we 

consider a dead zone function of SM: 

�̅� = {
𝑊 −𝑊𝑙𝑖𝑛𝑓   𝑓𝑜𝑟 𝑊 > 𝑊𝑙𝑖𝑛𝑓 

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

where 𝑊𝑙𝑖𝑛𝑓 is a positive constant. The modifications presented in Table 2 are proposed to give a 

wider capability of describing the nonlinear nature of 𝑃𝑒𝑓 and 𝑅 + 𝐺, based on the terms stated in 

Table 1. 

Table 2. Modifications proposed for 𝑃𝑒𝑓, 𝑅 + 𝐺. 

Model term Proposed modification 

𝑷𝒆𝒇 = 𝜶𝑷𝜷 

Where 𝜶 and 𝜷 are constant in the range 

[𝟎   𝟏] [22] 

𝑃𝑒𝑓 = 𝑘𝑝�̅�
𝑚𝑝2  

Where 𝑘𝑝 and 𝑚𝑝2 are constant. 

 

𝑹 + 𝑮 = 𝒂𝑾𝒃  

Where 𝒂 > 𝟎, 𝒃 > 𝟏 are constant [24] 

 

𝑹 + 𝑮 = 𝑷(
𝑾

𝑾𝒎𝒂𝒙
)
𝒎

+ 𝜶𝑾 

Where 𝑾𝒎𝒂𝒙 , 𝒎 , and 𝜶 , are constant 

[27] 

 

𝑹 + 𝑮 = 𝑷𝑾𝒄 + 𝒂𝑾𝒃 

Where 𝒂, 𝒃, and 𝒄 are constant [3] 

 

𝑅 + 𝐺 = �̅�𝑚𝑝1 (𝛼3�̅� + (
�̅�

𝑊𝑚𝑎𝑥
)

𝑚𝑤1

) + 𝛼0

+ 𝛼1�̅� + 𝛼2�̅�
𝑚𝑤2  

Where 𝑚𝑝1 , 𝛼3 , 𝑊𝑚𝑎𝑥 , 𝑚𝑤1 , 𝛼0 , 𝛼1 , 𝛼2 , 

and 𝑚𝑤2 are constant. 

 

  

 

 

In the evapotranspiration term, different values of the proportional coefficients are used for 𝑃 ≤
𝑃𝑙𝑖𝑛𝑓 and 𝑃 > 𝑃𝑙𝑖𝑛𝑓, where 𝑃𝑙𝑖𝑛𝑓 is a positive constant: 

𝐸𝑇𝑇 = {
𝑘𝐸110.0018(𝑇𝑎𝑣𝑔 + 17.8)(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

0.5𝑅𝑎 − 𝑘𝐸21  𝑓𝑜𝑟 𝑃 > 𝑃𝑙𝑖𝑛𝑓

𝑘𝐸120.0018(𝑇𝑎𝑣𝑔 + 17.8)(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
0.5𝑅𝑎 − 𝑘𝐸22  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

In summary, the HDG4 model is given by Eq (1) with 𝑃𝑒𝑓, 𝐸, 𝑅 and𝐺￼ terms: 
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[
 
 
 
 
 
 
 
 
 

𝑃𝑒𝑓 = 𝑘𝑝�̅�
𝑚𝑝2

𝐸 = 𝐸𝑇0
𝑊

𝑊𝑚𝑎𝑥
, 𝐸𝑇0 = 𝑚𝑎𝑥{0, 𝐸𝑇𝑇} 

𝐸𝑇𝑇 =

{
 
 

 
 𝑘𝐸110.0018(𝑇𝑎𝑣𝑔 + 17.8)(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

0.5𝑅𝑎
−𝑘𝐸21  𝑓𝑜𝑟 𝑃 > 𝑃𝑙𝑖𝑛𝑓

𝑘𝐸120.0018(𝑇𝑎𝑣𝑔 + 17.8)(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
0.5𝑅𝑎

−𝑘𝐸22  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑅 + 𝐺 = �̅�𝑚𝑝1 (𝛼3�̅� + (
�̅�

𝑊𝑚𝑎𝑥
)
𝑚𝑤1

) + 𝛼0 + 𝛼1�̅� + 𝛼2�̅�
𝑚𝑤2

]
 
 
 
 
 
 
 
 
 

 ,               (9) 

where, 

�̅� = {
 𝑃 − 𝑃𝑙𝑖𝑛𝑓  𝑓𝑜𝑟   𝑃 > 𝑃𝑙𝑖𝑛𝑓   

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

�̅� = {
𝑊 −𝑊𝑙𝑖𝑛𝑓   𝑓𝑜𝑟 𝑊 > 𝑊𝑙𝑖𝑛𝑓

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

The parameters to be estimated are: 𝑘𝑝, 𝑊𝑚𝑎𝑥, 𝑚𝑤1, 𝛼1, 𝑘𝐸11, 𝑘𝐸21, 𝛼0, 𝛼3, 𝛼2, 𝑚𝑤2, 𝑚𝑝1, 

𝑚𝑝2, 𝑘𝐸12 and 𝑘𝐸22. 

2.6. HDG1 model  

The HDG1 model is a simplification of the HDG4 model, comprising the following modifications 

of terms in Eq (9): 

i) the evapotranspiration function Eq (4) is used instead of the piecewise function 𝐸𝑇𝑇;  

ii) only two additive terms are used for 𝑅 + 𝐺;  

iii) a Monod type function with dead zone is used for 𝑃𝑒𝑓, wherein the Monod function is used to 

represent the non-linear increase of 𝑃𝑒𝑓 with 𝑃. 

Then, the HDG1 model is given by Eq (1) with 𝑃𝑒𝑓, 𝐸, 𝑅 and 𝐺 terms: 

[
 
 
 
 
 
 
 
 𝑃𝑒𝑓 = {

𝑘𝑝1
𝑃

𝑘𝑝2+𝑃
− 𝑘𝑝1

𝑃𝑙𝑖𝑛𝑓

𝑘𝑝2+𝑃𝑙𝑖𝑛𝑓
 𝑓𝑜𝑟  𝑃 > 𝑃𝑙𝑖𝑛𝑓

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐸 = 𝐸𝑇0
�̅�

𝑊𝑚𝑎𝑥
, 𝐸𝑇0 = 𝑚𝑎𝑥{0,   𝑘𝐸10.0018(𝑇𝑎𝑣𝑔 + 17.8)(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

0.5𝑅𝑎 − 𝑘𝐸2}

𝑅 + 𝐺 = 𝑃 (
�̅�

𝑊𝑚𝑎𝑥
)
𝑚

+ 𝛼�̅�𝑛

𝑊 = {
𝑊 −𝑊𝑙𝑖𝑛𝑓  𝑖𝑓  𝑊 ≥ 𝑊𝑙𝑖𝑛𝑓

0  0𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ]
 
 
 
 
 
 
 
 

.      (10) 

The term 𝑊𝑙𝑖𝑛𝑓 is a positive constant that can be defined from data, or it can be set as zero if it is 

uncertain. The parameters to be estimated are: 𝑘𝑝1, 𝑘𝑝2, 𝑃𝑝, 𝑊𝑚𝑎𝑥, 𝑚, 𝛼, 𝑛, 𝑘𝐸1 and 𝑘𝐸2. The 

resulting mass balance model is: 

𝑑𝑊

𝑑𝑡
= 𝑃𝑒𝑓 − 𝐸𝑇0

�̅�

𝑊𝑚𝑎𝑥
− 𝑃 (

�̅�

𝑊𝑚𝑎𝑥
)
𝑚

− 𝛼�̅�𝑛. 
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2.7. HDG3 model 

The HDG3 model is a simplification of the HDG4 model, obtained from the HDG4 model with a 

sole value of the proportional coefficients in the evapotranspiration term. Then, the HDG3 model is 

given by Eq (1) with 𝑃𝑒𝑓, 𝐸 and 𝑅 + 𝐺 terms: 

[
 
 
 
 

𝑃𝑒𝑓 = 𝑘𝑝𝑃;

𝐸 = 𝐸𝑇0
𝑊

𝑊𝑚𝑎𝑥
, 𝐸𝑇0 = 𝑚𝑎𝑥{0, 𝑘𝐸10.0018(𝑇𝑎𝑣𝑔 + 17.8)(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

0.5𝑅𝑎 − 𝑘𝐸2}

𝑅 + 𝐺 = �̅�𝑚𝑝1 (𝛼3�̅� + (
�̅�

𝑊𝑚𝑎𝑥
)
𝑚𝑤1

) + 𝛼0 + 𝛼1�̅� + 𝛼2�̅�
𝑚𝑤2

]
 
 
 
 

        ,     (11) 

where, 

�̅� = {
 𝑃 − 𝑃𝑙𝑖𝑛𝑓  𝑓𝑜𝑟   𝑃 > 𝑃𝑙𝑖𝑛𝑓   

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

�̅� = {
𝑊 −𝑊𝑙𝑖𝑛𝑓   𝑓𝑜𝑟 𝑊 > 𝑊𝑙𝑖𝑛𝑓

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The parameters to be estimated are: 𝑘𝑝, 𝑊𝑚𝑎𝑥, 𝑚𝑤1, 𝛼1, 𝑘𝐸1, 𝑘𝐸2, 𝛼0, 𝛼3, 𝛼2, 𝑚𝑤2 and 𝑚𝑝1. 

3. Study sites, and model discretization, calibration and evaluation 

3.1. Study sites and meteorological data 

Three weather stations were selected for this study: Naranjal, Calarcá (CALARCA AUTOM) and 

Balboa (BALBOA AUTOM). The experimental Naranjal station (04°58'N, 75°39'W) is located in 

Chinchiná (Caldas, Colombia) at an elevation of 1381 m, with an average temperature of 20.9°C and 

Castillo variety coffee crop [49]. The distance between plants and rows is 1.0 by 2.0 m and the soil 

bulk density is 0.64 g/cm3. The records of daily precipitation, daily maximum air temperature, daily 

minimum air temperature, daily average air temperature and daily average soil moisture were extracted 

from [49] through image digitization using WebPlotDigitizer software 

(https://automeris.io/WebPlotDigitizer/index.html), spanning from July 10, 2015 to December 1, 2015 

(Figure A1). The soil moisture measurements correspond to 10 cm in depth. 

CALARCA AUTOM (4.528°N, 75.596W) is located at Calarcá (Quindío, Colombia) at an 

elevation of 2255 m. The climate is cold and humid, and the land cover type is cropland and pastures 

[50]. The records of daily precipitation, daily maximum air temperature, daily minimum air 

temperature, daily average air temperature and daily average soil moisture were collected from the 

IDEAM database (http://www.ideam.gov.co/) and span from April 21, 2021 to October 27, 2021, 

including a period with no measurement from May 13, 2021 to July 26, 2021 (Figure A2). The short 

dataset spans from September 1, 2021 to October 27, 2021. The soil moisture measurements 

correspond to 10 cm in depth. 

BALBOA AUTOM (2.033°N, 77.222W) is located at Balboa (Cauca, Colombia) at an elevation 

of 1700 m. The climate is temperate and humid, and the land cover type is cropland and pastures [50]. 

The records of daily precipitation, daily maximum air temperature, daily minimum air temperature, 

daily average air temperature and daily average soil moisture were collected from the IDEAM database 

(http://www.ideam.gov.co/) and span from January 01, 2019 to December 31, 2019 (Figure A3). The 
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soil moisture measurements correspond to 10 cm in depth. 

3.2. Model discretization 

The discretized form of Eq (1) is [51]: 

𝑊𝑘 = 𝑊𝑘−1 + ∆𝑡(𝑃𝑒𝑓,𝑘 − 𝐸𝑘  − 𝑅𝑘 − 𝐺𝑘),                         (12) 

where ∆𝑡 is the time increment, whereas 𝑃𝑒𝑓,𝑘, 𝐸𝑘, 𝑅𝑘 , and 𝐺𝑘 are the values of 𝑃𝑒𝑓 , 𝐸, 𝑅, and 𝐺 at 

time k, given by: Eq (7) for model K7; Eq (6) for model K8; Eq (5) for model VJRAM; Eq (8) for 

model HDG0; Eq (10) for model HDG1; Eq (11) for model HDG3; and Eq (9) for model HDG4.  

3.3. Model calibration and performance evaluation 

The models, using the discretized model Eq (12) instead of the continuous time model Eq (1) are: 

K7 (7); K8 (6); VJRAM [Eqs (12) and (5)]; HDG0 [Eqs (12) and (8)]; HDG1 [Eqs (12) and (10)]; 

HDG3 [Eqs (12) and (11)]; and HDG4 [Eqs (12) and (9)]. These models are calibrated using records 

of daily precipitation, daily maximum air temperature, daily minimum air temperature, daily average 

air temperature and daily average soil moisture. An initial estimate of each parameter is chosen, and 

the parameter estimates are obtained by minimization of the sum of the squared deviations between 

the observed and simulated data, using MATLAB (The MathWorks Inc., Natick, MA, USA) with the 

fmin function. The fitting quality is assessed via the simulation error metrics and the Akaike 

information criteria. The simulation error metrics compare the observed and simulated soil moisture 

values over the time range (see [25,52,53]): 

• Mean absolute error: 

𝑀𝐴𝐸 = 𝑁−1∑|𝑋𝑚𝑜𝑑𝑒𝑙,𝑗 − 𝑋𝑜𝑏𝑠,𝑗| 

• Root-mean-square error: 

𝑅𝑀𝑆𝐸 = √𝑁−1∑(𝑋𝑚𝑜𝑑𝑒𝑙,𝑗 − 𝑋𝑜𝑏𝑠,𝑗)
2
 

• Mean bias error: 

𝑀𝐵𝐸 = 𝑁−1∑(𝑋𝑚𝑜𝑑𝑒𝑙,𝑗 − 𝑋𝑜𝑏𝑠,𝑗) 

• Classical Nash-Sutcliffe efficiency: 

𝑁𝑆0 = 1 −
∑(𝑋𝑚𝑜𝑑𝑒𝑙,𝑗 − 𝑋𝑜𝑏𝑠,𝑗)

2

∑(𝑋𝑜𝑏𝑠,𝑗 − 𝑋𝑜̅̅ ̅)
2  

• Nash-Sutcliffe efficiency based on absolute error: 

𝑁𝑆𝑎𝑏𝑠 = 1 −
∑|𝑋𝑚𝑜𝑑𝑒𝑙,𝑗 − 𝑋𝑜𝑏𝑠,𝑗|

∑|𝑋𝑜𝑏𝑠,𝑗 − 𝑋𝑜̅̅ ̅|
 

The term 𝑋𝑜𝑏𝑠,𝑗 represents the observed values, 𝑋𝑚𝑜𝑑𝑒𝑙,𝑗 represents the simulated values, 𝑋𝑜̅̅ ̅ 
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represents the mean of observed values, 𝑁 represents the number of observations and the summation 

Σ holds over the range of the time series. The Nash-Sutcliffe (NS) coefficient ranges between −∞ 

and 1.0; an NS value of 1.0 corresponds to perfect fit, 0.0 corresponds to a model that is not better than 

using the average value and a negative value corresponds to a model that has less efficacy than the 

mean of the observations [25,54]. The range 𝑁𝑆 > 0.7 is considered as satisfactory fitting by some 

authors, whereas 𝑁𝑆 ≥ 0.8  is considered as high fitting quality [23,53], but there is no universally 

accepted criterion [25,28]. Low values of MAE, RMSE and MBE correspond to high fitting quality [53]. 

In addition, the Akaike information criterion allows comparison of models considering both the 

prediction quality and the number of model parameters. The basic Akaike information criterion is [55–57]: 

𝐴𝐼𝐶 = 𝑁 ln (
𝑆𝑆𝐸

𝑁
) + 2(𝑁𝑝 + 1), 

where 𝑆𝑆𝐸 is the sum of squared errors, 𝑁 is the number of observations and 𝑁𝑝 is the number of 

parameters of a given model. The Akaike information criteria for the case that the number of 

observations is small in comparison to the number of parameters 𝑁𝑝 + 1, that is, 𝑁𝑝 > 𝑁 40⁄ , is [55–57]: 

𝐴𝐼𝐶𝑐 = 𝑁 ln (
𝑆𝑆𝐸

𝑁
) + 2(𝑁𝑝 + 1) +

2(𝑁𝑝+1)(𝑁𝑝+2)

𝑁−𝑁𝑝−2
= 𝑁 ln (

𝑆𝑆𝐸

𝑁
) +

2𝑁(𝑁𝑝+1)

𝑁−𝑁𝑝−2
. 

The best model is the one with the lowest AIC value [56,57]. In addition, the effect of model 

parameters on the weighted sum of squared simulation errors (E) allows identification of which 

parameters require an accurate estimation [53], E being given by:   

𝐸 =∑
(𝑋𝑚𝑜𝑑𝑒𝑙,𝑗 − 𝑋𝑜𝑏𝑠,𝑗)

2

(max(𝑋𝑜𝑏𝑠,𝑗))
2  

 

Figure 1. Predicted and observed soil moisture at the Naranjal station, period Ω𝑁123 =

[194 − 333]. 
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4. Model fitting results 

The predicted and observed soil moisture data for the Naranjal station, period Ω𝑁123 = [194 −

333] are shown in Figure 1. The values of performance criteria are given in Table 3. The sensitivity 

analysis is shown in Figure 5. 

Table 3. Performance of soil moisture models at the Naranjal station. Periods: Ω𝑁123 =

[194 − 333], Ω𝑁13 = [194 − 264]⋃[310 − 333] and Ω𝑁2 = [265 − 309]. 

 
Calibration 

/validation 
Model MAE RMSE MBE 𝑵𝑺𝒂𝒃𝒔 𝑵𝑺𝟎 AIC 

 
Calibration 

over Ω𝑁123 

K7 0.0238 0.0305 -0.0039 0.6246 0.8165 -857.8970 

K8 0.0238 0.0305 -0.0037 0.6242 0.8163 -857.7440 

VJRAM 0.0190 0.0231 -0.0014 0.7001 0.8949 -925.2461 

HDG0 0.0238 0.0299 -0.0040 0.6246 0.8227 -862.1540 

HDG1 0.0205 0.0255 -0.0034 0.6764 0.8712 -895.1604 

HDG3 0.0197 0.0244 -0.0034 0.6897 0.8827 -901.9908 

HDG4 0.0190 0.0237 -0.0030 0.7000 0.8892 -901.5107 

 Calibration 

over Ω𝑁13 
VJRAM 0.0176 0.0215 -0.0032 0.7071 0.9122 -626.8587 

 Validation 

over Ω𝑁2 
VJRAM 0.0217 0.0286 -0.0105 0.4544 0.6338 -270.8257 

 

The boxplot for soil moisture models for Naranjal station is given in Figure 2, and the Taylor 

diagram is given in Figure 3. 

 

Figure 2. Error percentage for soil moisture modelling for Naranjal station, period Ω𝑁123. 
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Figure 3. Taylor diagram of the simulated soil moisture for Naranjal station. 

 

The order of the models, from the lowest to the highest AIC, the lowest to the highest RMSE and 

the highest to the lowest 𝑁𝑆0, is: 

− AIC: VJRAM, HDG3, HDG4, HDG1, HDG0, K7, K8.  

− RMSE: VJRAM, HDG4, HDG3, HDG1, HDG0, K7, K8. 

− 𝑁𝑆0: VJRAM, HDG4, HDG3, HDG1, HDG0, K7, K8. 

Therefore, the order of models is different for the AIC, RMSE and 𝑁𝑆0  indices, but VJRAM 

model is the best according to AIC, RMSE and 𝑁𝑆0, whereas models HDG3 and HDG4 achieve either 

the second or third place. The second lowest AIC corresponds to HDG3 and the second highest 𝑁𝑆0 

(0.889) corresponds to the HDG4 model. The 𝑁𝑆0 values obtained with the K7 and K8 models (in 

the range 0.816–0.817) are lower than those of the HDG models (range 0.822–0.890). The boxplot 

(see Figure 2) indicates that: i) HDG3, HDG4 and VJRAM models have a similar interquartile range 

(IQR), lower than that of HDG0 and HDG1; ii) VJRAM model has the lowest range and the lowest 

median; iii) HDG0 model has the highest IQR, the highest range and the highest outliers. The Taylor 

diagram (see Figure 3) indicates that: i) the correlation coefficient (R) is higher than 0.9 for the models, 

so that the modelling data are similar to measurement data; ii) VJRAM and HDG4 models have higher 

correlation coefficient, whereas HDG0 has the lowest value. Finally, the VJRAM model Eq (5) is 

chosen as the highest quality model, and the main reason is that it has the lowest AIC and the highest 

𝑁𝑆0. The better performance of VJRAM model confirms the effectiveness of the tailored structure of 

percolation term 𝐺 for improved soil moisture modelling. The predicted and observed soil moisture 

values for the Naranjal station, using the VJRAM model are shown in Figure 4. 
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Figure 4. Predicted and observed soil moisture at the Naranjal station, using the VJRAM 

model, period Ω𝑁123 = [194 − 333]. 

The sensitivity analysis for the VJRAM model (Naranjal station) is shown in Figure 5.  

 

Figure 5. Sensitivity analysis for the VJRAM model at the Naranjal station. 
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[265 − 309]. Then, model VJRAM is calibrated over Ω𝑁13 and the obtained parameter estimates are 

used for model validation over period Ω𝑁2. The error metrics are given in Table 3; the simulations of 

soil moisture over time for calibration and validation periods are given in Figure 6; the plots of 

measurements versus simulation (calibration and validation) are given in Figure 7. 

 

Figure 6. Calibration and validation of VJRAM model at Naranjal station, for calibration 

period Ω𝑁13 and validation period Ω𝑁2. 

 

Figure 7. Measured versus simulated soil moisture for Naranjal station, using VJRAM 

model: (a) calibration period Ω𝑁13, (b) validation period Ω𝑁2. 
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Figure 8. Predicted and observed soil moisture at the Calarcá station, for period Ω𝐾3 =

[244 − 300]. 

Table 4. Performance of soil moisture models at Calarcá station. Periods: Ω𝐾3 = [244 −

300]  days; Ω𝐾123 = [111 − 132]⋃[208 − 235]⋃[244 − 300] days; Ω𝐾13 = [111 −

132]⋃[244 − 300] days; Ω𝐾2 = [208 − 235] days. 

Calibration 

/validation 

Model MAE RMSE MBE 𝑵𝑺𝐚𝐛𝐬 𝑵𝑺𝟎 AIC 

Calibration  

over 𝛀𝟑 

 

K7 0.0132 0.0167 -0.0008 0.1409 0.2101 -450.0530 

K8 0.0130 0.0165 -0.0011 0.1519 0.2302 -451.5170 

VJRAM 0.0115 0.0150 -0.0003 0.2508 0.3680 -460.0512 

HDG0 0.0080 0.0111 -0.0001 0.4768 0.6532 -496.9674 

HDG1 0.0073 0.0108 0.0002 0.5206 0.6684 -491.0250 

HDG3 0.0068 0.0101 0.0000 0.5579 0.7113 -492.6095 

HDG4 0.0066 0.0101 0.0001 0.5709 0.7120 -482.1478 

Calibration  

over 𝛀𝟏𝟐𝟑 

HDG3 0.0069 0.0108 0.0004 0.6855 0.8401  

Calibration 

over 𝛀𝟏𝟑 

HDG3 0.0066 0.0104 −1𝑥10−6 0.6677  0.8350 -692.1198 

Validation 

over 𝛀𝟐 

HDG3 0.010621 0.015766 -0.0096 0.57833 0.68457 -187.5935 

       

 

The boxplot for soil moisture models for Calarcá station is given in Figure 9, and the Taylor 

diagram is given in Figure 10.     
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Figure 9. Error percentage for soil moisture modelling for Calarcá station, period Ω𝐾3. 

 

 

Figure 10. Taylor diagram of the simulated soil moisture for Calarcá station. 
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Therefore, HDG3 model achieves either the first or second place in the RMSE and 𝑁𝑆0 indices, 

whereas HDG4 model achieves the highest 𝑁𝑆0 but it is in the fourth place in terms of AIC. The 

boxplot (see Figure 9) indicates that: i) all the models have a near-zero median; ii) HDG4 and HDG3 

models have a similar IQR and range; iii) HDG4 model has the lowest range, whereas HDG4 and 

HDG3 have the lowest IQR; iv) VJRAM model has the highest range, the highest IQR and the highest 

outliers. In summary, HDG4 and HDG3 are the best two models in terms of range and IQR, whereas 

VJRAM is the worst model. The Taylor diagram (see Figure 10) indicates that: i) for the VJRAM 

model, the correlation coefficient (R) is close to 0.6 (see Figure 10), while other models (HDG0, HDG1, 

HDG3, HDG4) have an R higher than 0.8; ii) The HDG3 and HDG4 models have a similar R, and the 

HDG4 model has the highest R. Finally, the HDG3 model is chosen as the highest quality model, and 

the main reason is that the lowest AIC corresponds to HDG0, but its 𝑁𝑆0 (0.6532) is lower than 0.7, 

whereas HDG3 has the second lowest AIC and exhibits 𝑁𝑆0 > 0.7. Then, the HDG3 model is fitted 

using the period Ω𝐾123 = [111 − 132]⋃[208 − 235]⋃[244 − 300] . The resulting predicted and 

observed soil moisture values are shown in Figure 11, and the performance is: 

MAE: 0.0069431; RMSE: 0.010809; MBE: 0.00036298; 𝑁𝑆abs: 0.68547; and 𝑁𝑆0: 0.84014. 

It achieves a high simulation capability for low (0.27–0.30) and high (0.36–0.38) soil moisture 

ranges and for the drying time periods after rain events. 

 

Figure 11. Predicted and observed soil moisture at Calarcá station, using the HDG3 model, 

for period Ω𝐾123 = [111 − 132]⋃[208 − 235]⋃[244 − 300]days. 

The sensitivity analysis for the HDG0 model (Calarcá station) is shown in Figure 12. 

The effect of model parameters on model fit for the Calarcá station is: i) higher effect: 𝑚, 𝑘𝑝 and 

𝑊𝑚𝑎𝑥; ii) lower effect: 𝛼, 𝑘𝐸2 and 𝑘𝐸1. Therefore, an accurate estimation of 𝑚, 𝑘𝑝 and 𝑊𝑚𝑎𝑥 

is important. 
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Figure 12. Sensitivity analysis for the HDG0 model at the Calarcá station. 

 

Figure 13. Simulation of soil moisture at Calarcá station using HDG3 model, for calibration 

period Ω𝐾13 = [111 − 132]⋃[244 − 300] and validation period Ω𝐾2 = [208 − 235]. 
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validation over period Ω𝐾2. The error metrics are given in Table 4; the calibration and validation of 

soil moisture over time are given in Figure 13; the plots of measurements versus simulation (calibration 

and validation) are given in Figure 14. 

 

Figure 14. Measured versus simulated soil moisture for Calarcá station, using HDG3 

model, for (a) calibration period Ω𝐾13, (b) validation period Ω𝐾2.  

 

For Balboa station, soil moisture models are calibrated over Ω𝐵1=[1−318] ⋃ [321−365], 2019, 

and the obtained parameter estimates are used for model validation over period Ω𝐵2=[01−129], 2020. 

The simulations of soil moisture for period Ω𝐵1 are shown in Figure 15. The values of the performance 

criteria are given in Table 5. 

 

Figure 15. Predicted and observed soil moisture at the Balboa station, for period Ω𝐵1. 
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Table 5. Performance of soil moisture models at the Balboa station. 

Calibration 

/validation 

Model MAE RMSE MBE 𝑵𝑺𝐚𝐛𝐬 𝑵𝑺𝟎 AIC 

Calibration, 

period 𝛀𝑩𝟏 

K7 0.024716 0.043898 0.00070779 0.81542 0.95087 -3961.9446 

K8 0.025297 0.044969 0.00076823 0.81109 0.94845 -3931.2820 

VJRAM 0.038119 0.062076 -0.0000454 0.7153 0.90176 -3519.1533 

HDG0 0.015477 0.026016 -0.0010581 0.88442 0.98275 -4627.4205 

HDG1 0.016412 0.027174 -0.0025826 0.87744 0.98117 -4565.8392 

HDG3 0.023413 0.032755 -0.0024922 0.77449 0.92158 -2457.0807 

HDG4 0.022738 0.031992 -0.0026534 0.78099 0.92519 -2467.6931 

Validation, 

period 𝛀𝑩𝟐 
HDG0 0.020127 0.023863 -0.007264 0.33591 0.5912 -948.8152 

 

The boxplot for soil moisture models for Balboa station is given in Figure 16, and the Taylor 

diagram is given in Figure 17. 

 
Figure 16. Error percentage for soil moisture modelling for Balboa station, period Ω𝐵1. 
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Figure 17. Taylor diagram of the simulated soil moisture for Balboa station. 

 

 

The order of the models, from the lowest to the highest AIC, the lowest to the highest RMSE and 

the highest to the lowest 𝑁𝑆0 is: 

-AIC: HDG0, HDG1, K7, K8, VJRAM, HDG4, HDG3.  

-RMSE: HDG0, HDG1, HDG4, HDG3, K7, K8, VJRAM. 

-𝑁𝑆0: HDG0, HDG1, K7, K8, HDG4, HDG3, VJRAM. 

Therefore, the HDG0 model is the best one according to AIC, RMSE and 𝑁𝑆0, whereas the HDG1 

model is the second best. The 𝑁𝑆0 values obtained with the K7 and K8 models (in the range 0.948–

0.951) are comparable to those of the HDG models (range 0.921–0.983). The 𝑁𝑆0  value for the 

VJRAM model (0.902) is the lowest. The boxplot (Figure 16) indicates that: i) HDG0, HDG3 and 

HDG4 models have a near zero median; ii) HDG3 and HDG4 models have the lowest range and the 

lowest IQR (see Figure 16), but their disadvantage is the higher amount of outliers compared to other 

models; iii) VJRAM model has the highest range, the highest IQR and the highest median; iv) HDG0 

model has a lower amount of outliers compared to HDG3 and HDG4 models, although its IQR and 

range are higher. The Taylor diagram (see Figure 17) indicates that: i) all the correlation coefficients 

(R) are higher than 0.7, the R of VJRAM is close to 0.73 and the R of other models is close to 0.95; ii) 

the R of HDG0, HDG1, HDG3 and HDG4 is similar, and it is higher than that of VJRAM. Finally, the 

HDG0 model is chosen as the highest quality model, and the main reason is that it has the lowest AIC 

(-4627.4) and the highest 𝑁𝑆0 (0.983). The predicted and observed soil moisture values for Balboa 

station, using the HDG0 model are shown in Figure 18.  
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Figure 18. Predicted and observed soil moisture at the Balboa station, using the HDG0 

model, for period Ω𝐵1. 

  

The sensitivity analysis for the HDG0 model (Balboa station) is shown in Figure 19. 

 

Figure 19. Sensitivity analysis for the HDG0 model at the Balboa station. 
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moisture over time for validation period is given in Figure 20; the plots of measurements versus 

simulation (calibration and validation) are given in Figure 21. 

 

Figure 20. Simulation of soil moisture at Balboa station using HDG0 model for validation 

period Ω𝐵2. 

 

 

Figure 21. Measured versus simulated soil moisture for Balboa station, using the HDG0 

model, for (a) calibration period Ω𝐵1 and (b) validation period Ω𝐵2. 
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Table 6. Models with the highest 𝑁𝑆0 (first and second highest 𝑁𝑆0) and the lowest AIC 

(first and second lowest AIC), for calibration. 

Site Model with the first and second highest 

𝑵𝑺𝟎 value {and number of parameters} 

Models with the first and 

second lowest AIC value 

Naranjal VJRAM {7} 

HDG4 {14} 

VJRAM, 

HDG3 

Calarcá HDG4 {14}, 

HDG3 {11} 

HDG0, 

HDG3 

Balboa HDG0 {6}, 

HDG1 {9} 

HDG0, 

HDG1 

 

The parameter values of the models with best performance are given in Table 7.  

Table 7. Parameter values of the models with best performance for the three stations. 

Site Model Parameters 

Naranjal VJRAM 
𝑘𝑝 = 0.0011591, 𝑘𝐸1 = 3.4494 × 10

−5, 𝑘𝐸2 = −0.01999, 

 𝑘𝑅1 = 9.6023 × 10
−5, 𝑘𝐺1 = 0.14761, 𝑘𝐺2 = 0.53393, 

 𝑘𝑅2 = 0.00055726. 

Calarcá HDG3 𝑘𝑝 = 0.012728,  𝑊𝑚𝑎𝑥 = 4004.6595 , 𝑚𝑤1 =0.88719, 𝛼1 =

6.4902 , 𝑘𝐸1 = 5.5575 , 𝑘𝐸2 = 0.0085038 , 𝛼0 = 0.24682 , 

𝛼3=0.023991, 𝛼2 = −5.8671, 𝑚𝑤2 = 0.83141, 𝑚𝑝1 = 1.084. 

Balboa HDG0 𝑘𝑝 = 0.007305 , 𝑊𝑚𝑎𝑥 = 80.03, 𝑚 = 1.051 , 𝛼 = 0.0102 , 𝑘𝐸1 =

0.5463, 𝑘𝐸2 = 2.852. 

HDG1 𝑘𝑝1 = 0.6318 , 𝑘𝑝2 = 118.81 , 𝑃𝑝 = 1.2 , 𝑊𝑚𝑎𝑥 = 49.514 , 𝑚 =

1.188, 𝛼 = 0.02335, 𝑛 = 0.93186, 𝑘𝐸1=1.1256, 𝑘𝐸2 = 4.641. 

 

There is not a single model that exhibits neither the highest nor the lowest capacity for representing 

the soil moisture over the three stations (see Table 6). This is related to the different soil conditions. 

The lowest AIC values (-927.4, -496.97 and -4627.4) correspond to the VJRAM, HDG0 and HDG0 

models for the Naranjal, Calarcá and Balboa stations, respectively. The highest AIC values (-857.74, -

450.05 and -2457.1) correspond to the K8, K7 and HDG3 models, for the Naranjal, Calarcá and Balboa 

stations, respectively. In general terms, the compartment-based models (K models) exhibited worse 

performance compared with the HDG models: the K models exhibited neither the best 𝑁𝑆0 nor the 

best AIC value, for any of the three stations. In addition, the K7 and K8 models exhibited lower 𝑁𝑆0 

and higher AIC compared to the HDG models. Although the HDG0 is a standard SM model, it was the 

best model only for the Balboa station, if both AIC and 𝑁𝑆0 are considered. For instance, the highest 

𝑁𝑆0 value for the Calarcá station was obtained by the HDG4 model but the lowest AIC was obtained 

by the HDG0 model. This implies that HDG4 achieves higher simulation accuracy at the cost of a 

significantly higher number of model parameters, for the Calarcá station. For the Naranjal station, 

the previous knowledge on percolation representation resulted in higher capacity for modeling SM, 

since the VJRAM model achieved the lowest AIC and highest 𝑁𝑆0 , by using logarithmic type 

nonlinear functions.  
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The Nash-Sutcliffe coefficient obtained was higher than 0.8 for the three stations, considering the 

large dataset for the Calarcá station. 𝑁𝑆0  values for each model depend on the weather station 

considered. The highest 𝑁𝑆0 values (0.895, 0.712 and 0.983) correspond to the VJRAM, HDG4 and 

HDG0 models, for the Naranjal, Calarcá and Balboa stations, respectively. These values can be 

considered as satisfactory, considering the complex effects of the soil that support the variation of soil 

moisture and the lack of measurements of relative humidity, solar radiation and wind speed. The lowest 

𝑁𝑆0  values correspond to the K8, K7 and VJRAM models, for the Naranjal, Calarcá and Balboa 

stations, respectively. The 𝑁𝑆0 range obtained at the Balboa station (0.902 to 0.983) was higher than 

the 𝑁𝑆0 value for the Calarcá station (0.840) and the 𝑁𝑆0 range for the Naranjal station (0.816 to 

0.895). The HDG group of models exhibited high 𝑁𝑆0 values for all cases. The 𝑁𝑆0 values for the 

K7 and K8 models are similar, when comparing them for the same station. For the Naranjal station, 

VJRAM was chosen as the best model, but the HDG4 model also exhibited a high performance, as its 

𝑁𝑆0  (0.889) is comparable to VJRAM (0.895). The use of a combination of polynomial terms of 

precipitation and soil moisture resulted in better 𝑁𝑆0 of the HDG3 model compared to that of HDG0 

for the Naranjal and Calarcá stations. However, the 𝑁𝑆0 of the HDG3 model was lower compared to 

HDG0 for the Balboa station. The main differences between the HDG3 and HDG0 models is that HDG3 

includes 𝛼3�̅�
𝑚𝑝1�̅�+𝛼0 + 𝛼2�̅�

𝑚𝑤2  and uses �̅� and �̅� instead of 𝑃 and 𝑊, in the 𝑅 + 𝐺 term. 

The simulated versus observed soil moisture values are given in Figure 10. The gray straight line 

is the identity line, and the black straight line is the linear regression. 

 
Figure 22. Simulated versus measured soil moisture values for: a) Naranjal station (VJRAM 

model); b) Calarcá station (HDG3 model, large dataset); and c) Balboa (HDG0 model). 

The slope is similar to 1 for the three stations, which implies model consistency. The R2 value is 

higher than 0.8 for the three stations, implying that a large proportion of the variation in observed 
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values are shown in Figure 11. 

For the Naranjal station, there are no clear patterns, and the distribution is approximately 

symmetrical. For the Calarcá station, there are no clear patterns, but the residuals are shorter for the 

simulated SM range 0.295–0.310. For the Balboa station, the residuals are shorter and there is a 

nonlinear pattern for simulated SM lower than 0.42. This means that the model can be further improved. 

 

Figure 23. Residual plot of the modeled soil moisture for: a) Naranjal station (VJRAM model); 

b) Calarcá station (HDG3 model, large dataset); and c) Balboa (HDG0 model). 

5. Discussion 

The mass balance models VJRAM, HDG0, HDG3 and HDG4 are simple, as they only require 

basic meteorological data and no soil information. Despite the model simplicity, the obtained 𝑁𝑆0 

and 𝑁𝑆abs  values are quite high. The results confirm that alternative simple evapotranspiration 

equation (4) can be used for different soil conditions instead of the classical FAO56 equation, despite 

the high complexity of the process of water loss extraction from soil. This relaxes the requirement of 

data, including: i) meteorological data: air relative humidity, wind speed and solar radiation; ii) soil 

data, for instance water content at field capacity, soil texture and soil hydrologic conductivity. In 

evapotranspiration equation (4), the coefficients 𝑘𝐸1 and 𝑘𝐸2 are considered as the only parameters 

to be estimated, thus reducing the total number of estimated parameters. In addition, the percolation 

and runoff terms are represented as a lumped term called 𝑅 + 𝐺, which is simple with no requirement 

of soil data. This is in contrast to the complexity of the curve number method for runoff. Due to these 

features, the application of the soil moisture dynamic models VHRAM, HDG0, HDG1, HDG3 and 

HDG4 to different soil types is facilitated. However, application of these models at specific sites 

requires calibration using daily measurements of soil moisture, precipitation, maximum air 

temperature, minimum air temperature and average air temperature.          
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Since the AIC value depends on the effect of both SSE and the number of parameters, a higher 

𝑁𝑆0 value does not guarantee a lower AIC for a given model, whereas a high number of parameters 

may reduce the AIC, and the order of models is different for the AIC and 𝑁𝑆0 indices. For instance, 

the highest 𝑁𝑆0 value for the Calarcá station was obtained by the HDG4 model, but the lowest AIC 

was obtained by the HDG0 model. In addition, a high number of parameters does not guarantee a 

higher 𝑁𝑆0 for a given model (see Table 6). For instance, the HDG4 model has the largest number of 

parameters and exhibits the highest 𝑁𝑆0 value for Calarcá station (see Table 4), but not for Naranjal 

nor Balboa stations (see Tables 3 and 5). Recall that the number of parameters is: 14 (HDG4), 11 

(HDG3), 9 (HDG1), 7 (VJRAM), 6 (HDG0), 6 (K7) and 6 (K8).      

In general, models VJRAM and HDG0 achieved the lowest AIC values, considering the three 

weather stations. The higher performance of the VJRAM model for the Naranjal site indicates that the 

logarithmic structure of percolation term 𝐺  is suitable for Naranjal station but not for Calarcá or 

Balboa stations. The higher performance of the HDG0 model for the Calarcá and Balboa stations in 

terms of AIC indicates its modelling capacity with a low number of parameters. The low performance 

of the K7 and K8 models confirms that the evapotranspiration term 𝐸 has an important effect on the 

soil moisture model, and a proper expression must be used, whereas the Hargreaves model Eq (4) is 

suitable. Model HDG4 achieved a lower performance in terms of AIC, which is related to both its large 

number of parameters and its limited modelling capability in terms of 𝑁𝑆0.  

Comparison of performance in different studies is not straightforward, because there are numerous 

factors influencing the performance of soil moisture modelling, including measurement uncertainty 

and model structure. Then, only model structure and modeling procedure is compared in what follows. 

The soil moisture modeling using models VJRAM, HDG0, HDG3 and HDG4 is simpler than that of 

[25]: the definition of the category of the soil moisture resistance curve, the fitting of the infiltration 

equation and the determination of the field capacity are not required. This leads to fewer measurements, 

and a simpler fitting procedure, whereas soil data are not required. Comparing soil moisture modelling 

in the present study with that of [22], a remarkable similarity is that the definition of the category of 

the soil moisture resistance curve, the preliminary fitting of infiltration equation and the determination 

of the field capacity are not required. In [22], the evapotranspiration term is a combination of 

exponential and logarithmic functions, and it requires measurement of wind speed, whereas the 

evapotranspiration term of models in the present study is based on the Hargreaves equation and 

requires measurement of 𝑇𝑎𝑣𝑔, 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛. In [22], and also in our study with models HDG0, 

HDG4, HDG1 and HDG3, the percolation term depends on soil moisture and precipitation.  

6. Conclusions 

In this study, several empirical models are evaluated to estimate soil moisture for three locations 

in Colombia. The daily precipitation, and average, maximum and minimum air temperatures are the 

input variables. The first group of models are water balance types of models, where the 

evapotranspiration term is based on the Hargreaves model and is SM limited, whereas the runoff and 

percolation terms are functions of precipitation and soil moisture. The second group of models are 

simple compartment-based models. In addition, three models are proposed and formulated by 

combining the first model group with modifications in the precipitation, runoff, percolation and 

evapotranspiration terms, using functions recently proposed in current literature. The models are 

calibrated using field data from each location. The main contributions over closely related studies are: 
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i) a new model is proposed, based on a water balance model with terms from recent literature, and 

combinations of these terms are proposed; ii) the effect of model parameters on the fitting quality is 

assessed, and the parameters with higher effect are determined; iii) the proposed models and the 

empirical models reported in the recent literature are compared in terms of the combination of fitting 

accuracy and number of parameters, through the Akaike information criterion (AIC). The proposed 

modifications improved the simulation of soil moisture at the three locations. 

The lowest AIC values correspond to the VJRAM, HDG0 and HDG0 models for the Naranjal, 

Calarcá and Balboa stations, respectively. In addition, the highest AIC values correspond to the K8, 

K7 and HDG3 models for the Naranjal, Calarcá and Balboa stations, respectively. Therefore, there is 

no single model that exhibits neither the highest nor the lowest capacity for representing the soil 

moisture in the three stations. However, the K7 and K8 models exhibited a lower modeling capacity 

in terms of AIC, compared to the HDG group and VJRAM, for the three stations. For the Naranjal 

station, the previous knowledge on percolation representation resulted in a higher capacity for 

modeling SM. 

The Nash-Sutcliffe coefficient obtained was higher than 0.8 for the three stations. These 𝑁𝑆0 

values can be considered as satisfactory, considering the complex soil effects supporting the variation 

of soil moisture and the lack of measurements of relative humidity, solar radiation and wind speed. 

The highest 𝑁𝑆0  values correspond to the VJRAM, HDG4 and HDG0 models, for the Naranjal, 

Calarcá and Balboa stations, respectively, whereas the lowest 𝑁𝑆0 values correspond to the K8, K7 

and VJRAM models, for the Naranjal, Calarcá and Balboa stations, respectively. The HDG group of 

models exhibited a high 𝑁𝑆0 value for all cases. The use of a combination of polynomial terms of 

precipitation and soil moisture resulted in better 𝑁𝑆0 for the HDG3 model compared to HDG0, for 

the Naranjal and Calarcá stations. 
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Figure A1. Time series of meteorological data at the Naranjal station. 

 

Figure A2. Time series of meteorological data at the Calarcá station. 
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Figure A3. Time series of meteorological data at the Balboa station, period Ω𝐵1. 

 

Figure A4. Time series of meteorological data at the Balboa station, period Ω𝐵2. 
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