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Abstract: The deep integration of edge computing and Artificial Intelligence (AI) in IoT (Internet 
of Things)-enabled smart cities has given rise to new edge AI paradigms that are more vulnerable 
to attacks such as data and model poisoning and evasion of attacks. This work proposes an online 
poisoning attack framework based on the edge AI environment of IoT-enabled smart cities, which 
takes into account the limited storage space and proposes a rehearsal-based buffer mechanism to 
manipulate the model by incrementally polluting the sample data stream that arrives at the 
appropriately sized cache. A maximum-gradient-based sample selection strategy is presented, 
which converts the operation of traversing historical sample gradients into an online iterative 
computation method to overcome the problem of periodic overwriting of the sample data cache 
after training. Additionally, a maximum-loss-based sample pollution strategy is proposed to solve 
the problem of each poisoning sample being updated only once in basic online attacks, 
transforming the bi-level optimization problem from offline mode to online mode. Finally, the 
proposed online gray-box poisoning attack algorithms are implemented and evaluated on edge 
devices of IoT-enabled smart cities using an online data stream simulated with offline open-grid 
datasets. The results show that the proposed method outperforms the existing baseline methods in 
both attack effectiveness and overhead. 
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1. Introduction 

Artificial Intelligence (AI) services have been widely adopted in various fields of smart city such 
as industrial manufacturing, enterprise services and daily consumption. These services, including 
unmanned driving, e-commerce, smart homes, and smart finance, have profoundly transformed 
people’s lifestyles and enhanced production efficiency [1,2]. Edge computing has become popular due 
to its advantages of ultra-low latency, energy efficiency, and strong scalability, which allows it to share 
the computing resources and service pressure of the cloud center and optimize the computing 
architecture of AI services. This in turn creates favorable conditions for pushing the AI frontier to the 
IoT (Internet of Things)-enabled edge, which resides at the last mile of the Internet [3]. The continuous 
convergence of edge computing and artificial intelligence has led to the emergence of a new paradigm 
called edge intelligence (edge AI paradigm) [4–6]. The edge AI paradigm enables end entities in the 
networks to make decisions based on local data instead of sending it to the remote cloud [7]. The 
deployment of AI models on edge nodes enables AI training and inference and provides AI services to 
terminal devices. However, the edge AI paradigm is more vulnerable to attacks due to less potent 
security protocols on the resource-constrained edge hardware [8]. In the edge AI environment, 
attackers can easily masquerade as legitimate user terminals to generate malicious data online and 
attack the edge AI model. Therefore, it is imperative to evaluate potential attacks that can target AI 
models at the edge, especially in the context of smart cities. 

Among the potential attacks, the most destructive attack is data poisoning attacks (DPA). Current 
offline DPA are not suitable for the online learning process used in the edge AI paradigm, where most 
learning tasks involve predicting continuous data rather than classification, unlike the image 
processing or classification scenarios that data poisoning attacks primarily focus on. Although some 
studies have investigated online DPA based on resource-rich environments, these methods are not 
applicable in resource-constrained IoT-enabled smart cities environments, where the problem of 
periodic overwriting of training samples cannot be handled. Moreover, existing online attack methods 
use randomly selected sample points for attacks, which are not ideal for expensive bi-level 
optimization attack strategies. Therefore, existing research on DPA is not suitable and there is a need 
to optimize existing online attacks to adapt to resource-constrained environments, while enhancing the 
efficiency of attacks under online mode. Therefore, the main contributions of this work are as follows: 

• It proposes an online poisoning attack framework based on the edge AI environment of IoT-
enabled smart city for the first time. The framework takes into account the limited storage space in the 
AI edge environment and proposes a rehearsal-based buffer mechanism to manipulate the model by 
incrementally polluting the sample data stream that arrives at the appropriately sized cache to optimize 
the efficiency of the attack. 

• It proposes a maximum-gradient-based sample selection strategy that overcomes the problem 
of periodic overwriting of the sample data cache after training. This strategy converts the operation of 
traversing historical sample gradients into an online iterative computation method. 

• It proposes a maximum-loss-based sample pollution strategy that solves the problem of each 
poisoning sample being updated only once in the gradient ascent direction in basic online DPA. This 
strategy transforms the bi-level optimization problem from the offline mode to the online mode. 
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• It implements online gray-box poisoning attack algorithms with the framework and strategies 
mentioned above. It evaluates the effectiveness and overhead of the proposed attack on edge devices 
of IoT-enabled smart city using an online data stream simulated with offline open-grid datasets. 

The rest of this paper is organized as follows. Section 2 presents the related works on data 
poisoning attack. Section 3 describes the basic settings, symbol notations and related issues of the five 
elements relevant to offline and online DPA. Section 4 presents an online incremental poisoning attack 
framework in the edge AI environment of IoT-enabled smart cities and provides a detailed description 
of the proposed sample selection and pollution strategies. Section 5 introduces online algorithms for 
gray-box poisoning attack with maximum-gradient-based sample selection strategy and maximum-
loss-based sample pollution strategy. Section 6 presents the experiment and result analysis. Finally, 
Section 7 concludes this paper. 

2. Related works 

Offline DPA has received extensive attention in the research community, mainly focusing on 
interfering with the training process of offline or batch learning algorithms. In this setting, attackers 
repeatedly poison randomly selected samples in the direction of maximum gradient and construct a 
poisoned sample set that maximizes the loss. At the end of attacks, the constructed poisoned sample 
set is inserted into the end of the legitimate sample set one-time. Since the pioneering work of the 
Biggio team [9], DPA has undergone significant development, and a large amount of research has been 
carried out based on their work. Among them, the Mei team [10] formalized the poisoning problem as 
a bi-level optimization problem. To improve efficiency, some teams have proposed label flipping [11] 
and statistically-based [12] poisoning methods, which do not require model fitting and reduce the 
algorithmic complexity. Although these two methods have a low algorithmic complexity, they are 
easily detected and discarded by human examiners or automated detectors. For most machine learning 
or artificial intelligence models [13], the gradient ascent method is the most computationally expensive 
method, but it is the most effective and confidential [14]. 

Online DPA has drawn increasing attention in recent years. In the setting of online DPA, attackers 
contaminate the arriving samples in a specific order to achieve the attack objective of accumulating 
loss. There are four main challenges brought to offline DPA in online environment. First, due to the 
inability to obtain the entire sample set, the baseline clean dataset for constructing poison samples can 
only be built from the current cache or historical sample set. Second, the order in which samples arrive 
is also a factor to be considered in poisoning attacks. Third, offline DPA can poison any position in the 
sample set, while in online mode, only the current cache samples can be poisoned. Fourth, high-cost 
attack methods in offline mode may become inappropriate. To solve the problem of unknown sample 
sets, Burkard and Lagesse [15] proposed heuristic attacks against support vector machines (SVM) 
learning from data streams. This method is more like fake online attacks (with full knowledge of future 
samples, referred to as the clairvoyant online DPA [16]), which obviously does not conform to the 
premise assumption of online mode. Zhang et al. [16] and Margiotta et al. [17] used the Markov 
decision process method to model the online DPA problem, which is also based on the premise of 
knowing the probability distribution of the samples. Although they also propose to build an 
increasingly accurate empirical distribution from historical sample data, it cannot solve the problem of 
high cost of model predictive control and sample distribution bias. Some papers [18–20] have studied 
the calculation and optimization methods of sample influence, but unfortunately, these methods are 
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based on the hat matrix or Hessian matrix constructed from the entire sample set in offline mode and 
are not applicable to online mode. The work closest to ours is Wang and Chaudhuri [21], applied 
gradient-based offline methods to online DPA and proposed a sample selection method based on 
maximum recursive gradient. Moreover, in edge AI environments where historical samples are 
periodically overwritten, the absence of some historical samples makes it impossible to compute the 
recursive gradient. Therefore, our approach differs from theirs in that we adopt a rehearsal buffer-based 
method for calculating recursive gradient incrementally, which addresses the issue of periodic 
overwriting of the sample data cache after training in edge AI environment. 

3. Preliminary 

AI models typically contain five elements [22]: feature space, learning type (e.g., regression or 
SVM), learning algorithm, learning hyperparameters and training datasets. Based on attackers’ degree 
of knowledge over these five elements and the type of elements involved, DPA can be classified into 
different types. This section describes the basic settings, symbol notation and related issues of the five 
elements relevant to offline and online DPA. The definitions of the symbols used in this paper are 
shown in Table 1. 

Table 1. Notation description. 

Symbol Description 

ℝ  Feature space of dataset 

𝐷 ,𝐷  Training dataset and testing dataset 

𝑋 ,𝑦  Feature matrix and label vector of training dataset 

𝑋 ,𝑦  Feature matrix and label vector of testing dataset 

ℎ 𝑿  Learning model 

𝒥 𝐷 ,𝜽  Objective function with learning parameter 𝜽 

𝓛 𝐷 ,𝜽  Loss function with learning parameter 𝜽 

𝜴 𝜽 ,𝝀  The regularization term, regularization factor 

𝜽 ,𝜽  Model parameter before and after one iteration of learning 

𝛻𝜽 𝒥 𝐷 ,𝜽  Gradient of the objective function with respect to the model parameter 

𝐷  Poisoned sample set  

𝜽∗,𝜃∗,𝜽  Parameter under normal training, parameter after attack, parameter of time slice t 

𝛼,𝜀 Learning rate, convergence condition 

𝛱 Projection operator 

𝑏 Cache size 

𝐷 :  The samples that have been trained in the past time slices 

𝛾 The poisoning rate 

𝑛  The number of poisoned samples in time slice 

𝒙 _  Feature vector of the sample with the highest gradient 

𝑝 The size of rehearsal buffer 

3.1. Basic setting and notation 

For the feature space ℝ , the total number of feature vectors and the dimension of each feature 
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vector are represented as 𝑁 𝑁~∞  and 𝑘, respectively. Given a training sample set and a test sample 
set, denoted as 𝐷 𝑋 ,𝑦   and 𝐷  = 𝑋 , 𝑦  , 𝑋 ,𝑋 ∈
ℝ ,𝑛 ,𝑛 𝑁. 𝑋  and 𝑋  represent the training feature matrix and the test feature 

matrix consisting of 𝑛   and 𝑛   feature vectors from the feature space, 𝑦  and 𝑦  
represent the corresponding label vectors. Given the learning model 𝑦 ℎ 𝑿  and objective function 
𝒥 𝐷𝑡𝑟𝑛,𝜽 , where 𝜽 represents the learning parameter of the model, the normal training goal is to 
calculate the optimal parameter 𝜽∗ for the minimum objective function shown in Eq (1). Equation (2) 
gives the expression of the objective function, where 𝓛 𝐷 ,𝜽  represents the loss function, 𝜴 𝜽  
and 𝝀 represent the regularization term and their corresponding regularization factor. Equation (3) 
gives the iterative process for solving the objective function using a learning algorithm (taking gradient 
descent algorithm as an example), where 𝛼 represents the learning rate of the iteration, 𝜽  and 𝜽  
represents the model parameter before and after one iteration of learning and 𝛻𝜽 𝒥 𝐷 ,𝜽  represents 
the gradient of the objective function with respect to the model parameter. The learning algorithm 
terminates and obtains the optimal parameter when meeting the convergence condition 𝜀 in Eq (4), 
which is usually set to 1 10 . 

 𝜽∗ 𝑎𝑟𝑔𝑚𝑖𝑛𝒥 𝐷 ,𝜽   (1) 

 𝒥 𝐷 ,𝜽 𝓛 𝐷 ,𝜽 𝝀𝜴 𝜽   (2) 

 𝜽 𝜽 𝛼𝛻𝜽 𝒥 𝐷 ,𝜽   (3) 

 |𝒥 𝐷 ,𝜽 𝒥 𝐷 ,𝜽 | 𝜀  (4) 

Learning algorithms can be divided into two types: offline and online. The former mainly includes 
algorithms such as stochastic gradient descent (SGD), mini-batch gradient descent (MBGD) and batch 
gradient descent (BGD). The latter primarily consists of algorithms like online gradient descent (OGD) 
and online mini-batch gradient descent (OMBGD). The biggest difference between offline and online 
learning algorithms is the way in which the training sample set is obtained and used [23]. The sample 
set used by offline learning algorithms is known and fixed (can be trained repeatedly), while the sample 
set used by online learning algorithms is gradually obtained over time (each sample is only trained 
once) and future samples are unknown. Therefore, DPA is also divided into offline DPA and online 
DPA based on the different learning algorithms. 

3.2. Offline DPA 

For the above AI models, the basic offline DPA attack can be formalized as a bi-level optimization 
problem as shown in Eq (5), where 𝐷   represents the clean test sample set, 𝐷   represents the 
poisoned sample set,  𝜃∗ represents the poisoned parameter learned by the model and 𝐷  is the 
baseline clean dataset used for constructing 𝐷 . According to the definition of Eq (1), we can know 
that the inner optimization 𝜃∗ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛 𝒥 𝐷 ∪, 𝜃  in Eq (5) represents the usual minimization 
of the model loss during the fitting of a model on both the clean training dataset 𝐷  and the poisoned 
dataset 𝐷  and that the outer optimization 𝑎𝑟𝑔𝑚𝑎𝑥 𝒥 𝐷 ,𝜃∗   represents the maximization of 
the prediction loss under the influence of the poisoned parameter 𝜃∗. Equation (6) uses gradient ascent 

to contaminate data points 𝑝  , making their sample values 𝐷   contaminated as 𝐷  , where 

𝛻 𝒥 𝐷 ,𝜃  represents the gradient of the objective function at the data point 𝑝 , 𝛼 represents 

the learning rate of iteration and 𝑡 is the number of iterations. 𝛱 represents the projection operator, 
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which projects the contaminated sample values into the feasible domain of the feature space. 

 𝑎𝑟𝑔𝑚𝑎𝑥 𝒥 𝐷 ,𝜽∗  𝑠. 𝑡.𝜽∗ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛𝜽𝒥 𝐷 ∪ 𝐷 ,𝜽   (5) 

 𝐷 𝛱 𝐷 𝛼𝛻 𝒥 𝐷 ,𝜽   (6) 

Figure 1 shows the schematic diagram of offline DPA. In the figure, rectangles represent training 
samples, where green rectangles represent normal samples and red rectangles represent poisoned 
samples. Rounded squares represent model parameters, with red rounded squares representing 
poisoned parameters after the poisoning attack is completed. Diamonds represent decision conditions. 
Black solid arrows indicate the normal training process, which is demonstrated using the MBGD 
algorithm as an example in the figure, where the batch size is 𝑏 (𝑏 1 for SGD algorithm and 𝑏
𝑛 for BGD algorithm). The algorithm fits the model and computes parameters once using Eq (3) for 
each batch of samples until convergence is reached. Red dashed arrows represent the inner 
optimization loop mentioned in Eq (5), i.e., obtaining new convergent parameters through gradient 
descent after the poisoned sample is added to the training set. Red solid arrows represent the outer 
optimization loop mentioned in Eq (5), i.e., updating and maximizing the loss on the training sample 
set using Eq (6), obtaining the optimal poisoned parameter 𝜽∗  finally. To maintain the generalization 
of the model, the sample set is randomly reordered after each traversal and 𝐷  is also selected from 
the training set randomly, which demonstrates that offline DPA does not consider any order of samples. 

 

Figure 1. Schematic diagram of offline DPA. 

3.3. Basic Online DPA 

Figure 2 illustrates the schematic diagram of basic online DPA. In the figure, rectangles still 
represent samples, with red ones indicating poisoned samples and green ones representing normal 
samples. Rounded squares denote model parameters and red rounded squares indicate the poisoned 
parameters after the poisoning attack is completed. White hollow arrow represents training order of 
sample data stream. The black arrows demonstrate the normal training process using OMBGD as an 
example. Here, 𝑐𝑎𝑐ℎ𝑒 ~𝑐𝑎𝑐ℎ𝑒  represent the samples that have been trained in the past time slices 
(each time slice contains𝑏samples, defined as𝐷 𝒙 ,𝑦  and since each sample 

can only be used once, the objective function is defined as 𝑟𝑒𝑔𝑟𝑒𝑡 in Eq (7)). The online training goal 
is to minimize 𝑟𝑒𝑔𝑟𝑒𝑡  as in Eq (8). From the definition of the formula, 𝑟𝑒𝑔𝑟𝑒𝑡  reflects the gap 
between the cumulative loss ∑ 𝒥 𝐷 ,𝜽   and the minimized loss 
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𝑚𝑖𝑛
: ∈ℝ

∑ 𝒥 𝐷 : ,𝜽  up to time slice 𝑇. The minimized loss is equivalent to 

the optimal loss obtained by offline training using all historical samples up to time slice 𝑇. In the 
normal training process, the model parameters are updated using the samples in each time slice 
according to Eq (9). When the convergence condition in Eq (10) is reached, the optimal parameter 𝜽∗ 
are obtained. By substituting Eq (7) into Eq (10), it can be concluded that the convergence condition 
is equivalent to judging whether the loss of samples on the current time slice is sufficiently small. Due 
to the inability to use training samples for fitting the model iteratively as in the offline mode, it is 
necessary to determine whether the learning algorithm has reached the convergence condition after 
each parameter update. 

 

Figure 2. Schematic diagram of basic online DPA. 

The red arrows show the process of online DPA. In this process, the attacker first selects an attack 
sample point in the current time slice, such as choosing the sample point 𝐷 𝒙 ,𝑦  from time 

slice 𝑐𝑎𝑐ℎ𝑒   to start the attack. According to Eq (11), the sample is poisoned, 𝐷   and 𝐷  

represent the samples before and after poisoning. Then, the poisoned sample point is trained together 
with other normal sample points. In the same way, points are selected, polluted and the model is trained 
in the subsequent time slices 𝑐𝑎𝑐ℎ𝑒  to 𝑐𝑎𝑐ℎ𝑒 . Finally, at time slice 𝑇, the convergence condition 
is reached and the optimal poisoned parameter 𝜽∗  is obtained. 

 𝑟𝑒𝑔𝑟𝑒𝑡 𝑇 ∑ 𝒥 𝐷 ,𝜽 𝑚𝑖𝑛
: ∈ℝ

∑ 𝒥 𝐷 : ,𝜽   (7) 

 𝜽∗ 𝑎𝑟𝑔𝑚𝑖𝑛 𝑟𝑒𝑔𝑟𝑒𝑡   (8) 

 𝜽 𝜽 𝛼𝛻𝜽 regret 𝑡 1   (9) 

 |𝑟𝑒𝑔𝑟𝑒𝑡 𝑡 𝑟𝑒𝑔𝑟𝑒𝑡 𝑡 1 | |𝒥 𝐷 ,𝜽 | 𝜀  (10) 

 𝐷 𝛱 𝐷 𝛼𝛻 𝒥 𝐷 ,𝜽   (11) 

4. Attack model 

We define our attack model following the framework proposed in [24], which involves identifying 
attacker’s goals and describing their knowledge and capabilities. This information is then utilized to 
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define attack strategies. To simplify the problem description and express the proposed method clearly, 
from this section onward, we assume that the target model for the online DPA attack is linear regression 
model 𝑦 ℎ 𝑿 𝜽 𝑿, with the regularization term set to zero and the batch size as 𝑏. This means 
that the learning algorithm employs the OMBGD algorithm and the objective function is defined as 
the mean squared error loss function in Eq (12). 

 𝒥 𝐷 ,𝜽 ∙ ∑ 𝜽 ∙ 𝒙 𝑦 , 𝑡 1, . . . ,𝑇  (12) 

4.1. Attacker’s goal 

Consistent with offline DPA and basic online DPA objectives, the goal is to poison specific 
samples to cause mis-predictions selectively, while the availability attack aims to indiscriminately 
corrupt learning models by poisoning training samples. Unlike the basic online DPA goal in section 
4.1, we attempt to maximize the attack effect for each poisoned sample point. 

4.2. Attacker’s knowledge 

Based on understanding of the five elements mentioned in section 3, attacks can be divided into 
white-box, black-box and gray-box types [22]. Since online DPA is unknown for future sample streams, 
attackers can only be aware of some training samples and cannot possess the knowledge of a white-
box attack. In reality, a completely black-box attack is also infeasible, as attackers need to understand 
partial training samples at least. Therefore, we consider a gray-box attack method for online DPA, 
where the attackers are assumed to have knowledge of the learning type (e.g., regression), learning 
algorithm and partial training samples but do not know the trained parameters. Another difference from 
basic online DPA is that it assumes that the sample data stream will be permanently stored on the AI 
service’s device after training is completed. However, in the edge AI environment, data streams will 
be periodically overwritten, meaning that attackers can only be aware of the samples in the time slice 
stored in the buffer and they are unaware of both future samples and some historical samples. 

4.3. Attacker’s capability 

The attacker’s capability is limited to manipulating the training sample data; that is, altering the 
training process is not allowed. In basic online DPA, attackers have full control over samples in current 
or historical time slices. However, in this paper, the defined attacking capability is limited to having 
full control over the samples stored in the buffer of current time slice. The attack is constrained within 
a certain range, that is, the poisoning rate up to the current time slice 𝑇 cannot exceed a certain limit 
𝛾, as it would expose the attack. We define the poisoning rate as 𝛾 ∑ 𝑛 /Tb, where 𝑛  is the 
number of poisoned samples in time slice 𝑡. The attacker can choose to attack same number of samples 
in each time slice or vary the number of poisoned samples. In this paper, we assume that the number 
of poisoned samples in each time slice is same, making it easy to prove that 𝛾 𝑛 /b. 

4.4. Attack strategy 

Online DPA can be divided into four stages [24]: sample monitoring, attack point selection, data 
polluting and stream poisoning. The primary focus of the core strategy setting is on the attack point 
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selection and data polluting stages. These two stages are used to construct the poisoned sample set. 
Then, the training samples containing the poisoned sample set are replayed to the target model in the 
final stage. After the attack point selection is complete, pollution of the sample points can involve 
polluting the feature vectors of the training sample stream, polluting the labels or polluting both 
simultaneously. Extensive literature has demonstrated that polluting the feature vectors yields the most 
optimal results. Therefore, the pollution strategy in this section will also focus on polluting the feature 
vectors. This section will emphasize the description of attack point selection and pollution strategies. 

4.4.1. Maximum-gradient-based sample selection strategy 

In online DPA, modifying training points at certain positions in the stream may yield high benefits. 
This strategy could be potentially exploited by a successful attack to reduce the search space. Equation (13) 
presents a gradient-based selection strategy, where at time slice 𝑡, the target function calculates the 
gradient for all samples prior to 𝑡 and the sample with the highest gradient is chosen as the poisoning 
sample. The rationale behind this strategy is that the gradient is an indicative measure of the target 
function’s variation. A higher gradient at a node implies that the target function changes rapidly at that 
point. By polluting the sample point in the direction of the gradient ascent, the target function will 
increase rapidly, thus achieving the desired attack effect. 

 𝒙 _ 𝑎𝑟𝑔𝑚𝑎𝑥𝒙 ∈𝒙 :𝒙
𝒥 : ,𝜽

𝒙
  (13) 

To compute the gradient of the target function with respect to the samples, we use the recursive 
gradient given by Eq (14). 

 
𝒥 : ,𝜽

𝒙

⎩
⎪
⎨

⎪
⎧ 0  𝑖𝑓 𝒙 ∈ 𝑐𝑎𝑐ℎ𝑒

𝜽

𝜽
∙ 𝜽

𝒙
  𝑖𝑓 𝒙 ∈ 𝑐𝑎𝑐ℎ𝑒

𝜽

𝜽
∙ 𝜽

𝜽
∙ ⋯ ∙ 𝜽

𝜽
∙ 𝜽

𝒙
𝑖𝑓 𝒙 𝑐𝑎𝑐ℎ𝑒 ~𝑐𝑎𝑐ℎ𝑒

⎭
⎪
⎬

⎪
⎫

  (14) 

By applying the chain rule and substituting Eq (12) into (14) and to simplify the expression, we 
set b 1 in Eq (12), which leads to Eq (15). 

 
𝒥 : ,𝜽

𝒙

0  𝑖𝑓 𝑖 𝑡
𝜽 𝒙 𝑦 ∙ 𝒙 ∙ 𝛼 ∙ 𝑦 2𝜽 𝒙  𝑖𝑓 𝑖 𝑡 1

𝜽 𝒙 𝑦 ∙ 𝒙 ∙ 𝑰 𝛼𝒙 𝒙 ∙ 𝑰 𝛼𝒙 𝒙 ∙ ⋯ ∙ 𝑰 𝛼𝒙 𝒙 ∙ 𝛼 ∙ 𝑦 2𝜽 ∙ 𝒙  𝑖𝑓 𝑖 𝑡 1
  (15) 

From Eq (15), it is clear that to compute the gradient of the current target function with respect to 
each sample point at time slice 𝑡, one needs to know the feature vectors of all historical sample points. 
However, in edge AI environments, due to storage limitation, the sample data cache is periodically 
overwritten after training. This leads to a situation we define as cache strategy with forgetting. We 
define a cache strategy similar to that of the sliding window. Figure 3 illustrates the strategy of storing 
the online training sample stream arriving at the edge node, the solid and dashed boxes represent the 
samples cached at time slice 𝑡 and 𝑡 1, respectively. The capacity of the cache is 𝑏. According to 
this strategy, at time 𝑡 , the sample 𝐷 𝒙 ,𝑦  . The new samples 𝐷   will 

completely overwrite the historical samples 𝐷  at time slice 𝑡 1. 
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Figure 3. Cache strategy with forgetting. 

Based on this storage strategy, the forgotten samples cannot be used to calculate the gradient of 
the target function with respect to that point using Eq (15), rendering the selection strategy inapplicable. 
To address this issue, we propose a gradient calculation algorithm based on rehearsal. The main 
principle of this algorithm is that after each maximum gradient sample point is selected at current time 
slice, both the point and its corresponding model parameters are stored in a dedicated buffer called the 
rehearsal buffer. The rehearsal buffer can remember partial historical information when samples are 
overwritten, and its size is less than or equal to the total number of poisoning sample points. When the 
next time slice arrives, the sample points in the rehearsal buffer are combined with those in the newly 
arrived time slice to calculate the new maximum gradient point, as shown in Eq (16). To simplify the 
expression, we still set the cache size b 1. Meanwhile, we assume the size of rehearsal buffer is 𝑝, 
in which the samples are denoted as 𝑥 ,𝑦 ∈ 𝑥 ,𝑦 , 𝑥 ,𝑦 , . . , 𝑥 ,𝑦 . 

 
𝒥 ∪   ,𝜽

𝒙

0  𝑖𝑓 𝑖 𝑡
𝜽 𝒙 𝑦 ∙ 𝒙 ∙ 𝛼 𝑦 2𝜽 𝒙  𝑖𝑓 𝑖 𝑡 1

𝜽 𝒙 𝑦 𝒙 𝑰 𝛼𝒙 𝒙 ∙ 𝑰 𝛼𝒙𝑅𝐵𝑝𝒙𝑅𝐵𝑝
𝑇 ∙ ⋯ ∙ 𝛼 ∙ 𝑥𝑅𝐵𝑖 2𝜽 ∙ 𝒙𝑅𝐵𝑖

 𝑖𝑓 𝑖 𝑡 1
 (16) 

4.4.2. Maximum-loss-based sample pollution strategy 

Section 3.3 presents the basic online DPA, in which each poisoning sample is only updated once 
in the gradient ascent direction and cannot be updated iteratively in the same direction as in offline 
mode to maximize attack effectiveness. This may result in a prolonged attack process. Online DPA is 
highly time-sensitive, so that if the attack is not completed within a limited time, it can be easily 
detected by defense algorithms. Therefore, this paper still attempts to update each poisoning point in 
the gradient ascent direction to maximize the attack effect. Equations (17) and (18) provide a bi-level 
optimization formula for the online mode, which is called the rehearsal-based poisoning strategy. In 
the inner optimization of Eq (18), the model is trained using the samples from the current time slice 
and the poisoned samples from the rehearsal buffer to obtain the inner layer parameter 𝜽∗ . In the outer 
optimization of Eq (17), the model generates the maximum prediction loss under the influence of 
poisoned parameter 𝜽∗  using the samples of newly arrived time slice. 

 𝑎𝑟𝑔𝑚𝑎𝑥    𝒥 𝐷 ,𝜽∗ ,  (17) 

 𝑠. 𝑡.𝜽∗ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛𝜽𝒥 𝐷 ∪ 𝐷  𝑖𝑛 𝑟ehearsal buffer,𝜽   (18) 

5. Attack algorithm 

5.1. Implementation 

Figure 4 presents the schematic diagram of the rehearsal-based online DPA method. The 
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rectangular, rounded square, diamond, black arrow and red arrow graphic elements are set up 
consistently with the definitions in Figure 2. The figure shows the time slices 𝑐𝑎𝑐ℎ𝑒 ~𝑐𝑎𝑐ℎ𝑒  
arriving sequentially at the edge node. Once the samples in the time slice are trained, they will be 
overwritten by the subsequent time slices. The overwritten time slices are marked with dotted shading. 
The blue arrows in the figure indicate the selection and storage of the points with the largest gradients. 
The circled numbers in the figure represent the attack steps. Assuming the attack starts from time slice 2, 
in step 1, the point with the largest gradients is selected and stored from the combination samples of 
rehearsal buffer and current time slice based on the current model parameter. In step 2, the samples 
recorded in the rehearsal buffer are poisoned in the gradient ascent direction. In step 3, the poisoned 
samples are trained together with the other samples from the current time slice to obtain new model 
parameter and it is determined whether the convergence condition of Eq (18) is reached. In step 4, the 
samples of newly arrived time slice and the new model parameter are used together to determine 
whether the convergence condition of Eq (17) is reached. In the following, each time a new time slice 
arrives, the above operations are repeated until both convergence conditions of Eqs (17) and (18) are 
reached. Finally, in step 5, the poisoned samples from the rehearsal buffer are inserted one by one into 
each time slice of the target training data stream. This section describes the rehearsal based online 
poisoning attack algorithm step by step. 

 

Figure 4. Schematic diagram of rehearsal based online DPA. 

Algorithm 1 presents the overall implementation process of the rehearsal-based online DPA 
algorithm. Lines 1 to 6 initialize the attack. Starting from line 7, the main loop of the attack process 
has begun. Constant 𝑚𝑎𝑥  is used to prevent oscillation caused by inappropriate parameter settings. 
Lines 8 and 9 record the number of current time slice and the total number of samples. Lines 10–12 
perform the point selection operation, with the details described in Algorithm 2. After the point 
selection operation, lines 13–14 pollute each poisoned sample point recorded in the rehearsal buffer 
one by one, i.e., updating each poisoned sample point in the direction of the maximum gradient. The 
projection operator 𝛱 in line 14 projects the polluted sample values into the feasible domain of the 
feature space. Line 14 adjusts the pollution speed by controlling the learning rate 𝛼 and decay factor 
𝛽. Line 15 completes the inner optimization process corresponding to Eq (18). Lines 16–18 complete 
the convergence condition judgment process, wherein the attack ends when the current model 
parameter achieve the minimum loss in time slice 𝐷  and the maximum loss in time slice 𝐷  
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simultaneously. Lines 19–24 update the maximum and minimum loss values of the model during the 
attack process. 

Algorithm 1 Rehearsal based Online DPA 
Input: training data stream, 𝐷 𝒙 ,𝑦 ,𝑇 → ∞, objective function, 𝒥, 
termination condition, 𝜀, poisoning rate, 𝛾, learning rate,𝛼, line search decay ,𝛽 and maximum 
number of iterations, 𝑚𝑎𝑥  
1:𝑡 ← 1 Initialization of time 𝑡  
2:Initialization of 𝜽  
3:𝑐𝑜𝑢𝑛𝑡 ← 0(Initialization of samples number) 
4:𝐷 _ ← ∅(Initialization rehearsal buffer) 
5:Initialization of MSE_max 
6:Initialization of MSE_min 
7:𝐰𝐡𝐢𝐥𝐞 𝑡 𝑚𝑎𝑥  do 
8:   𝑡 ← 𝑡 1 
9:   𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 𝑙𝑒𝑛 𝑐𝑎𝑐ℎ𝑒  
10:  if 𝑙𝑒𝑛 𝐷 _ 𝑐𝑜𝑢𝑛𝑡 ∙ 𝛾 : 
11:     𝐷 _ ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑎𝑚𝑝𝑙𝑒_𝑀𝑎𝑥𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝐷 ,𝐷 _ ,𝜽 , 𝑐𝑜𝑢𝑛𝑡 ∙ 𝛾  
12:  end if   
13:  for range 𝒙  in 𝐷 _  
14:     𝒙 𝛱 𝒙 𝛼𝛽𝛻 𝒥 𝐷 ∪ 𝐷 _ ,𝜽   
15:  𝜽 ← 𝜽 𝛼𝛻𝜽 𝒥 𝐷 ∪ 𝐷 _ ,𝜽  
16:  if |𝒥 𝐷 ,𝜽 MSE_max|  𝜀 and |𝒥 𝐷 ,𝜽 MSE_min|  𝜀: 
17:     break 
18:  end if  
19:  if 𝒥 𝐷 ,𝜽  > MSE_max : 
20:     MSE_max ← 𝒥 𝐷 ,𝜽  
21:  end if 
22:  if 𝒥 𝐷 ,𝜽  < MSE_min : 
23:     MSE_min ←  𝒥 𝐷 ,𝜽  
24:  end if 
25:end while 
26:Insert each poison sample from the rehearsal buffer into each time slice of the target data stream 
one by one 

Algorithm 2 presents the implementation process of the point selection operation. Line 1 combines 
the sample points of the current time slice and the sample points in the rehearsal buffer. Line 2 calculates 
the gradient for each sample in the merged sample set 𝐷  according to Eq (16) and finds the sample 
point with the maximum gradient. Lines 3–11 complete the addition and replacement operations 
for the samples in the rehearsal buffer. Line 3 first determines whether the newly generated sample 
point 𝒙 _  is already included in the rehearsal buffer. If it is not, the following steps are 
performed. Line 4 checks if the current size of the rehearsal buffer has reached the upper limit of 
the number of poisoned samples. If it has reached and the current sample is not included in the rehearsal 
buffer, lines 5–6 replace the sample point with the smallest gradient in the rehearsal buffer. If the current 
size of the rehearsal buffer has not yet reached the upper limit of the number of poisoned samples and 
the current sample is not included in the rehearsal buffer, line 9 directly inserts the sample point 
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𝑥 _  into the rehearsal buffer. 

Algorithm 2 SelectSample_MaxGradient 
Input:Samples in the current time slice,𝐷 ,Samples in the current rehearsal buffer,
𝐷 _ , current model parameter,𝜽 ,objective function,  𝒥, the number of poisoned 
samples at present,𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 
1:𝐷 ← 𝐷 ∪ 𝐷 _  

2:𝒙 _ 𝑎𝑟𝑔𝑚𝑎𝑥𝒙 ∈
𝒥 ,𝜽

𝒙
 

3:if 𝒙 _  𝑛𝑜𝑡 𝑖𝑛 𝐷 _ : 
4:   if 𝑙𝑒𝑛 𝐷 _  𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖: 

5:      𝒙 _ 𝑎𝑟𝑔𝑚𝑖𝑛𝒙 ∈ _

𝒥 _ ,𝜽

𝒙
 

6:      𝑖𝑛𝑑𝑒𝑥 _ 𝐷 _ . 𝑖𝑛𝑑𝑒𝑥 𝒙 _  
7:      𝐷 _ [𝑖𝑛𝑑𝑒𝑥 _ 𝒙 _  
8:   esle: 
9:      𝐷 _ .𝑎𝑝𝑝𝑒𝑛𝑑 𝒙 _   
10:  end if 
11: end if  
12:return 𝐷 _  

5.2. Theoretical analysis of complexity 

According to Eq (14), the complexity of calculating the gradient for each sample point is O 𝑘 , 
where 𝑘  denotes the dimension of the feature vector. Based on lines 2 and 5, the complexity of 
Algorithm 2 is O 𝑏 2𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 𝑘 . According to lines 11 and 14 in Algorithm 1, the complexity 
of Algorithm 1 is 𝑂 𝑡 2𝑏 3𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 𝑘  . Assuming that the total number of samples in 
Algorithm 1 converges to 𝑛, then 𝑡 , and at the same time, 𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 𝑏 ≪ 𝑛. Therefore, the 

complexity of Algorithm 1 is 𝑂 𝑛𝑘  approximately. The complexity of the offline DPA with the 
same number of samples is 𝑂 𝑖𝑡𝑒𝑟_𝑛𝑢𝑚 ∗  𝑛 ∗ 𝑘 , where 𝑖𝑡𝑒𝑟_𝑛𝑢𝑚 in the offline mode refers to 
the rounds of updating poisoned sample features according to the gradient ascent direction. Although 
the basic online DPA also has a complexity of 𝑂 𝑛𝑘 , it requires full storage of samples, resulting in 
a storage space of 𝑂 𝑛 , while Algorithm 1 only requires storage space of 𝑂 𝑏 2𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 . 

Proof 1. 𝑂 𝑡 2𝑏 3𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 𝑘 𝑂 𝑖𝑡𝑒𝑟_𝑛𝑢𝑚 ∗  𝑛 ∗ 𝑘 . 
Substituting 𝑡   into 𝑂 𝑡 2𝑏 3𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 𝑘  , we get 𝑂 𝑡 2𝑏 3𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 𝑘

𝑂 2𝑛 3𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 ∗ 𝑘  . Since 𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 𝑏 ≪ 𝑛 , we get 
_

 1. Then, 𝑂 2𝑛

3𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 ∗ 𝑘 𝑂 5𝑛𝑘  . By omitting the constant terms in the above inequality, we have 

𝑂 𝑡 2𝑏 3𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 𝑘 𝑂 𝑛𝑘  . Since 𝑛𝑘 𝑛 ∗ 𝑘   and 𝑖𝑡𝑒𝑟_𝑛𝑢𝑚 1  , we can obtain 
𝑂 𝑡 2𝑏 3𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 𝑘 𝑂 𝑛𝑘 𝑂 𝑖𝑡𝑒𝑟_𝑛𝑢𝑚 ∗  𝑛 ∗ 𝑘 . 

Proof 2. 𝑂 𝑏 2𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 𝑂 𝑛 . 
_ 2𝛾. Since 𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 𝑏 ≪ 𝑛, we have ≪ 2𝛾. Therefore, 

_

2𝛾. Due to the constraint of the concealment condition of the attack, 𝛾 . Then, 
_ 1. 

Thus, we can obtain 𝑂 𝑏 2𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑖 𝑂 𝑛 . 
In summary, in terms of time and space complexity, Algorithm 1 has advantages compared to 
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offline DPA and basic online DPA. 

6. Experiment 

This section evaluates the effectiveness of the rehearsal-based online DPA (RB-ODPA) with 
maximum-gradient-based point selection strategy and maximum-loss-based pollution strategy when 
applied to edge devices. The definitions of abbreviations used in this paper are shown Table 2. 

Table 2. List of abbreviations. 

Abbreviations Description 

DPA Data poisoning attacks 

LOT Loss over time (LOT) 

MSE Mean squared error 

OptP Best performing optimization attack proposed by [12] 

IA-ODPA Incremental attack proposed by [21] 

RB-ODPA The rehearsal based online DPA proposed of this paper 

SVM Support vector machine 

Experimental setup. In order to simulate the edge computing environment of IoT-enabled smart 
city, the attack algorithm was run in Linux OS in edge-embedded boards, which were mainly 
configured with a main chip with a cortex-A7 core, 1.2 GHz, 256 MB RAM and 512 MB ROM. The 
evaluation metrics are same as our previous work [24], which mainly include MSE loss, the running 
time of attack and the LOT. This paper adopts the OptP method proposed in [12] as the baseline algorithm 
of offline DPA and the incremental attack method (abbreviated as IA-ODPA) proposed in [21] as the 
baseline algorithm of basic online DPA. 

Data set. To validate the application scenario of IoT-enabled smart cities, we selected data from 
intelligent power systems, which contains 9568 data samples. The features include the average 
temperature of the environment per hour, the average pressure of the environment per hour, the average 
relative humidity of the environment per hour, the exhaust vacuum per hour and the predicted label, 
which is the net energy output per hour. To simulate online data streams, we input these samples in 
batches in accordance with the strategy shown in Figure 3. We performed normalization on all sample 
values, resulting in the feasible range of features and labels being [0,1]. This normalization process 
ensured consistency in the range of values for both features and labels. 

Basic parameters settings. In experiments, we set poisoning rate at 5, 10, 15 and 20%. The 
termination condition (𝜀) for algorithm convergence was set to 1e-8. The decay parameter 𝛽) and 
learning rate (𝛼) for polluting feature values of the poisoned sample points in the direction of gradient 
ascent was set to 0.05 and 0.01 respectively. 
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6.1. The relationship between cache size setting and point selection 

In this section, we investigate the differences between offline and online modes of sample 
selection and study the impact of different cache sizes on sample selection in the online mode. We 
compare the time cost and selection accuracy of the basic online sample selection, offline sample 
selection and the sample selection method based on the rehearsal buffer. The experimental results are 
presented in Tables 3 and 4. The offline sample selection is performed by our proposed method with a 
given poisoning rate to select poisoning points once from the entire sample set, i.e., the execution 
results of Algorithm 2 when the cache size b = 9568. 

Table 3. Comparison of sample selection. 

Poison rate Offline and basic online 
Rehearsal based 
b = 2300 b = 3100 b = 4700 

0.05 478 427 442 457 
0.1 956 866 887 918 
0.15 1435 1299 1335 1368 
0.2 1913 1773 1801 1844 

Table 4. Comparison of sample selection time. 

Poison rate 
Time of basic methods (s) Time of rehearsal based online (s) 

Offline Basic online b = 2300 b = 3100 b = 4700 

0.05 7.413719 14.827438 2.288950 3.085107 4.677420 

0.1 7.41804 14.83608 2.686006 3.620269 5.488794 

0.15 7.251866 14.503732 3.235627 4.361063 6.611934 

0.2 7.365552 14.731104 3.810749 5.136228 7.787184 

Table 3 shows the poisoning rate in the first column, followed by the number of selected poisoning 
sample points in offline and basic online modes in the second column. The third to fifth columns 
illustrate the count of same sample points selected by our proposed selection method and offline mode 
under different cache size settings. From the results presented in Table 3, we can observe that the 
similarity between the selected samples by our proposed method and those selected in offline mode 
can reach over 95% by adjusting the size of the cache for different poisoning rates. Figure 5 provides 
a more intuitive representation of the results in Table 3, where our proposed selection method can 
select sample points that are relatively close to those selected in offline mode when the cache sizes 
are 2300, 3100 and 4700. 

Table 4 compares the time cost of sample selection methods between offline and online modes. 
The first column shows the poisoning rate, the second column shows the time cost of sample selection 
in offline mode, the third column shows the time cost of basic online DPA for sample selection and the 
fourth to sixth columns show the time cost of our proposed sample selection method under different 
cache size settings. From the results presented in Table 4, we can observe that our proposed sample 
selection method has a lower time cost compared to the first two methods, which is consistent with the 
results of the algorithm complexity analysis presented in Section 5. Figure 6 presents the time cost of 
our proposed sample selection method under different cache size settings for a poisoning rate of 0.05. 
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We can observe that as the cache size increases, the overall execution time of the algorithm increases. 
However, when the cache size is set to 2300, 3100 and 4700, the algorithm can select the maximum 
number of sample points that are the same as those selected in offline mode with a relatively small 
time cost. 

 

Figure 5. The variation of the same samples number with cache size. 

 

Figure 6. The variation of execution time of sample selection with cache size (poisoning 
rate = 0.05). 

6.2. Effectiveness comparison of proposed attacks and baseline attacks 

In this section, we conducted a detailed analysis of the MSE, time and LOT of the three algorithms, 
based on the experimental settings described in the previous section. The results are presented in Tables 5 
and 6 and the comparative values of LOT are in Table 7. 

It is observed that all three attacks can mislead the predictive performance and the change in MSE 
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is also linear and upward with the increase in poisoning rates. The red line in Figure 7, representing 
the RB-ODPA algorithm, shows the best performance with the highest loss, which demonstrates the 
effectiveness of our method. 

Table 5. MSE comparison of attacks. 

Poison rate 
MSE 

Unpoison OptP IA-ODPA RB-ODPA 

0.05 0.0035 0.017 0.006 0.019 

0.1 0.0035 0.024 0.015 0.031 

0.15 0.0035 0.036 0.021 0.040 

0.2 0.0035 0.043 0.029 0.052 

Table 6. Time cost and LOT of sample selection under different cache size. 

Poison 

rate 
Time of attack (s) 

Time of selection（s） LOT 

b = 2300 b = 3100 b = 4700 b = 2300 b = 3100 b = 4700 

0.05 4.343159 2.288950 3.085107 4.677420 0.00286485 0.002557797 0.002106295 

0.1 8.686318 2.686006 3.620269 5.488794 0.002725916 0.002518976 0.002186932 

0.15 13.029477 3.235627 4.361063 6.611934 0.002459253 0.002300101 0.002036514 

0.2 17.372636 3.810749 5.136228 7.787184 0.002454754 0.002310201 0.002066787 

Table 7. Comparison of attack time and LOT (cache size b = 4700). 

Poison 

rate 

Time of method (s) LOT 

OptP IA-ODPA RB-ODPA OptP IA-ODPA RB-ODPA 

0.05 8.67830975 14.827438 4.343159 + 3.085107 0.0019589 0.0004046 0.0026027 

0.1 17.3566195 14.83608 8.686318 + 3.620269 0.0013827 0.0010110 0.0025619 

0.15 26.03492925 14.503732 13.029477 + 4.361063 0.0013827 0.0014479 0.0023121 

0.2 34.713239 14.731104 17.372636 + 5.136228 0.00123872 0.0019686 0.0022222 

 

Figure 7. MSE comparison of attacks. 
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Table 7 indicates that the selection of attack algorithms should not be limited to the degree of 
improvement in MSE alone, but should consider LOT comprehensively. It clearly shows the 
performance comparison of the three algorithms in the LOT index, in other words, RB-ODPA achieves 
the maximum MSE loss with the minimum time cost. 

6.3. Optimal setting cache size 

In this section, we investigate the issue of cache size setting and evaluate the attack effectiveness 
of our proposed method under different cache size settings using the LOT metric. The experimental 
results are presented in Table 6 and Figure 8. According to the experimental results, our proposed 
attack method outperforms other methods in terms of the LOT metric. Our proposed method also 
exhibits different LOT results under different cache size settings, with a cache size setting of b = 2300 
yielding the optimal attack effectiveness. Therefore, we set this as the optimal cache size setting for 
our proposed attack method. 

 

Figure 8. LOT comparison of attacks. 

6.4. Comparison of actual attack effects 

Figure 9 illustrates the attack effectiveness of offline DPA and online DPA on a real system, with 
Figure 9(a) showing the offline attack effectiveness and Figure 9(b) showing the online attack 
effectiveness. In Figure 9(a), the offline attack method places the poisoned samples at the beginning 
(or end) of the normal samples, resulting in continuous abnormal values at the beginning, which is 
easily exposed. In contrast, in Figure 9(b), the blue dots represent normal sample values, while the red 
dots represent the values of poisoned samples after attack. Since the poisoned samples are mixed with 
normal samples, the offline attack is more covert. 
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(a) Offline (b) Online 

Figure 9. Comparison of offline and online DPA attack effects. 

7. Conclusions 

In conclusion, this paper proposes an online poisoning attack framework for edge AI 
environments in IoT-enabled smart cities, which takes into account the limited storage space in the AI 
edge environment and proposes a rehearsal-based buffer mechanism to incrementally pollute the 
sample data stream that arrives at the appropriately sized cache to optimize the efficiency of the attack. 
A maximum-gradient-based sample selection strategy is proposed to overcome the periodic 
overwriting of the sample data cache after training, while a maximum-loss-based sample pollution 
strategy solves the problem of each selected sample being polluted only once in the gradient ascent 
direction in basic online DPA. The proposed online gray-box poisoning attack algorithms are 
implemented and evaluated on edge devices of IoT-enabled smart cities using an online data stream 
simulated with offline open-grid datasets. The experimental results demonstrate the effectiveness and 
overhead of the proposed attack framework and strategies, which can provide a reference for 
researchers to design defenses against such attacks. 
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