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Abstract: The aim of this short note is twofold. First, we formulate the general Kermack-McKendrick
epidemic model incorporating static heterogeneity and show how it simplifies to a scalar Renewal
Equation (RE) when separable mixing is assumed. A key general feature is that all information about
the heterogeneity is encoded in one nonlinear real valued function of a real variable. Next, we special-
ize the model ingredients so that we can study the efficiency of mask wearing as a non-pharmaceutical
intervention to reduce the spread of an infectious disease. Our main result affirms that the best way
to protect the population as a whole is to protect yourself. This qualitative insight was recently de-
rived in the context of an SIR network model. Here, we extend the conclusion to proportionate mixing
models incorporating a general function describing expected infectiousness as a function of time since
infection.

Keywords: Kermack-McKendrick; epidemic model; heterogeneity; separable mixing; mask
efficiency

1. Introduction

The work described below was triggered when the third author of the present paper attended the
lecture of R. Pastor-Satorras during the ‘Workshop on Epidemic Modelling: Current Challenges’ in
Girona, 19-21 June 2023. This lecture reported on the models, methods and results of the paper [1]
and culminated in a powerful qualitative insight: masks that protect the wearer against infection are,
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also in public health perspective, more efficient than masks that, if the wearer is infectious, protect its
contacts against infection. This conclusion is derived in the context of network models.

Already, for quite a while, the present authors are working on the manuscript [2], which aims to
provide a general survey of various effects of (mainly static) heterogeneity. A natural question arises:
is it possible to sustain the qualitative insight by rederiving it in the context of homogeneous mixing
models? As we show below, the methodology developed in our manuscript in preparation allows us to
easily provide an affirmative answer.

2. Formulation of a comprehensive model for epidemic outbreaks in heterogeneous host
populations

By using the word ‘outbreak’, we imply that demographic turnover is ignored and that infection
leads to permanent immunity. Host individuals are characterized by a trait x taking values in a set
Ω. We assume that Ω is a measurable space, meaning that it comes equipped with a σ-algebra. We
introduce a positive measure Φ on Ω to describe the distribution of the trait in the host population. We
normalize Φ(Ω) = 1 and denote the host population size by N. For a concrete example, see Section 4.

A major restriction is that the trait of an individual does not change during the outbreak. Thus, if
the trait corresponds to age, the assumption is that the duration of the outbreak is so short, that we can
ignore that individuals are becoming older while it lasts. Let s(t, x), with s(−∞, x) = 1, denote the
probability that an individual with trait x is susceptible at time t. When the NUMBER of infected indi-
viduals is small, demographic stochasticity has a large impact and cannot be ignored. Our description
starts when a small FRACTION of the very large host population is infected. With an informal appeal
to the Law of Large Numbers, we then also interpret s(t, x) as the FRACTION of individuals with trait
x that is susceptible at time t, see e.g. [3]. It follows that

s(t, x) = exp
(
−

∫ t

−∞

F(τ, x)dτ
)
, (2.1)

with F the force of infection as a function of time and trait. In the spirit of [4] (for a reformulation in
modern language see [5]) we introduce as the key modelling ingredient

A(τ, x, ξ) = the expected contribution to the force of infection on an individual with trait x

by an individual with trait ξ that became infected τ units of time ago.
(2.2)

A is a measurable non-negative function mapping R+ × Ω × Ω into R+ and A is integrable with
respect to (τ, ξ) over R+ ×Ω. We shall call τ ‘infection age’ or ‘age of infection’, since it is the time on
a clock that starts at the moment at which the individual becomes infected.

The formula

F(t, x) = N
∫ ∞

0

∫
Ω

A(τ, x, ξ)F(t − τ, ξ)s(t − τ, ξ)Φ(dξ)dτ, (2.3)

expresses the force of infection as a sum of contributions of individuals that were infected time τ ago
while having trait ξ. By integrating (2.3) over time, interchanging the integrals, using the differentiated
version of (2.1), i.e.,

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17661–17671.



17663

∂s
∂t

(t, x) = −F(t, x)s(t, x), (2.4)

to evaluate and inserting the result at the rhs of (2.1), we arrive at the nonlinear abstract Renewal
Equation (RE)

s(t, x) = exp
(
−N

∫ ∞

0

∫
Ω

A(τ, x, ξ)[1 − s(t − τ, ξ)]Φ(dξ)dτ
)
. (2.5)

(In this paper we do not discuss the initial value problem, corresponding to prescribing the history
of s on a time interval extending back to −∞, nor the dynamical systems point of view, corresponding
to shifting in time along the function s obtained by extending the given history. Instead, we refer
to [6], [7] and [8] for an exposition of the relevant ideas.)

Equation (2.5) provides a concise representation of a rather general class of models (see, e.g., [3,9]
for a general introduction to epidemic models and [10,11] for recently developed methodology for com-
puting the basic reproduction number for structured populations). For quantitative work, the discrete
time variant introduced in [12] might be more suitable, especially when Ω is (or can be approximated,
in some sense, by) a finite set, see [13–15] for steps in this direction.

As we show next, an alternative way to increase the tractability is to assume separable mixing.

3. Separable mixing

The function A has arguments τ and ξ pertaining to the infectious individual and argument x per-
taining to the susceptible individual. The contact process can be assortative (individuals with similar
traits are more likely to meet) or disassortative (individuals with dissimilar traits are more likely to
meet) or proportional.

‘Proportionality’ means that, given that an individual with trait ξ makes a contact, the probability
distribution of the trait of the other individual involved in the contact does not depend on ξ. This
probability distribution is then obtained by first multiplying the probability distribution of trait x in the
population with the function describing how active individuals with trait x participate in the contact
process and next applying a normalization to obtain that the integral equals one.

In terms of A, proportionality manifests itself by A being separable, i.e., being a product of a func-
tion of x and a function of τ and ξ. We call this separable mixing. The τ dependence in A captures
how the infectiousness (as manifested in the probability of transmission, given a contact and, possibly,
in a reduction or, for instance in case of rabies, enhancement of participation in the contact process)
depends on infection age. If this dependence on τ is not itself depending on the trait ξ, A is the product
of three non-negative functions of one variable, say

A(τ, x, ξ) = a(x)b(τ)c(ξ). (3.1)

Here, b should be integrable over [0,∞) and c should be integrable over Ω with respect to Φ. Often, the
form (3.1) for A is called proportionate (or proportional) mixing, in particular when c equals a (note
that a and c are only unique up to a multiplicative constant and that such a constant can be incorporated
in the factor b). It follows straight away from (3.1) and (2.3) that the force of infection factorizes as a
product of a(x) and an unknown function of time. The same holds for the cumulative force of infection∫ t

−∞
F(τ, x)dτ and accordingly we put

s(t, x) = e−a(x)w(t), (3.2)
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and find that w should satisfy the scalar nonlinear RE

w(t) =

∫ ∞

0
b(τ)Ψ(w(t − τ))dτ, (3.3)

where Ψ : R→ R is defined by

Ψ(w) := N
∫

Ω

c(η)(1 − e−a(η)w)Φ(dη). (3.4)

In the ‘trivial’ case that both c and a are identically equal to one, all individuals have identical
susceptibility as well as expected infectiousness, so, after all, there is no heterogeneity. In this case,

Ψ(w) = N(1 − e−w), (3.5)

and (3.3) is the standard Kermack-McKendrick RE as, for instance, presented in [5]. So (3.3) tells
us how, in the separable mixing case, the various components of heterogeneity, viz., susceptibility a,
infectiousness c and distribution Ψ, affect the nonlinearity in the RE. Incidentally, in [16], it is shown
how to efficiently derive compartmental models that incorporate heterogeneity, by choosing in (3.3)
functions b that are a matrix exponential sandwiched between two vectors.

To investigate the initial phase of an outbreak, we linearize at the disease-free steady state w = 0,
which amounts to replacing Ψ(w) by Ψ′(0)w. Inserting the trial solution w(t) = eλt, we obtain the
Euler-Lotka equation

1 = Ψ′(0)
∫ ∞

0
b(τ)e−λτdτ, (3.6)

which has a unique positive solution λ = r whenever the Basic Reproduction Number R0 [10, 11, 17],
given by

R0 = Ψ′(0)
∫ ∞

0
b(τ)dτ, (3.7)

exceeds one. The non-negativity of b guarantees that in the complex plane r is the right most root of
(3.6); for R0 < 1 there exists a solution r < 0 provided the rhs of (3.6) assumes, on the real axis, values
greater than one; a sufficient condition for this to happen is that b has compact support. Note that

Ψ′(0) = N
∫

Ω

c(η)a(η)Φ(dη). (3.8)

The Herd Immunity Threshold (HIT) is, by definition, reached when w assumes the value w̄ such
that the reproduction number corresponding to the situation in which Ψ′(0) is replaced by Ψ′(w̄) equals
one (note that after reaching the HIT there might still be a high incidence, simply because the reservoir
of already infected individuals generates a considerable force of infection; but the contents of the
reservoir will gradually diminish once the HIT is reached). The HIT itself is defined as s̄, where s̄ is
the fraction of the population that is still susceptible when w assumes the value w̄. Hence,

s̄ =

∫
Ω

e−a(x)w̄Φ(dx), (3.9)
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with w̄ the unique (since Ψ′′(w) < 0 ) solution of

1 = Ψ′(w̄)
∫ ∞

0
b(τ)dτ. (3.10)

For t → ∞, w tends to w(∞) characterized by

w(∞) = Ψ(w(∞))
∫ ∞

0
b(τ)dτ =

Ψ(w(∞))
Ψ′(0)

R0 (3.11)

and the fraction of the population that escapes is accordingly given by

s̃ =

∫
Ω

e−a(x)w(∞)Φ(dx). (3.12)

Note that (3.11) implies that Ψ′(w(∞)) < Ψ′(0)
R0

(since Ψ(y) > yΨ′(y) for y > 0) and hence that w(∞) > w̄
and s̃ < s̄. The quantity 1 − s̃ is called the final size of the outbreak, since it is the fraction that got
infected during the outbreak.

In the next section we shall specialize the model ingredients Ω, Φ, a and c such that they reflect a
situation in which a fraction f of the population wears (all the time) a mask and that wearing a mask
reduces, potentially, both the susceptibility and the infectiousness.

4. Efficiency of masks

For a more general and quantitative study of mask wearing as a non-pharmaceutical intervention
we refer to [18] and [19]. Here, we focus on one particular aspect.

Consider a population in which a fraction f of the individuals wears a mask (whenever they are in
a situation where they can come into contact with other individuals) while the complementary fraction
1 − f never wears a mask. To describe this distinction, we let Ω consist of two points, indicated by 1
and 2. We label the individuals that do not wear a mask 1 and those who do, we label 2. We specify:

Φ(1) = 1 − f and Φ(2) = f . (4.1)

We assume that wearing a mask is not correlated with any property that has influence on the contact
process (in principle one could imagine that the contact process is assortative, in the sense that mask
wearers meet disproportionately often with other mask wearers; but by this assumption we explicitly
exclude such effects). Accordingly, we adopt (3.1). Recalling that this decomposition provides the
freedom of incorporating multiplicative constants into the factor b, we normalize a and c by choosing:

a(1) = 1 and c(1) = 1. (4.2)

The values of a(2) and c(2) then describe the relative susceptibility and infectiousness of those who
wear a mask. The idea that a mask offers protection is reflected in our assumption that these values
lie in the interval [0, 1]. The aim of our analysis is to investigate the influence of these values on the
epidemic outbreak. Therefore we introduce parameters ε1 and ε2 and put:
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a(2) = ε1 and c(2) = ε2. (4.3)

It follows that:

Ψ(w) = N
[
(1 − f )(1 − e−w) + f ε2(1 − e−ε1w)

]
, (4.4)

and

Ψ′(w) = N
[
(1 − f )e−w + f ε1ε2e−ε1w] . (4.5)

In succession, we now consider the initial phase, the HIT and the final size, focusing on the
(a)symmetry of the impact of the two parameters ε1 and ε2. As (3.6) and (3.7) show, the crucial
quantities for the initial phase are b(τ) and Ψ′(0). From (4.5) we deduce:

Ψ′(0) = N
[
1 − f + f ε1ε2

]
. (4.6)

It follows that in the initial phase of an outbreak the two protection factors carry equal weight, in
the sense that both the reproduction number R0 and the Malthusian parameter r depend only on their
product. Motivated by this observation, we shall keep the product constant, say

ε1ε2 = ε, (4.7)

when investigating the HIT and the final size.

Theorem 4.1: Assume (4.7) with ε ∈ (0, 1). The HIT s̄, defined in (3.9), is a decreasing function of
ε1.

Proof. Define:

G(w, ε1) = (1 − f )e−w + ε f e−ε1w, (4.8)

then (3.10) can be rewritten as:

G(w̄, ε1) =

(
N

∫ ∞

0
b(τ)dτ

)−1

. (4.9)

Since

D1G(w, ε1) = −(1 − f )e−w − ε1ε f e−ε1w < 0 (4.10)
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D2G(w, ε1) = −wε f e−ε1w < 0, (4.11)

we have by differentiation of G(w̄(ε1), ε1) = 0 with respect to ε1 (implicit function theorem) that

dw̄
dε1

(ε1) = − (D1G(w̄, ε1))−1 D2G(w̄, ε1) < 0. (4.12)

Next observe that the expressions for s̄ and for G(w̄, ε1) differ only by a factor ε in the last term. To
exploit this, we rewrite D1G dw̄

dε1
+ D2G = 0 as

−ε1 f e−ε1w̄ dw̄
dε1

(ε1) − w̄ f e−ε1w̄ =
1
ε

(1 − f )e−w̄ dw̄
dε1

(ε1). (4.13)

Because

ds̄
dε1

(ε1) = −(1 − f )e−w̄ dw̄
dε1

(ε1) − ε1 f e−ε1w̄ dw̄
dε1

(ε1) − w̄ f e−ε1w̄ (4.14)

we find

ds̄
dε1

(ε1) = (
1
ε
− 1)(1 − f )e−w̄ dw̄

dε1
(ε1) < 0, (4.15)

since 0 < ε < 1. �

We conclude that we should minimize ε1 to maximize the susceptible fraction upon reaching the
HIT or, in other words, we should maximize self protection.

Theorem 4.2: Assume (4.7) with ε ∈ (0, 1). The fraction s̃ that is still susceptible after the
outbreak, defined in (3.12), is a decreasing function of ε1.

Sketch of the proof: Define

H(w, ε1) = (1 − f )
1 − e−w

w
+ ε f

1 − e−ε1w

ε1w
, (4.16)

then (3.11) can be rewritten as the equation

H(w(∞), ε1) =

(
N

∫ ∞

0
b(τ)dτ

)−1

. (4.17)

Using that d
dx

1−e−x

x < 0 for x > 0 one can copy the reasoning in the proof of Theorem 4.1 and derive
that both w(∞) and s̃ are decreasing functions of ε1.

From (3.12) we have
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s̃ = (1 − f )e−w(∞) + f e−ε1w(∞). (4.18)

Since w(∞) is a decreasing function of ε1 the escape probability for those who do NOT wear a mask,
represented by e−w(∞), increases with ε1. From Theorem 4.2 it follows then that the escape probability
of those who DO wear a mask, represented by e−ε1w(∞), decreases strongly enough to make the overall
per capita escape probability s̃ decreasing as well.

Stated otherwise, maximizing self protection by those who wear a face mask improves the escape
probability for themselves (Figure 1a) and the population as a whole (Figure 2), but reduces the escape
probability for those who do not wear a mask (Figure 1b).

The intuitive ‘explanation’ of the overall positive effect is that when infection of an individual is
prevented, automatically the secondary infections that potentially are caused by this individual are
prevented. In other words, self protection occurs one step earlier in a chain of potential transmissions.
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Figure 1. Improvement factor of escape probability for type 2 individuals who always wear
a mask and for type 1 individuals who never wear a mask. Recall that a higher self protection
by those who wear a face mask corresponds to a lower ε1. We find the respective escape
probabilities of type 1 and type 2 individuals, s̃1 = e−w(∞) and s̃2 = e−ε1w(∞), by numerically
solving equation (3.11) with Ψ given by (4.4) and with, in this particular numerical example,
f = 0.5. Next we compute the improvement factor of the escape probability by dividing the
calculated escape probability by the escape probability in a maskless population. We refer
to N

∫ ∞
0

b(τ)dτ as ‘R0(no mask)’ since R0 in a maskless population equals N
∫ ∞

0
b(τ)dτ (see

(3.7)). Please note that equation (3.11) depends on ε1, ε2, f and the compound parameter
R0(no mask) but not at all on the shape of the graph of the function b. Curves are shown for
two choices of R0(no mask) and two choices of mask protection level ε. Note that the self
protection parameter ε2 is related to ε and ε1 by ε2 = ε/ε1 as assumed in (4.7).

5. Concluding remarks

In a top down approach to the mathematical epidemiology of infectious diseases [3, 9], one starts
general and abstract in order to create a theoretical framework that, hopefully, facilitates the investiga-
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ulation as a whole. We show the effect of different levels
of mask protection ε and R0(no mask).
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(b) Higher self protection by those who wear a face mask
(lower ε1) leads to a higher escape probability for the pop-
ulation as a whole. We show the effect of different levels
of mask protection ε and sizes of the masked population f .

Figure 2. Improvement factor of escape probability for the population as a whole. Recall that
a higher self protection by those who wear a face mask corresponds to a lower ε1. We find the
escape probability s̃ for the population as a whole by first numerically solving equation (3.11)
and inserting the outcome in (3.12)/(4.18). Then we compute the improvement factor of the
escape probability by dividing the calculated escape probability by the escape probability
in a maskless population. We refer to N

∫ ∞
0

b(τ)dτ as ‘R0(no mask)’ since R0 in a maskless
population equals N

∫ ∞
0

b(τ)dτ (see (3.7)). Please note that equation (3.11) depends on ε1,
ε2, f and the compound parameter R0(no mask) but not at all on the shape of the graph of the
function b. In Figure 2a we choose f = 0.5 (recall s̃ = (1 − f )s̃1 + f s̃2) and in Figure 2b we
choose R0(no mask) = 3. Note that the self protection parameter ε2 is related to ε and ε1 by
ε2 = ε/ε1 as assumed in (4.7).

tion of concrete questions that arise in the context of specific diseases. In exactly that spirit, we intro-
duce in [2] a variant of the general Kermack-McKendrick model that incorporates static heterogeneity
and next focus on the impact of heterogeneity on various characteristics of an outbreak, such as the
Herd Immunity Threshold and the Final Size. In the first half of the present paper, we briefly described
this general model and we showed how the assumption of separable mixing leads to a relatively simple
scalar renewal equation in which the influence of heterogeneity is captured by one nonlinear function.
In the second half of the paper, we turned to a concrete question concerning the non-pharmaceutical
intervention of wearing face masks to reduce the spread of a disease like Covid-19. Here, the hetero-
geneity is simply that some individuals wear a mask, while others do not. Additionally, if the contact
process is ‘proportional’, cf. beginning of Section 3, we do have separable mixing. Thus, we can
use the scalar renewal equation and consequently have a simple characterization of the herd immunity
threshold and of the final size. This allowed us to show that obstructing incoming virus is more efficient
for reducing the herd immunity threshold and the final size than obstructing outgoing virus. Thus, we
confirmed for a very large class of models the conclusion recently obtained in [1] in the context of an
SIR model for disease spread over a configuration network.
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