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Abstract: Many tests for comparing survival curves have been proposed over the last decades. There
are two branches, one based on weighted log-rank statistics and other based on weighted Kaplan-Meier
statistics. If we carefully choose the weight function, a substantial increase in power of tests against
non-proportional alternatives can be obtained. However, it is difficult to specify in advance the types
of survival differences that may actually exist between two groups. Therefore, a combination test can
simultaneously detect equally weighted, early, late or middle departures from the null hypothesis and
can robustly handle several non-proportional hazard types with no a priori knowledge of the hazard
functions. In this paper, we focus on the most used and the most powerful test statistics related to
these two branches which have been studied separately but not compared between them. Through a
simulation study, we compare the size and power of thirteen test statistics under proportional hazards
and different types of non-proportional hazards patterns. We illustrate the procedures using data from
a clinical trial of bone marrow transplant patients with leukemia.

Keywords: Survival analysis; non-proportional hazards; weighted log-rank statistics; weighted
Kaplan-Meier statistics; power

1. Introduction

The most commonly used two-sample nonparametric test statistic is the log-rank (LR) statistic,
which is locally most powerful against proportional hazards (PH) alternatives. However, rank-based
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log-rank statistics may not be sensitive to certain types of stochastic ordering alternatives, particularly
if the hazard functions cross or a delayed effect is observed. In reality, the PH does often not hold
true as for example in some immuno-oncology therapies [1]. As an alternative to generalized linear
rank statistics, [2] proposed nonparametric weighted Kaplan-Meier (WKM) statistics, which are non-
rank-based statistics and therefore sensitive to the magnitude and duration of the difference in survival
curves over time. These test statistics seems to compare favorably with the popular log-rank test
statistic across a broad range of stochastic ordering alternatives.

As a particular case of WKM, you get the restricted mean survival time (RMST) which is an al-
ternative robust and clinically interpretable summary measure that does not rely on the proportional
hazard (PH) assumption. [3] concluded that the RMST-based test has better performance than the log-
rank test when the truncation time is reasonably close to the tail of the observed curves under non-PH
scenarios where late separation of survival curves is observed.

Under non-proportional alternatives, the effect of a treatment may wane over time, leading to a
decreasing hazard ratio and a closing up of the two survival curves or may have a delayed effect
whereby they do not separate until a certain interval of time has elapsed. As another more powerful
alternative over the unweighted log-rank statistic, [4] proposed a class of adaptive weighted log-rank
statistics. These tests may assign more weight on either early, middle or late survival differences with
a suitable choice of weight function. A particularly useful family in the class of weighted log-rank
statistics was introduced in [5] and [6]. However, in many situations, it is difficult to know in advance
the kind of survival differences that will actually occur. Therefore, [7] proposed the maximum of a
finite collection of these weighted log-rank statistics trying to overcome the above problem.

Later, [8, 9] proposed tests based on a more extended family of test statistics where the weights
are governed by two parameters and combinations of them that are more sensitive to nonproportional
hazard alternatives. Furthermore, [10] considered a new combination of these test statistics. On the
other hand, [11] considered the same family of weighted functions for the WKM test statistic and
evaluated the maximum of nine of these test statistics. [12] proposed a different weighted functions
for these test statistics. Recently, [13] investigated weighted log-rank tests, the supremum log-rank test
and composite tests (mainly based on log-rank tests). On the other hand, [14] studied the performance
of nine tests. Seven out of nine are based on weighted log-rank and the other two are WKM and
RMST. Both papers came to the conclusion that: there is not a single most powerful test across all
scenarios but the maximum of several weighted log-rank tests seems to be the best choice. The former
proposed the so-called MaxCombo test and the later the proposal studied by [10]. Recently, [15] have
performed additional simulations to evaluate the MaxCombo test under some extreme scenarios which
are unlikely in real life. Futhermore, they have provided design and analysis considerations based on a
combination test under different non-PH types and present a straw man proposal for practitioners.

To our knowledge, the class of maximum weighted log-rank tests and that of maximum weighted
Kaplan-Meier tests have not been compared to each other. Therefore, we try to fill this gap as well as
to compare them with the RMST which is easily interpretable. The paper is organized as follows: In
Section 2, we describe the tests to be compared and our approach to get the critical points. A simulation
study of the performance of the tests is presented in Section 3. In Section 4, we apply all the methods
to a real data set from a clinical trial of marrow transplant patients with leukemia. We finish with a
discussion in Section 5.
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2. Methods

We assume the two-sample general random censorship model. Consider two censored samples with
sample sizes n; from the treatment group and n, from the control group. Let T;;, i = 1,2, j = 1,...,n;,
be independent, positive random variables and C;; be independent censoring variables that are also
independent of the survival variables T;;. The data really observed are (X,- 5 0i j), i=12,j=1,..,n,
where X;; = min(7;;,C;;) and 6;; = 1 (Tij <(; j) , where [ is the indicator function. Define survival
functions §;(r) = P(T;; > t) and Ci(t) = P(C;; > 1),i = 1,2, which are assumed to be absolutely
continuous throughout the paper. The null hypothesis to test is that the survival distributions between

two groups are the same, that is,
Hy : §1(2) = S2(0) (2.1)

2.1. Weigthed Log-rank tests and combinations

The so-called weighted log-rank statistics are given by

WIR = [n + ft W(t)_Yl(Z)Yi(t) {di\’l(t) _ di\’z(t)} 2.2)
mny Jo Y0+ L0 Y0 Va0

where N,(¢) is the number of failures in group i before or at time 7 and Y;(r) the number at risk in group
[ at time t—, i = 1,2, w(r) is a bounded nonnegative weight function and ¢. = sup{z/ Ci() A Cy(r) > 0)
where C; denotes the Kaplan-Meier estimator of the censoring survival function in group i. As the
weight function is sensitive to the alternative hypothesis, it should be chosen carefully.

[7] proposed

W) =[S {1 -5(-)) forA=0andy =0 2.3)

with §(t—) being the left-continuous version of the product-limit estimator ([16]) for the survival func-
tion based on the pooled survival data. We consider the family of test statistic given in (2.2) when the
class of functions (2.3) are chosen, WLR*”. In particular, 1 = y¥ = 0 corresponds to the log-rank statis-
tic, WLR"?, which specifies equal weights and A = 1 and y = 0 corresponds to the Prentice-Wilcoxon
statistic, WLR'?, which places more weight on the earlier time points. In contrast, WLR"! places more
weight on the later time points and WLR"! will emphasize the middle differences. [8] studied the
maximum over the statistics WLR*?, WLR*?, WLR"*? and WLR?? as well as their average. [9] studied
the test statistics [WLR' + WLR"!| /2, (|WLR'| + [WLR"!|) /2 and max (|WLR'|,|WLR"!|). [10]
and [13] considered WLR,,,,3 = max (|WLRO’0| ,IWLRYY|, |WLR0’1 |) [14] focused on the so called
MaxCombo test WLR s = max((WLR|, [WLR*!|,|WLR'|,|WLR"!)).

According to the conclusions of the papers that have studied these test statistics and combinations,
we focus on maximum combination tests. To conduct inference on these test statistics, i.e. to calculate
the p-value for testing (2.1), there are different methods. One is to obtain the asymptotic distribution of
these test statistics as the maximum of a multivariate normal distribution with mean zero and covariance
that can be consistently estimated by

Y1) + Ya(t)

auz”V””j“wmwu)?Wﬁ“”(1_M%@+ANN”‘j 4[N + Na()
YUy Jo T Y10 + Yo(t) — 1 Y1) + Ya(0)
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fori,j=1,2,3,4,w;(t),i = 1,2,3,4 are the weight functions withd =y =0;1=1,y=0;4 =0,y =
I and 4 = y = 1, respectively and AN () = Ny(t) — Ni(t—), the number of events at time 7 in group
i. However, in this paper, to account for small and moderate sample sizes, bootstrap is used to obtain
p-values as is explained in Section 2.3.

2.2. Weigthed Kaplan-Meier tests and combinations

[2] defined the weighted Kaplan-Meier statistics as

_ niny tc,.\ — T
WKM = ‘/n1+n2f0 u(t)(Sl(t) Sz(t))dt.

They proposed using u(z) = C, l(t—)Ez(t—) /(p 15 (=) + pzé\z(t—)) to stabilize the test statistic and down
weight its variance toward the end of the observation period if censoring is heavy.
[11] proposed

) = W — U s 0andy 2 0 (2.4)

p1Ci(1=) + prCa(t-)
with p; = n;/(n; + ny) and a denotes the Kaplan-Meier estimator of the censoring random variables in
group i and W(¢) is defined in (2.3). We shall call these test statistics WKM*?. In particular, 1 =y = 0,
WK M, corresponds to the Pepe-Fleming’s WKM test. [11] studied max; j—o 12 (WK Mbi ) .
As a particular case, we have the difference in RMST ([3])

D= fo ) (S0 = Sa()) d.

To be fair the comparison of these test statistics with that based on the log-rank test, we will focus
on their maximum combination tests counterparts. In particular, WKM,,,.s = max(WKM*®, WK M®!,
WEKM'"Y WKM""y and WK M43 = max(WKM*°, WKM*', WK M'?). To conduct inference on these
test statistics, i.e. to calculate the p-value for testing (2.1), the asymptotic distribution of these test
statistics can be obtained as the maximum of a multivariate normal distribution with mean zero and
covariance that can be consistently estimated by

ds ()

fe a fe o — —
R ftc [ft f:(s)S (s)ds] [ft Mj(S)S(S)dS] p1Ci(t=) + pCa(1-)
g;; = — P — —

! 0 S®S (--) C1(t-)Cy(1-)
fori, j=1,2,3,4, and it;,(¢),i = 1,2, 3,4 are the weight functions given in (2.4) for w;(¢) defined in the

previous section. However, in this paper, to account for small and moderate sample sizes, bootstrap is
used to obtain p-values as is explained in Section 2.3.

2.3. Computing p-values using bootstrap

The p-value of our test statistics can be obtained using their asymptotic distributions either by
numerical integration or Monte Carlo estimation of the multivariate Gaussian distribution. [11]
pointed out the variance-covariance matrix may not have a close form solution and requires intense
computation. Therefore, our proposal is to use Bootstrap instead of asymptotic distributions that has
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less computational cost and improve the precision of the asymptotic approximations in small and
moderate samples as well as deal with analytically challenging problems in some cases.

We propose to calculate the p-values as follows:

e Step 1: To obtain the value of the test statistic for the original sample, T}

e Step 2: Draw B bootstrap samples from the original data, so n; +n, observations are obtained and
consider the first n; as controls and the other n, as treatments then to obtain the value of the test
statistic for the bootstrap sample, T3(i),i = 1, ..., B.

e Step 3: Estimate the p-value by counting the number of T(i) greater than 7.

We also offer R-code facilitating the implementation of the evaluation of the p-value of the test statistics
in Supplementary.

3. Simulation study

We carry out a simulation study to compare the performance of these thirteen test statistics: WLR",
WLR"!, WLR™, WLR"!, WLR,,,.s, WLR 3, WKM®®, WKM*!, WKM'®, WKM"!, WKM, .4,
WKM,,.3 and D. The simulation design described in [9] has been considered but it is similar to that
included in the other cited references such as [17] and [13]. We used piecewise exponential models to
generate simulated data with parameters A;(¢) from groups 1 and 2 set to represent common alternatives
that might arise in real data. To be specific, in Figure 1, (a) null case 4, = 2, 1, = 2, (b) proportional
hazards 4, = 1,4, = 2, (c) early survival differences, t < 0.3, 4; = 3,4, = 0.75; 0.3 <t < 0.6,
A1 =0751,=3;t>06, 4, = 1,4, = 1, (d) late survival differences, r < 0.5, 4, = 2,4, =2;¢t > 0.5,
A1 = 4,4, = 0.4 and (e) early and late occurring survival differences, ¢t < 0.2, 4; = 3,4, = 0.75;
02<t<04,14,=07514,=3;04<1t<06,4,=1,4,=1;t>0.6, 1, =3,1, =0.75.

In each case, the censoring distributions are uniform and the censoring percentages in the sample are

0%,20%,40% and 60%. Empirical size and power of the tests were evaluated considering @ = 0.05
for sample sizes n; = n, = 20,50,70,100 and 150. For each sample size, 2000 replications were
performed for each configuration of survival and censoring distributions and in each one of them 500
bootstrap repetitions were performed.
The simulations were conducted using R (https://www.r-project.org//R Core Team, Vienna, Aus-
tria), specifically, we simulate the data with the rpwexp function of the nhpsim package [18],
which simulates the exponential distribution by parts and allows to specify a distribution where the
risk rate changes with time, logrank.test and logrank.maxtest functions of the nph package
[19] were used to calculate the statistics WLR*®, WLR%>!, WLR'®, WLR"', WLR .4z, WLR,,.,s and
the survtest function of the SurvBin package [20] to calculate the statistics WKM*, WKM®!,
WKM'", WKM"! and we implement a function to calculate the maximum weighted Kaplan-Meier
test statistics, WKM,,,,..« and WKM,,,,3. Finally, we calculate the D statistic with the rmst2 function
of the survRM2 package [21].

As can be seen in Table 1, the simulated type I error of the thirteen test statistics for all sample
sizes are close to the nominal, two-sided 5% significance level. Therefore, we can assess their power
performance.

The power of the thirteen test statistics for each simulation scenario is shown in Table 2. Figure
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Figure 1. Survival functions considered in the size and power simulations.
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Figure 2. Simulated power of the statistic tests for 60% censoring.

2 displays the powers under 60% censoring. Under proportional hazard configuration, the log-rank
test (WLR®?) and Pepe-Flemings’s weighted Kaplan-Meier test (WKM®%) have maximum power as
expected. However, the power of WKM,,,.; and WKM,,,,. are really close. The D statistic is also
competitive but under non-censoring. Therefore, these two combination tests have almost the same
sensitivity as WLR®?, i.e. the optimal test against proportional hazards alternative.

For early survival differences, as expected, WLR'? and WKM"? have greater power than the other
statistics. Even though, WLR,,,,; fares poorer than them, it is the best among the rest of considered
test statistics. In the case of the late survival differences, WLR*! and WK M"! have greater power than
the others. Nevertheless, the difference in power between these and WKM,,,,,3 is small. Finally, in the
case of early and late survival differences, there is not a clear more powerful test statistic but WKM,,,,.3
is consistently a good choice for all censoring and sample sizes.

In summary, assuming ignorance of the likely treatment effect, except for early survival differences,
the WKM,,,,3 test statistic is preferable to the other maximum combination test statistics. For early
survival differences, the WLR,,,,3 test statistic exhibits a higher power than WK M,,,,3 but the latter is
higher than the well-known log-rank test. In fact, [14] showed a minimal power gain power for WKM
and RSMT to the LR test when there is a delayed effect but WKM,,,,,5 has better performance than
WKM and RMST.

4. Application to a real data set

We ilustrate the performance of the thirteen test statistics with a real data set, chosen because they
appear to show late difference. The data is available in the package KMsurv [22] with the name bmt.
The bmt data come from a study on the survival of bone marrow transplant patients with different types
leukemia. The complete data frame has 22 variables and to carry out the study we worked with the
following: disease free survival time, that is, the time either relapse or death (t2), censoring indicator,
1: relapse or death, O: censored survival time (d3), disease group, acute lymphoblastic leukemia (ALL)
consisting of 38 patients and low risk acute myeloid leukemia (AML) consisting of 54 patients.
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Figure 3. Survival functions for bone marrow transplant patients.

Table 3. Test statistics and their correponding p-values.

statistic ~ p-value

WLR®® 2.1748 0.026
WLR"! 1.6935 0.094
WLR'Y 2.2032 0.024
WLR"! 2.0612 0.042
WLR,0sa  2.2032 0.054
WLR,..5  2.2032 0.054
WEKM®? 2.3419 0.016
WK M®! 2.3127 0.024
WKM"0 2.3516 0.016
WEKM"! 2.3589 0.018
WKMyaa  2.3589 0.020
WKM,us  2.3516 0.020
D 4159541 0.080
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Kaplan-Meier curves are shown in Figure 3 and exhibit a late difference in survival. The p-values
associated to the proposed test statistics are summarized in Table 3, from which it can be seen that
most of the test statistics reject the null hypothesis Hy : S| = S, at the 0.05% level. However, D,
WLR™', WLR,,,,s and WLR,,.4 yield a nonsignificant p-value. Although, WLR,,,3 and WLR, .4 p-
values are in the borderline. Therefore, WKM,,,,; and WKM,,,,.4 yield stronger evidence against the
null hypothesis of no difference between the two groups than WLR,,,,; and WLR,,,.4. Therefore, one
can miss a potential regulatory submission opportunity if the primary analysis is carried out based on
the well-known RMST or MaxCombo tests (WLR, ;4 of WLR,,,,3).

5. Discussion

In practice, the log-rank test is the most used to test the equality of two survival distributions in
the presence of censoring and it is known to have optimum power to detect a difference in survival
distributions when proportional hazards holds. However, non-proportional hazard ratio between the
control and experimental arms occurs fairly often in clinical trials. For example, the proportional
hazards (PH) assumption often does not hold for the primary time-to-event (TTE) efficacy endpoint in
trials of novel immuno-oncology drugs. For some immuno-oncology drugs, a delayed treatment effect
is observed, where the survival curves for the immuno-oncology drug and standard of care are not
separated initially but start separating after some period of time. In other oncology trials, the separation
between the survival curves occurs early on but then the distance between the curves diminishes over
time. There may also be cases where the survival curves cross each other, i.e., the PH assumption
is violated. With a preconceived type of treatment effect, then the weighted log rank and weighted
Kaplan-Meier test statistics are good alternatives to the log-rank test. However, if the direction of the
violation from non-PH is not known, then a combination of the previous test statistics should be used.
There are a number of papers studying these combinations based on weighted log rank and weighted
Kaplan-Meier test statistics separately. Recently, [13] and [14] used Monte Carlo simulation to study
the performance of nine different statistics based mainly on weighted log-rank tests. They conclude
that a modified version of WLR,,,.; and WLR,,,.4, respectively are preferred in the absence of prior
knowledge regarding the PH or non-PH patterns. [15] concluded that MaxCombo test shows clear
advantages when a large treatment benefit emerges later on the trial. They introduced a design approach
for confirmatory trials with WLR,,,.4 and developed a stepwise and iterative approach for calculating
sample size when the final analysis is based on this test statistic. Our conclusion is that WLR,,,,3 is
better than the MaxCombo test, WLR,,,,4 and WKM,,,,,5 is preferable to WLR,,,,3 in most of the cases
for small and moderate sample sizes. Performance of the KM based methods is known that depend
on the lenght of study period (¢.) and censoring pattern. We have minimum of the largest observed
time in each of the two groups as a choice of .. There are other issues such as the interpretation of the
WLR test statistics result in terms of the clinical effect. [23] proposed a Cox-model based time-varying
treatment effect estimate to complement the WLR test statistics. However, investigation of these topics
is beyond the scope of the present paper.
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bmt2=datos[ (bmt$group==1) | (bmt $group==2), ]
df=data.frame(time=bmt2$t2, cens=1-bmt2$d3,
event=ifelse(bmt2$d3==1, TRUE, FALSE), group=bmt2$group)

n=nrow(df)
ngl=as.numeric(table(df$group)[1])
ng2=as.numeric(table(df$group) [2])

max_wlr=logrank_maxtest(df$time, dffevent, df$group,
rho = ¢(0,0,1,1), gamma = c(0,1,0,1))
Test_wlr®0=max_wlr$tests$z[1]

est_wlr®0=vector()

for (b in 1:B){
index=sample(l:n, replace=FALSE)
dfindex=df[index, ]
gl=dfindex[1:ngl,]
gl$group=1
g2=dfindex[(ngl+1): (ngl+ng2),]
g2$group=2

combinedB=rbind(gl,g2)

max_wlr=logrank_maxtest(combinedB$time, combinedB$event,
combinedB$group, rho = c(0,0,1,1), gamma = c(0,1,0,1))
est_wlr®0[b]=max_wlr$tests$z[1]

for(j in 1:B){
if(abs(est_wlr®0[j])>abs(Test_wlr00)) n_wlr=n_wlr+1l
}

prop_wlr=n_wlr/ B
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