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Abstract: The multiplicative degree-Kirchhoff index is a significant topological index. This paper
is devoted to the exact formulas for the expected value of the multiplicative degree-Kirchhoft index
in random polygonal chains. Moreover, on the basis of the result above, the multiplicative degree-
Kirchhoft index of all polygonal chains with extremal values and average values are obtained.
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1. Introduction

Throughout this article, all graphs we considered here are finite, undirected and simple connected.
We can refer to [1,2] for the details of the terminologies and notations mentioned but not defined here.
Nowadays, the scholars have done extensive research on chemical compounds by representing vertices
as atoms and edges stand for the covalent bonds connecting atoms.

Topological index is one of the most important predicting methods for combining the physicochem-
ical properties with their molecular structures [3—6]. Similar to the other topological indices[7-9],
Kirchhoff index is a structure descriptor. The resistance distance is intrinsic to the graph with sev-
eral physical and purely mathematical explanations [10,11]. Meanwhile, the Kirchhoff index has been
found useful in assessing cyclicity of polycyclic structures including linear polygonal chains, fullerenes
and some other molecular graphs [12], such as circulate graphs, distance-regular graphs and so on.

Let G = (V(G), E(G)) be a connected graph with | V(G) | vertices and | E(G) | edges. For any
vertex m € V(G), denote the degree of u by dg(u)(short for d(u)), which is the number of the vertices
adjacent to u. Klein and Randi¢[13] defined the resistance distance based on the power grid theory,
and they regarded each edge of the connected graph as a unit resistance, the whole connected graph G
is regarded as a power grid N. Therefore, the effective resistance of u and m in grid N is the resistance
distance between u and m, defined as r(u, m). The r(u, m) is the potential difference between u and m
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of G induced by the particular u — m flow intensity 1 satisfying Kirchhoft’s cycle law [14]. And the
Kirchhoff index of G is denoted by Kf(G) = Xy, mcv, Hu, m).

The multiplicative degree-Kirchhoff index is proposed by Chen and Zhang in 2007 [15], which
was denoted by

KF(@G) = Y. dwdmyr(u,m)

{u,m}CVg

A random polygonal chain RS C,,; with n+1 polygons can be considered as a new terminal polygon
G,+1 has been attached to a polygonal chain RS C,, with n polygons through vertex-to-vertex connec-
tion, see Figure 1.

Y oA A Xy
Ta
.!r{.-.S(/ﬂ "Tl G”_H > xq+l
U, --- «
X2g Xg+2

Figure 1. A random polygonal chain RS C,;; with n + 1 polygons.

For n > 3, there are g ways to connect the terminal polygon G,,; with front random polygonal chain
RS C,, which results in the local arrangements, they can be described as RS C ,1 .- RS Cﬁ Lo RS CZ;}
and RS C?_ |, respectively, see Figure 2.

A random polygonal chain RS C,, with n polygons is acquired by adding the terminal polygons step
by step. At every step #(= 3,4,...,n), the connection method is selected from one of the following ¢
possible cases:

e RSC, - RSC!,, with probability p;,

e RSC, — RSC?, with probability p,,

e RSC, —» RSC’ | with probability p;,

e RSC, — RSC! | with probability p,,
where p, = I = po = pp — p3 — -+ = pgi1, and the probabilities
Pi,P2 -+ ,Pg-1 and p, are constants, irrelevant to the parameter ¢ We denote by
RSC,(1,0,---,0,0),RSC,(0,1,---,0,0),--- ,RSC,(0,0,---,0,1),RSC,(0,0,---,0,0), the meta-
chain M,, the orth-chain 0,11, the orth-chain 0,21, ---, the orth-chain 03_2, the para-chain P,,

respectively.

In [16], Huang, Kuang and Deng obtained exact formulas for the expected values of the Kirchhoff
indices of the random polyphenyl and spiro chains. Later, Zhang, Li, Li and Zhang [17] obtained the
expected values for the four indices including Schultz index, Gutman index, multiplicative degree-
Kirchhoft index and additive degree-Kirchhoff index of a random polyphenylene chain. Recently, Liu,
Zeng, Deng, Tang [18], obtained the indices as mentioned above in the random spiro chains, determined
the expected values of these indices in the random spiro chain, and the extremal values among all spiro
chain with n hexagons.

Mathematical Biosciences and Engineering Volume 20, Issue 1, 707-719.
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Figure 2. The g types of local arrangements in polygonal chains.
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Motivated by [16,18], we consider the expected values of the multiplicative degree-Kirchhoft index
of random polygonal chains and explore the property of the multiplicative degree-Kirchhoff index of
polygonal chains and determine the expected value of the index E(K f*(RS C,)) in the random polygo-
nal chains with n polygons. This not only proves the correctness of the previous work, but also sum-
marizes the expected value of the multiplicative degree-Kirchhoff index for all polygons containing an
even number of edges.

2. The multiplicative degree-Kirchhoff index of a random polygonal chain
For the random polygonal chain RS C,. Denote RS C,,; the graph acquired by connecting a new

terminal polygon G, to RS C,, which is spanned by vertices x;, x5, -+ , X, and x; is u,, (see Figure
1). It is evident that, for all m € RS C,,

(i=DI2g—(i~D)] -
n) +———, 1 <2
r(m, ) = | 7O ) 2 Si= @.1)
}"(m, un)a i=1.
Z dgsc,.,(m) = 4kn + 2.
meV(RSCy,)
29 2q 41 G=DRg-G=Dl i<2q
DN e xp =4 LT ] | 2.2)
=1 =1 3 0 j=1L

Theorem 2.1. The expected value for the multiplicative degree-Kirchhoff index RS C,(n > 1) of the
random polygonal chain is

. 4 5 “
EIkf'(RSC)] = 341 ) [iQq~0) = ¢lpi+ ¢’ +4q1 ) [-i2q ~ i) + ¢,
i=1 i=1
2 g-1
LA -1 2

_ 2.2 = . . 2 )
- +3q{4;[l<2q i)~ ¢*1p; + Lin.

Proof. Let Kf*(RSC,)=A + B +C.

A= D dadmyru,m),
{u,m}CRS C,
= > dwdmram+ > desc,,, (w)dm)r(, m),
{u,m}CRS C,,\{uy} meRS Cy\{un}
= > dwdmram+ > [drsc, (i) + 21dmyr(u,, m),
{u.m}CRS Cp\{un} meRS Cy\{un)
= Kf'(RSC)+2 > dmyr(u,, m).

meRS C,,

B = ), ), dmdxrmx),

mERSCn\{un} Xi€Gn+1 \{X] }

Mathematical Biosciences and Engineering Volume 20, Issue 1, 707-719.
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DD dmmdyrimx)—4 > damyrimu) =4 Y dmrim, xy),

meRS Cy, x;€Gpy1 meRS C, meG 41
2 -1 202q -2
= domdrm, ) + 4rom ) + L), + 222
meRS C, Zq
~ g +1 2
oo drmu) + LT D oy + L)
2q 2q
4(4q> - 1
4> domrm ) - LD,
meRS C,
4g> - 1
= (Gg-2) Y dimyrGm.u,) + ~—(4qn - 2).
meRS C,
C = > d)dx)rix,x),
{xi,x}CGp1
1 2q 2q
= 5 Zl d(xile d(x))r(x;, ),
= J=
2 _
:(m+mM3l.

S0, Kf*(RSCpi1) = Kf*(RSC,) + 4G Sersc, dm)r(m, u,) +4q - 2n 4 2 - 221
For a random polygonal chain RS C,, 3 ,crsc, d(m)r(m,u,) is a random variable. Here, we could
denote
L, := E( Z d(m)r(m, uy)).
meRS C,

Thus, a recurrence relation is obtained as follows:

4> -1 4q* - 1
1 n+2q- q3 .

E(Kf" (RS Cyr1)) = E(Kf"(RSCy)) +4ql, + 4q -

By thinking about the following g possible ways, we can obtain ,,.

Case 1. RSC, — RS C}l .1» then u, coincides with the vertex x, or xy,. Hence, 3, cy,. o, FUp,m) 1S

given by X evise, 1(%2,1M) OF X ey H(Xag, m) With probability p;.

Case 2. RSC, — RS Cﬁ .1» then u, coincides with the vertex x3 or x,,_;. Hence, 3 ,cy.. o r(u,, m) is

given by 2 uevise, 1(X3, M) O Xpeye . T(X2g-1, m) With probability ps.

Case q-2. RSC,, — RS CZ;?, then u, coincides with the vertex x,_; or x,.3. Hence, 3y, o r(u,, m)

is given by X cyise, T(Xg-1,M) OF ey, T(Xg43, m) with probability p,-o.

Case q-1. RSC, — RS CZ:, then u, coincides with the vertex x, or x,.,. Hence, 3 ,cy,, o r(u,, m) is

given by 2 evise, 1(Xgs M) O Xpeyie . T(Xg42, m) With probability p,-;.

Case q. RSC, — RS CZ .1» then u, coincides with the vertex x,,,. Hence, }’,.cy,, o r(u,, m) is given

bY Xmevese, T(Xg+1, m) with probability p, =1 = p1 = py— -+ = py1.
According to the above cases, we have that

L = pi ), dmyrmx)+ps Do dmyrnxs) +--+pey Y domyrim, x,)

meRS C, meRS C, meRS C,

Mathematical Biosciences and Engineering Volume 20, Issue 1, 707-719.
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HA=pi=pr=-=pe1) D, dimyr(m, xg.),
meRS C,
2g -1 48 -1 2g-1
= pl Y domyromu,) + = >, dm+ =
q
meRS C,—1 meRS Cp—1 \{ttp-1}
2g -2 42 - 1
ol D dmyrim ) + 222 d(m) + 22
q 3
meRS Cy,—1 meRS Cp—1\{up-1}
2(2q - 2)
L2 pl D dmyrGm, )
4q meRS C,—;
~1)g+1 42-1 (g-D(g+1
Ll ;(q ) Z dm) + q3 L=y )]
q meRS Cp—1 \{ty—1} q
2
q
HU=pr=pa==pedl Y, dmyrnu)+5- Y dom)
meRS C_y meRS C—1 \{up-1}
4 2 -1 2
T ]
3 q
42 - 1
= pil D dmyromu,) +22g - 1)+~ - 22q - 1)]
mERSCn_|
4q% -
wpal D dimyr(m,u, ) +4Q2q - 2n + ~4(2¢-2)]
mERSCn_l
4q% -
#oapeal DL dmyrimu, ) +2(g - 1)(g + n + ~2(q - D(g+ D)
mERSCn_]
447 - 1
HA=pr=pr==pedl Y dmyrmu, )+ 24P+~ ~ 247,
meRS Cp,—;
gq-1 -1 _
= Lo +(2) liCq—i) = ¢'1pi + 27 In + | 2Z[z<2q D= qlpi+ —5— - 24°)
i=1 i=1
And the original value is I} = ), crsc, dim)r(m,u;) = 4"27_1. Therefore,
gq-1 q-1 _1
L ={) [i2Qq—i)— ¢*lpi + ¢*In* + { Y [-i(2q — i) + ¢*1p; + ~¢*In
{;w )= @ Ipi+ ¢} {Zl Q4=+ pi+ —5— - 4')
Due to
* % 4 2_1 4q2 —1
E(Kf (RSCp1)) = E(Kf(RSC,))+4ql,+4q- n+2q-
From the original value,
2g -1 2(2g -2 2Aqg-Dig+1) ¢
EKF(RSC)) = 2x2q2x 4L 022422, 2e=Da+D o
2q 2q 2q
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8¢° —
(Ba—2a
3

and the above recurrence relation we may calculate that

4 gq-1 q-1
E(Kf'(RSC)) = 3q1) [iQq~0)~qlpi+qIn’ +44() [=i2q =)+ 'Ip,
i=1

i=1

2 -1
2 3 Lo P+ %q{4 ;[i@q —i) - ¢’ 1pi+ Iin.
The proof is completed.

Specially, if p; = 1 which implies p, = p3 = --- = p, = O,then RSC, = M,. Similarly, if p, = 1
which implies p; = p3 =-+- = p, = 0, then RSC, = O}; if p; = 1 which implies p; = py = ps =--- =
p, = 0, then RSC,, = O?2 and so on; if p,.; = 1 which implies py = p, = --- = p,.o = p, = 0, then
RSC, = 0,3_2; if p, = 1 which implies py = p, =---=p,; =0,then RSC, = P,.

Corollary 2.2. The multiplicative degree-Kirchhoff index of the meta-chain M,, the ortho-chains
0,02, 0172 the para-chain P, are

2

KF*(My) = 302q - Dn' + 4g1-g 1)+ =20 + 2qi42q - 1 - ) + 1

3 3
NI 4 3 4q° - 2 2 2
Kf(0,) = gq[2(2q —-2)In” +4q[-2(2q - 2) + 3 In” + gq{4[2(2q -2)-q’ 1+ 1in;
A2 4 3 4‘12 -1, 2 2
Kf(0;,) = gq[3(2k - 3)In” +49[-3(2q - 3) + T]” + gq{4[3(2q -3)—q°]+ in;

4 -1,
3 I

4
Kf(01?) = Fala— g+ DIn’ +4gl-(g - D(g+ 1) +

2
+39(4(g - Dig+ 1) - g1+ Um;

49 - 1 2
4 3 gHn’ + gqn.

Corollary 2.3. Among the polygonal chains with n(n > 3) polygons, P, realizes the maximum of
E(K f*(RS C,)) and M,, realizes that of the minimum.

4
Kf*(P,) = 5613”3 + 4q(

Proof. On the basis of Theorem 2.1, we have

h

E(Kf" (RS Cy)),

4 8
(39l2q - 1) - I’ +49[-2q - 1) + ¢*In* + 39l2g -1 - ¢Inip:

4 8
+34l22q -2) - ¢In’ +4¢[-22q - 2) + ¢*In* + 341224 -2) - g In}ps + -+

4
+H3allg - Dig+ 1) - @I’ +49l—(qg - D(g+ D) + ¢*In°

Mathematical Biosciences and Engineering Volume 20, Issue 1, 707-719.
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8 4 16¢° — 4
241G = D@+ D) = ¢Inlpy-r + [54°n’ + (—L -

2
3 - 4(]3)112 + —gn].

3 3

as n > 3, we have that

0 4 8
9h _ —ql2q - 1) = ¢*In’ +4q[-(2q - 1) + ¢*In* + =q[2q — 1) — ¢*In < 0;
opi 3 3
0 4 8
24 _ ~q[2Q2q - 2) - ¢°1n’ + 4q[-22q - 2) + ¢°In* + Z4q[2(2g - 2) — ¢’In < 0;
op, 3 3
of _4 Dig+1)—g*n’ +4 DG+ 1)+ Pl 4 Dg+1)—g*ln <0
Bpes §q[(q— g+ 1) —qIn” +4q[—(g—1)g+1)+qIn +§q[(q— Ng+1)—¢qIn<O.
a
When p; = p, =--- = p,.1 =0 (1.e. p, = 1), P, realizes the maximum of E[K f*(RS C,)], that is
RSC,=P, Ifpy+pr+---+p,i=Lletp,y=1-pi—pr—--—p,20<p <1,l€[l,qg-2),
we have

4 8
E(Kf'(RSC) = {34l2q-1) - I’ +4q[-2q — 1) + ¢°In* + 39l2q-1) - ¢1n}p

+{§q[2(2q —2) = ¢’ In’ +4q[-2(2q - 2) + ¢°In’

8 4
+391229-2) - ¢lnipy + -+ + (39llg - Dig+ 1D - 7’
+4gl—(q - D(g + 1) + ¢*In®

8
+349l@ - Dg+ 1D - Gl = pir—pr—+ = pga)
4 16¢° — 4 2
+[§q3n3 + (% - 4(]3)112 + gqn].
Thus,
OE(K f*(RSC,))

4
7 3l29- D= (g-Dig+ D7’ +49[-Q2q - 1) + (g — (g + D]n*

8
+§q[(2q -1 =(g-D(g+ Dln<0,
OE(Kf'(RSC,) _ 4

p = 39122¢-2) - (g-Dig+ DIn* +4¢[-2(2q = 2) + (g - (g + D]n?

8
+34224-2) - (g = D(g + DIn <0,

OE(Kf*(RSCy))
apq—2

4
3@ =2)(g+2) - (g Dig + DIn® + 4ql—(g — 2)(q + 2)

8
+(g - 1)(g + DIn* + §Q[(q -2)(g+2)-(g—-1D(g+ Dln<0.

Mathematical Biosciences and Engineering Volume 20, Issue 1, 707-719.
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Butp, = py=---=p,o =00(@e. p;1 = 1), E(Kf(RSC,)) can’t attain the minimum value. If
pitpr+-+po=1Lletp,r=1-p—pr—---=p,30<p <1,1€[l,qg-3].

4 8
E(Kf'(RSC) = {34l2q—1)- I’ +49[-2q — 1) + ¢*In* + 34l - 1) - ¢1nip,
H3a209 -2 - @1 + 4gl-202 = 2) + g

8 4
+391229-2) - ¢ Inipa + -+ +{ 3ala=2)(g+2) - n’
+4ql—(q - 2)(q +2) + ¢’ In*

8
+39@ =2+ 2) =M1 =p1=p2 =+ = py3)
‘_l33 16613—4(]_ 3y, 2 %
+[3q n’ + (—3 4q°)n” + 3qn].
Thus,
OE(Kf*(RSC, 4
( J;zgl L 561[(261 —1) = (g -2)(q+DIn’ +49[-2q - 1) + (¢ — 2)(q + 2)In’
8
+34l(2q = 1) = (g -2)(g +2)]n <0,
OE(Kf*(RSC, 4
( fa;z D= 24204~ - (- (g + 21 + 44-209 - D) + (g - Dig + DI’
8
+341229 = 2) = (¢ = 2)(g + Dln <0,
OE(Kf*(RSC, 4
BJEGD 2l -30a+3) - - D@+ 21 + 4l - 3q +3)
qu_g 3
8
+(q - 2)(g + )’ + gq[(q —3)g+3)-(g=2)(g+2)n<0.
Butp, = p, =+ =p,3 =0(@.e. p;» = 1), E(Kf*(RSC,)) can’t attain the minimum value. By

that analogy, If p; + po =1L, let p; =1 —p,(0 < p, < 1).
sk _ i _ 27,3 _ _ 27..2
E(Kf (RSC,) = {361[(261 D—qln” +4q[-Q2q-1)+q In
8 4
+3412q - 1) - gIn}(1 - po) + (391229 -2) - s

8
+4q[-2(2q - 2) + ¢*In” + 3422 -2) - 7*Inip»

4 16¢° — 4 2
+[§q3n3 + ((]Tq —4¢°)n* + gqn].

Thus,

OE(K f*(RSC, 4
: ];;(oz ’ - 34224 = 2) = 2q = DI’ +44[-2(2q = 2) + (2 - DIw*

Mathematical Biosciences and Engineering Volume 20, Issue 1, 707-719.
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+§Q[2(2q =2)-(@2¢g - Dln>0,

Hence, E(K f*(RS C,)) achieves the minimum value, if p, = 0 (i.e. p; = 1), thatis RSC,, = M,,. This
completes the proof.

3. Average value of the multiplicative degree-Kirchhoff index

Denote by &, the set of all polygonal chains with n polygons. In this paragraph, We can characterize
the average value of the multiplicative degree-Kirchhoff index with respected to &,.

— 1
KfnelE) = = D KF(G).

nl GeG,

Theorem 3.1. The average value for the index with respect to &, is
s 2., 3 2 3,2 3 2 2, 2 3 2
Kfan(&n) = 5" +3q" =" + 2(4q" = 3q" —q)n” + 5(=4q" + 64" + g)n.

Proof. In order to obtain the average K f* (£,), it suffices to take p; = p, = -+ = Pg = é in the

expected value E(K f*(RS C,)). According to Theorem 2.1, we have

_ 4 g-1 gq-1 1
Kfp, G = Z [i2q =) = "1+ I’ + 41 ) ~[=i2q - ) + ¢"]
i=1

Q

q-
— g’ + q Z [i2q — i) = ¢"1 + 1}n,
i=1
2 2
= 5(4613 + 3q2 - q)n3 + §(46]3 - 3q2 — q)n2 + 6(—4q3 + 66[2 + g)n.

After verification, the equation is
kg 1 sk 1 sk 1 1 sk 2 1 o
K for(&n) = gKf (M) + gKf (0, + aKf O+ + 5Kf (Py).

4. Comparative analysis

In contrast to the articles wrote by Zhang, Li, Li and Zhang [17] and Liu, Zeng, Deng, and Tang
[18], we used a similar method to prove the expected value of the index. But here is the difference, the
former calculated the expected values for the indices of a random polyphenylene chain which is consist
of n hexagons connected by the cut edges randomly. The latter established the expected values of the
above-mentioned four indices in a random spiro chain which is consist of n hexagons which connected
by squeezing the cut edges so that the two vertices coincide. However, the figure we study consists of
n polygons, each has 2¢g edges. That is to say, we can get multiplicative degree-Kirchhoff index of any
even polygon by plugging in the number of edges of the polygon.

Mathematical Biosciences and Engineering Volume 20, Issue 1, 707-719.
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5. Concluding remarks

We mainly established the explicit formulas for the expected value of the multiplicative degree-
Kirchhoff index of a random polygonal chain, discussed the maximum value and the minimum value
of the E(K f*(RS C,)) [19,20], meanwhile, obtained the extremal value and average value of the index.
All these results will be useful to the study of the topological index of graphs and build some kind of
mathematical model from the structure of the chemical, then use that model to predict the activity and
the physicochemical properties of more novel compounds, which can provide the microscopic basis
for new molecules in synthetic chemistry [21,22].

In chemical graph theory, the matter of polygonal chain is being widely studied by researchers [23—
26]. The molecular structures of polygonal chemicals are various and its physicochemical properties
also become more and more important [27-30]. It is possible to establish exact formulas for the
expected values of some other indices in random polygonal chains with #n regular polygons.
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