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Abstract: The problem of minimizing makespan (maximum completion time) on uniform machines
with restricted assignment is considered. The machines differ in their speeds and functionalities. Each
job has a set of machines to which it can be assigned, called its processing set. The goal is to finish
the jobs as soon as possible. There exist 4/3-approximation algorithms for the cases of inclusive and
tree-hierarchical assignment restrictions, under an assumption that machines with higher capabilities
also run at higher speeds. We eliminate the assumption and present algorithms with approximation
ratios 2 and 4/3 for both cases.
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1. Introduction

Scheduling jobs on (identical, uniform, or unrelated) parallel machines is one of the fundamental
problems in deterministic scheduling theory [1–3]. In this paper, the problem of scheduling uniform
machines with restricted assignment is studied, which generalizes the problem of scheduling jobs with
unrestricted assignment on parallel machines.

Formally, there is a set of jobs J = {1, 2, . . . , n}, and there is a set of uniform machines M =

{M1,M2, . . . ,Mm}. Job j ∈ J has a length p j ≥ 0 and a subset of machinesM j ⊆ M to which it can
be assigned, called its processing set. Machine Mi ∈ M has a speed si. Without loss of generality, we
assume that all si ≥ 1. If job j is processed on machine Mi, then its processing time is p j/si. A (non-
preemptive) schedule is an m-tuple (S1,S2, . . . ,Sm), where Si denotes the set of the jobs processed on
machine Mi, i = 1, 2, . . . ,m. The sets S1,S2, . . . ,Sm are disjoint, and

⋃m
i=1 Si = J , i.e., each job in

J appears in exactly one Si. The completion time C(Si) of machine Mi in this schedule is given by∑
j∈Si

p j/si. The goal is to find a schedule to minimize the makespan, Cmax = maxiC(Si). Using the
notations proposed in [4, 5], the problem is denoted as Q|M j|Cmax.
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As stated in the survey paper by Leung and Li [6], there are five types of assignment restrictions
studied by the researchers: inclusive, nested, interval, tree-hierarchical and arbitrary. In this paper,
we focus on the inclusive and tree-hierarchical restrictions, i.e., we study Q|M j(inclusive)|Cmax and
Q|M j(tree)|Cmax. The assignment restriction is inclusive, if for any job j,M j = {Ma j ,Ma j+1, . . . ,Mm},
where a j (1 ≤ a j ≤ m) is called the machine index associated with job j . The assignment restriction
is tree-hierarchical, if there is a tree whose nodes represent the machines, and each job j is associated
with a tree node Ma j , such that M j consists of the machines on the path from Ma j to the root of the
tree. Clearly, the inclusive restriction is a special case of the tree-hierarchical restriction.

Leung and Ng [7] studied the problems Q|M j(inclusive)|Cmax and Q|M j(tree)|Cmax under a
reasonable assumption that machines with higher capabilities also run at higher speeds. (It is called
the speed hierarchical model in [8]). Precisely, for the case of inclusive restriction, they assumed that
s1 ≤ s2 ≤ · · · ≤ sm. For the case of tree-hierarchical restriction, they assumed that the speed of each
node is not less than that of its predecessor. Under the assumption, they presented 4/3-approximation
algorithms running in time O(mn · log(

∑n
j=1 p j)) for both cases. They remarked that the algorithms

may not work if the assumption is not valid. For clarity, we denote their problems as
Q(Inc)|M j(inclusive)|Cmax and Q(Inc)|M j(tree)|Cmax, respectively, where “Inc” means “increasing
order of the speeds”.

In this paper, we generalize the results in [7] by eliminating the speed hierarchical assumption.
We present fast algorithms with approximation ratios 2 and 4/3 for both Q|M j(inclusive)|Cmax and
Q|M j(tree)|Cmax.

Scheduling with restricted assignment has been extensively studied in the literature [6]. Here, we
review the results which are related to inclusive or tree-hierarchical restrictions. Ou et al. [9] gave a
PTAS (polynomial time approximation scheme) for P|M j(inclusive)|Cmax (the special case of
Q|M j(inclusive)|Cmax where all si = 1). Li and Wang [10] extended their work to include job release
times (any job cannot be scheduled before its release time). There are also fast approximation
algorithms for this problem: a (2 − 1/(m − 1)) -approximation algorithm [11,12], a 3/2-approximation
algorithm [13], and a 4/3-approximation algorithm [9]. Bar-Noy et al. [14] presented an online (over
list) algorithm for P|M j(inclusive)|Cmax whose competitive ratio is e + 1. They also gave an online
algorithm for P|M j(tree)|Cmax (the special case of Q|M j(tree)|Cmax where all si = 1) whose
competitive ratio is 5. Huo and Leung [15] gave a 4/3-approximation algorithm for P|M j(tree)|Cmax.
Later, Epstein and Levin [8] presented PTASs for P|M j(tree)|Cmax and Q(Inc)|M j(inclusive)|Cmax.
However, the running times of their PTASs are rather high. Leung and Ng [7] presented fast
4/3-approximation algorithms for Q(Inc)|M j(inclusive)|Cmax and Q(Inc)|M j(tree)|Cmax. There are
also several papers which studied the problems of scheduling jobs with equal lengths and restricted
assignment on uniform machines [16–20].

The rest of the paper is organized as follows. In Section 2, we present 2-approximation algorithms
for Q|M j(inclusive)|Cmax and Q|M j(tree)|Cmax. In Section 3, we present 4/3-approximation algorithms
for Q|M j(inclusive)|Cmax and Q|M j(tree)|Cmax. In Section 4, we conclude this paper and discuss future
research directions.
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2. 2-approximation algorithms

In this section we will get a 2-approximation algorithm for Q|M j(inclusive)|Cmax and then extend
it to solve Q|M j(tree)|Cmax. Note that Leung and Ng [7] only presented algorithms for
Q(Inc)|M j(inclusive)|Cmax and Q(Inc)|M j(tree)|Cmax.

For solving Q|M j(inclusive)|Cmax, we set up some notations. Let Ji denote the set of the jobs
whose processing set is {Mi,Mi+1, . . . ,Mm}, i = 1, 2, . . . ,m. The jobs in Ji are eligible for machines
Mi,Mi+1, . . . ,Mm, and vice versa. It is possible that Ji = ∅ for some i. We have:

⋃m
i=1Ji = J . Sort

all the jobs in Ji in non-increasing order of their lengths, and let Ji denote the obtained ordered set,
i = 1, 2, . . . ,m.

Let OPT denote the makespan of an optimal schedule for Q|M j(inclusive)|Cmax. Let
ALi =

∑
j∈Ji∪Ji+1∪···∪Jm p j∑m

l=i sl
denote the average load on machines Mi,Mi+1, . . . ,Mm, i = 1, 2, . . . ,m. Let

LB = maxiALi, where “LB” means “lower bound”. Since all jobs in Ji ∪ Ji+1 ∪ · · · ∪ Jm must be
processed on machines Mi,Mi+1, . . . ,Mm (i = 1, 2, . . . ,m) in any feasible schedule, we get:
LB ≤ OPT . On the other hand, let UB =

∑n
j=1 p j

sm
, where “UB” means “upper bound”. Since a feasible

schedule can be obtained easily by scheduling all the jobs on machine Mm, we get OPT ≤ UB.
To determine OPT , we do a binary search in time interval [LB,UB]. For each value C selected, the

following procedure, AssignA1, tells us whether it is possible to assign the jobs inJ to the machines in
M such that the total length of the jobs assigned to machine Mi is no more than 2si ·C, i = 1, 2, . . . ,m.
If AssignA1 fails, we search the upper half of the interval; otherwise, we search the lower half.

If job j is eligible for machine Mi and p j ≤ si · C, then job j is feasible for machine Mi, and vice
versa. In AssignA1, Ui represents the set of unassigned jobs which are eligible for machine Mi and
sorted in non-increasing order of their lengths, and Li denotes the total length of the jobs assigned
to machine Mi, i = 1, 2, . . . ,m. Informally speaking, AssignA1 tries to put as many as possible of
the largest, not yet assigned feasible jobs on the smaller-indexed machines such that each machine
completes no later than 2C.

AssignA1 (C):

Step 1. Let U0 = ∅, Li = 0, i = 1, 2, . . . ,m.

Step 2. For i = 1, 2, . . . ,m (this ordering is used crucially), do:

(i) Merge Ui−1 into Ji to get Ui. (Ui−1 and Ji are ordered sets, and thus Ui is also an ordered set.)

(ii) Find the first job j ∈ Ui such that p j ≤ si · C. Assign job j and the jobs after it in Ui to
machine Mi until Li > si ·C or the jobs after j in Ui are used up (i.e., each unassigned job in Ui

has length larger than si ·C). Delete the newly assigned jobs from Ui.

Lemma 2.1. If OPT ≤ C, then AssignA1 will generate a feasible schedule for Q|M j(inclusive)|Cmax

with makespan at most 2C in O(mn) time.

Proof. Let Π* be an optimal schedule. Let Π be the schedule generated by AssignA1. Since OPT ≤ C,
any job of length larger than si ·C cannot be assigned on machine Mi in Π*, i = 1, 2, . . . ,m. Therefore,
in Π, we let Mi process only the jobs whose lengths are no more than si · C. We have Li ≤ 2si · C, and
thus Ci ≤ 2C, where Ci denotes the completion time of machine Mi in Π, i = 1, 2, . . . ,m.

We prove the following claim by contradiction: If OPT ≤ C, then Um = ∅ when AssignA1
terminates. Suppose that when AssignA1 terminates, some job j cannot be assigned and has to be left
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over. Let a j = i denote the machine index associated with job j . Let FM j ⊆ {Mi,Mi+1, . . . ,Mm}

denote the set of the feasible machines for job j, i.e., for any machine Ml ∈ FM j, p j ≤ sl · C. It must
be true that Ll > sl · C for any machine Ml ∈ FM j. Let D denote the set of the jobs processed on the
machines in FM j. In Π, all the jobs in D have lengths not less than p j and hence cannot be assigned
to the machines in {Mi,Mi+1, . . . ,Mm}\FM j. We consider the following two different cases:

Case 1. The machine indices associated with the jobs in D are not less than a j = i.
In this case, in any optimal schedule and particularly in Π*, all the jobs in D have to be processed

on the machines in FM j . However, since Ll > sl · C for any machine Ml ∈ FM j, Π* cannot complete
all the jobs in D by time C ≥ OPT , a contradiction.

Case 2. Some jobs in D have machine indices less than a j = i.
Some jobs in D may be associated with machine indices less than i, but they may be not feasible for

machines M1,M2, . . . ,Mi−1, or their feasible machines among M1,M2, . . . ,Mi−1 have not enough space
left to accommodate them when they are assigned. Since AssignA1 assigns the largest feasible jobs
on the smaller-indexed machines greedily such that each machine completes later than C whenever
possible (i.e., unless there is no unassigned feasible job for the machine), an optimal schedule cannot
schedule the jobs any better than this on the smaller-indexed machines. Therefore, the total length
of the jobs processed on the machines in FM j in Π is a lower bound on the total length of the jobs
processed on the machines in FM j in Π*. As in Case 1, since Ll > sl · C for any machine Ml ∈ FM j,
Π* cannot complete all the jobs in D by time C ≥ OPT , a contradiction.

Step 1 can be executed in O(m) time. Step 2 will be executed m iterations, and each iteration can be
done in O(n) time. Hence, the running time of AssignA1 is O(mn).

�

To obtain a faster algorithm, we can use the following AssignA2 procedure instead of AssignA1.
AssignA2 handles the machines in increasing order of their indices. When Mi is handled, the
unassigned jobs eligible for Mi are stored in a balanced binary search tree T [21], using their lengths
as the keys. The technique is similar to that used in [20].

AssignA2 (C):

Step 1. Let T be a balanced binary search tree and τ be the length of the smallest job in T . Initially, T
is empty, and τ = ∞. Let Li denote the total length of the jobs assigned to machine Mi. Initially,
Li = 0, i = 1, 2, . . . ,m.

Step 2. For i = 1, 2, . . . ,m (this ordering is used crucially), do:

(i). Insert the jobs in Ji into T . Update τ accordingly.

(ii) If Li ≤ si · C and τ ≤ si · C, then find the largest job j in T such that p j ≤ si · C. Assign job
j on machine Mi and then delete it from T . Let Li = Li + p j. If p j = τ, then check τ and update
it if necessary.

(iii) Repeat Step 2(ii) until Li > si · C or τ > si · C (the latter case indicates that each job in T
has length larger than si ·C).

Lemma 2.2. If OPT ≤ C, then AssignA2 will generate a feasible schedule for Q|M j(inclusive)|Cmax

with makespan at most 2C in O(m + n log n) time.
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Proof. The correctness of AssignA2 follows that of AssignA1, and its proof is omitted. Step 1 can
be executed in O(m) time. In Step 2, each job will be inserted into and deleted from T at most once.
Inserting or deleting a job can be done in O(log n) time. Thus, it takes O(n log n) time to construct and
maintain T and τ. In Step 2(ii), it takes O(log n) time to find the largest job j in T such that p j ≤ si ·C.
Hence, the running time of AssignA2 is O(m + n log n).

�

AssignA1 or AssignA2 will be called at most log UB times in the binary search. Since UB =∑n
j=1 p j

sm
≤
∑n

j=1 p j (we assumed that all si ≥ 1), we get the following:

Theorem 2.3. There is a 2-approximation algorithm for Q|M j(inclusive)|Cmax that runs in
O(min{mn,m + n log n} · log(

∑n
j=1 p j)) time.

Next, we extend the algorithm to solve Q|M j(tree)|Cmax. For the rooted tree RT whose nodes are
the m machines, we define the depths of the nodes as follows. If the node is the root, then its depth is
zero; otherwise, its depth is equal to the depth of its parent plus 1. Index the nodes (machines) of the
tree in non-increasing order of their depths, ties broken in favor of the leftmost node. The root of the
tree is Mm.

Let Ji denote the set of the jobs associated with machine Mi, i = 1, 2, . . . ,m. The jobs in Ji

are eligible for the machines on the path from Mi to the root of the tree, and vice versa. We have:⋃m
i=1Ji = J . Sort all the jobs in Ji in non-increasing order of their lengths, and let Ji denote the

obtained ordered set, i = 1, 2, . . . ,m.
Let OPT denote the makespan of an optimal schedule for Q|M j(tree)|Cmax. For machine Mi (which

represents a node of RT ), let Ii denote the set of the indices of the machines on the path from Mi to the
root of the tree. Let ALi =

∑
l∈Ii

∑
j∈Jl

p j∑
l∈Ii sl

denote the average load on the machines whose indices are in Ii,

i = 1, 2, . . . ,m. Let LB = maxiALi . We have: LB ≤ OPT . Let UB =
∑n

j=1 p j

sm
. We have: OPT ≤ UB.

To determine OPT , we do a binary search in interval [LB,UB]. For each value C selected, the
following procedure, AssignB, tells us whether it is possible to assign the n jobs to the m machines
such that the total length of the jobs assigned to machine Mi is no more than 2si ·C, i = 1, 2, . . . ,m. If
AssignB fails, we search the upper half of the interval; otherwise, we search the lower half.

If job j is eligible for machine Mi and p j ≤ si · C, then job j is feasible for machine Mi, and vice
versa. In AssignB, Ui represents the set of unassigned jobs which are eligible for machine Mi and
sorted in non-increasing order of their lengths, and Li denotes the total length of the jobs assigned to
machine Mi, i = 1, 2, . . . ,m. Informally speaking, AssignB tries to put as many as possible of the
largest, not yet assigned feasible jobs on the deeper machines such that each machine completes no
later than 2C.

AssignB (C):

Step 1. Let Li = 0, Ui = Ji, i = 1, 2, . . . ,m. Let h be equal to the maximum depth of the machines in
tree RT .

Step 2. While (h > 0), do:

(i) For each machine Mi whose depth is h, do:

Find the first job j ∈ Ui such that p j ≤ si ·C. Assign job j and the jobs after it in Ui to machine
Mi until Li > si ·C or the jobs after j in Ui are used up. Delete the newly assigned jobs from Ui.

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9697–9708.
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Merge Ui into Uk, where Mk is the parent of Mi. (Ui and Uk are ordered sets before merging,
and thus after merging Uk is still an ordered set.)

(ii) Let h = h − 1.

Step 3. If the total length of the jobs in Um is no more than 2sm · C, then process all the jobs in Um

on machine Mm (whose depth is zero), and the procedure succeeds and terminates. Otherwise,
the procedure fails and terminates.

Lemma 2.4. If OPT ≤ C, then AssignB will generate a feasible schedule for Q|M j(tree)|Cmax with
makespan at most 2C in O(mn) time.

Proof. Let Π* and Π denote an optimal schedule and the schedule generated by AssignB, respectively.
Since OPT ≤ C, in Π*, machine Mi cannot process any job of length larger than si · C. Hence, in Π,
we let Mi process only the jobs whose lengths are no more than si · C. We have Li ≤ 2si · C, and thus
Ci ≤ 2C, i = 1, 2, . . . ,m.

If OPT ≤ C, when AssignB terminates, it must be true that Um = ∅. We prove this claim by
contradiction. Suppose that some job j cannot be assigned when AssignB terminates. Let j be
associated with the tree node Ma j , such that its processing setM j consists of the machines on the path
from Ma j to the root of the tree. Let FM j ⊆ M j denote the set of the feasible machines for job j, i.e.,
for any machine Ml ∈ FM j, p j ≤ sl ·C. We have Ll > sl ·C for any machine Ml ∈ FM j. Let D denote
the set of the jobs processed on the machines in FM j in Π. All the jobs in D have lengths at least p j

and hence cannot be assigned to the machines in M j\FM j. We consider the following two different
cases:

Case 1. There are no eligible machines outsideM j for the jobs in D.
In this case, all the jobs in D have to be processed on the machines in FM j in any optimal schedule.

However, since Ll > sl · C for any machine Ml ∈ FM j, Π* cannot complete all the jobs in D by time
C ≥ OPT , a contradiction.

Case 2. Some jobs in D have eligible machines inM\M j.
Some jobs in D may have eligible machines in M\M j, but they may be not feasible for these

machines, or their feasible machines inM\M j have not enough space left to accommodate them when
they are assigned. Since AssignB assigns the largest feasible jobs on the machines inM\M j greedily
such that each machine completes later than C whenever possible, an optimal schedule cannot schedule
the jobs any better than this on the machines inM\M j. Therefore, the total length of the jobs processed
on the machines in FM j in Π is a lower bound on the total length of the jobs processed on the machines
in FM j in Π*. As in Case 1, since Ll > sl · C for any machine Ml ∈ FM j, Π* cannot complete all the
jobs in D by time C ≥ OPT , a contradiction.

�

We use the binary search together with AssignB to solve Q|M j(tree)|Cmax. Then, we get the
following:

Theorem 2.5. There is a 2-approximation algorithm for Q|M j(tree)|Cmax that runs in
O(mn · log(

∑n
j=1 p j)) time.
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3. 4/3-approximation algorithms

In this section we will get a 4/3-approximation algorithm for Q|M j(inclusive)|Cmax, and then extend
it to solve Q|M j(tree)|Cmax. We continue to use the notations introduced in the previous section.

Let OPT denote the makespan of an optimal schedule for Q|M j(inclusive)|Cmax. We perform a
binary search in [LB,UB] to determine OPT , where LB = maxiALi, ALi =

∑
j∈Ji∪Ji+1∪···∪Jm p j∑m

l=i sl
, and UB =∑n

j=1 p j

sm
. For each value C selected, we use the following procedure, AssignC1, to test whether it is

possible to schedule the jobs such that the total length of the jobs processed on machine Mi is no more
than 4si ·C/3, i = 1, 2, . . . ,m.

If job j is eligible for machine Mi and p j ≤ si · C, then job j is feasible for machine Mi, and vice
versa.

For each value C selected, we classify feasible jobs as long, median, and short with respect to the
machine speeds. For a particular machine Mi (i = 1, 2, . . . ,m), job j is long if 2si · C/3 < p j ≤ si · C,
or median if si ·C/3 < p j ≤ 2si ·C/3, or short if p j ≤ si ·C/3.

In AssignC1, Ui represents the set of unassigned jobs which are eligible for machine Mi and sorted
in non-increasing order of their lengths, i = 1, 2, . . . ,m. In Step 2(ii) of AssignC1, we first compare
the total length of the two largest median jobs in Ui with the length of the largest long job in Ui. If the
former is larger, then we schedule the two largest median jobs in Ui on machine Mi. Otherwise, we
schedule the largest long job in Ui on machine Mi.

AssignC1 (C):

Step 1. Let U0 = ∅ and i = 1.

Step 2. While i ≤ m, do:

(i) Merge Ui−1 into Ji to get Ui.

(ii) If there is no long job in Ui, then add a “dummy” long job of length zero into Ui. Similarly,
if there is no median job (or only one median job) in Ui, then add two (or one) “dummy” median
job(s) of length zero into Ui. Let j1, j2 and j3 denote the largest long job and the two largest
median jobs in Ui, respectively. If p j2 + p j3 > p j1 , then let j2 and j3 be processed on Mi and
remove them from Ui; else, let j1 be processed on Mi and remove it from Ui.

(iii) If the total length of the jobs on Mi is less than or equal to si ·C, then we repeatedly assign
the largest unassigned short jobs in Ui to Mi until the first time that the total length of the jobs
on Mi is larger than si ·C. Remove the newly assigned jobs from Ui.

(iv) Let i = i + 1.

Lemma 3.1. If OPT ≤ C, then AssignC1 will generate a feasible schedule for Q|M j(inclusive)|Cmax

with makespan at most 4C/3 in O(mn) time.

Proof. Let Π* be an optimal schedule. Let Π be the schedule generated by AssignC1. We will prove
the lemma by modifying Π* into Π.

To do so, we handle the machines in increasing order of their indices. Suppose that machines
M1,M2, . . . ,Mi−1 have been handled. We illustrate how to handle machine Mi. At this point, the
jobs on machines M1,M2, . . . ,Mi−1 in Π* (after machines M1,M2, . . . ,Mi−1 have been handled) are
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processed in the same manner as they are processed on machines M1,M2, . . . ,Mi−1 in Π. We treat
these jobs as assigned jobs. All the other jobs are treated as unassigned jobs. The unassigned jobs
which are eligible for machine Mi form the set Ui.

As described in Step 2(ii) of AssignC1, if p j2 + p j3 > p j1 , then we let j2 and j3 be processed on Mi

in modified Π*. To achieve this, if at least one part of j2 is on machine Ml (l > i ) other than Mi, we
move this part from Ml to Mi, and move a corresponding part of the same length (consisting of parts of
the jobs which are on Mi in Π* but not on Mi in Π, cutting some job if necessary) from Mi to Ml. If the
total length of the jobs which are on Mi in Π* but not on Mi in Π is less than the length of this part of
j2, then we exchange this part of j2 and all the jobs which are on Mi in Π* but not on Mi in Π. Repeat
this process until the entire j2 appears on Mi in modified Π*. Perform a similar exchange process until
the entire j3 appears on Mi in modified Π*. Note that p j2 + p j3 ≤ 4si ·C/3. If p j2 + p j3 ≤ p j1 , then we let
j1 be processed on Mi in modified Π*, by performing a similar exchange process. Note that p j1 ≤ si ·C.

Next, we assign some short jobs in Ui on machine Mi as described in Step 2(iii) of AssignC1, by
performing a similar exchange process. When we finish handling of Mi, the jobs processed on Mi in
modified Π* are those processed on Mi in Π. Moreover, the total length of the jobs on Mi is no more
than 4si ·C/3. Hence, Mi completes no later than 4C/3.

Although some jobs have to be cut during the modification, when we finish handling of Mm, no cut
job exists in modified Π* (i.e., Π). It is easy to check that the total length of the jobs processed on
machines M1,M2, . . . ,Mi in Π is an upper bound on the total length of the jobs processed on machines
M1,M2, . . . ,Mi in unmodified Π*, i = 1, 2, . . . ,m.

�

We can give an alternative implementation of AssignC1, called AssignC2, which runs in O((m +

n) log n) time. The idea is to store the jobs in Ui in a balanced binary search tree T , using their lengths
as the keys. Before we perform Step 2(ii) of AssignC1, we do the following. First, find the largest job
of length no more than si · C in T . If the job does not exist, then let i = i + 1 and move on to the next
iteration. If the job is a long job, then let it be j1. Otherwise, let j1 denote a “dummy” long job of
length zero. Next, find the largest job of length no more than 2si ·C/3 in T . If the job does not exist or
is a short job, then let j2 and j3 denote two “dummy” median jobs of length zero. Otherwise (i.e., the
job is a median job), let it be j2, and continue to find another largest job of length no more than this
job in T . If the job does not exist or is a short job, then let j3 denote a “dummy” median job of length
zero. Otherwise, let it be j3. After j1, j2 and j3 are determined, we perform Step 2(ii) of AssignC1.
To perform Step 2(iii) of AssignC1, we need to find the currently largest job of length no more than
si · C/3 (i.e., the largest short job) in T . Note that each job will be inserted into T or deleted from T
at most once. The balanced binary search tree T can be constructed and maintained in O(n log n) time.
Moreover, determining j1, j2 and j3 for each machine can be done in O(log n) time. Determining the
currently largest short job in T can also be done in O(log n) time. Therefore, the overall running time
of AssignC2 is O((m + n) log n).

Lemma 3.2. If OPT ≤ C, then AssignC2 will generate a feasible schedule for Q|M j(inclusive)|Cmax

with makespan at most 4C/3 in O((m + n) log n) time.

Theorem 3.3. There is a 4/3-approximation algorithm for Q|M j(inclusive)|Cmax that runs in
O(min{mn, (m + n) log n} · log(

∑n
j=1 p j)) time.

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9697–9708.



9705

Next, we extend the algorithm to solve Q|M j(tree)|Cmax. Given the rooted tree RT whose nodes are
the m machines, we index the nodes of RT in non-increasing order of their depths, ties broken in favor
of the leftmost node. The root of RT is Mm.

Let OPT denote the optimal makespan for Q|M j(tree)|Cmax. For machine Mi (which represents
a node of RT ), let Ii denote the set of the indices of the machines on the path from Mi to the root
of the tree. Let ALi =

∑
l∈Ii

∑
j∈Jl

p j∑
l∈Ii sl

denote the average load on the machines whose indices are in Ii,

i = 1, 2, . . . ,m. Let LB = maxiALi . We have: LB ≤ OPT . Let UB =
∑n

j=1 p j

sm
. We have: OPT ≤ UB.

We perform a binary search in [LB,UB] to determine OPT . For each value C selected, we use the
following procedure, AssignD, to test whether it is possible to schedule the jobs such that the total
length of the jobs processed on machine Mi is no more than 4si · C/3, i = 1, 2, . . . ,m. We continue to
use the related definitions for Q|M j(inclusive)|Cmax, such as feasible, long, median and short jobs.

In AssignD, Ui represents the set of unassigned jobs which are eligible for machine Mi and sorted
in non-increasing order of their lengths, i = 1, 2, . . . ,m. In Step 2(i)(1) of AssignD, we first compare
the total length of the two largest median jobs in Ui with the length of the largest long job in Ui. If the
former is larger, then we schedule the two largest median jobs in Ui on machine Mi. Otherwise, we
schedule the largest long job in Ui on machine Mi, i = 1, 2, . . . ,m.

AssignD (C):

Step 1. Let Ui = Ji, i = 1, 2, . . . ,m. Let h be equal to the maximum depth of the machines in tree
RT .

Step 2. While (h > 0), do:

(i) For each machine Mi whose depth is h, do:

(1) If there is no long job in Ui, then add a “dummy” long job of length zero into Ui. Similarly,
if there is no median job (or only one median job) in Ui, then add two (or one) “dummy” median
job(s) of length zero into Ui. Let j1, j2 and j3 denote the largest long job and the two largest
median jobs in Ui, respectively. If p j2 + p j3 > p j1 , then let j2 and j3 be processed on Mi and
remove them from Ui; else, let j1 be processed on Mi and remove it from Ui.

(2) If the total length of the jobs on Mi is less than or equal to si · C, then we repeatedly assign
the largest unassigned short jobs in Ui to Mi until the first time that the total length of the jobs
on Mi is larger than si ·C. Remove the newly assigned jobs from Ui.

(3) Merge Ui into Uk, where Mk is the parent of Mi.

(ii) Let h = h − 1.

Step 3. If the total length of the jobs in Um is no more than 4sm ·C/3, then process all the jobs in Um

on machine Mm, and the procedure succeeds and terminates. Otherwise, the procedure fails and
terminates.

Similarly to the proof of Lemma 3.1, we can prove the following lemma.

Lemma 3.4. If OPT ≤ C, then AssignD will generate a feasible schedule for Q|M j(tree)|Cmax with
makespan at most 4C/3 in O(mn) time.

Theorem 3.5. There is a 4/3-approximation algorithm for Q|M j(tree)|Cmax that runs in
O(mn · log(

∑n
j=1 p j)) time.
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4. Conclusions

In this paper we investigated the problem of minimizing makespan on uniform machines with
restricted assignment. We presented algorithms with approximation ratios 2 and 4/3 for the cases of
inclusive and tree-hierarchical restrictions. Since the algorithms do not rely on the speed hierarchical
assumption, they generalize the results presented in [7]. The running times of the algorithms contain a
factor of log(

∑n
j=1 p j), and in consequence they are not strongly polynomial time. To get strongly

polynomial time algorithms, we use the technique described in [9] to modify the above algorithms
slightly. The approximation ratios then become 2 + ε and 4/3 + ε, where ε > 0 can be made arbitrarily
small. In addition, as pointed out in [7], since the algorithms are based on the binary search, they
produce schedules with makespans 2 dOPT e or 4 dOPT e /3, where OPT denotes the optimal
makespan.

It would be interesting to study the problem of minimizing makespan on uniform machines with
other objective functions, or with other special types of assignment restrictions, such as nested, or
interval restrictions. For further research, some learning strategies may be introduced, such as
Probably Approximately Correct (PAC) learning with importance reweighting [22], dynamic feature
weight selection [23], robust learning, granular-ball learning [24] or Complete Random Forest (CRF)
based class noise filtering learning [25].
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