MBE, 19(9): 9636-9657.
% DOI: 10.3934/mbe.2022448

AIMS Received: 06 May 2022

EE Revised: 23 June 2022

Accepted: 27 June 2022
http://www.aimspress.com/journal/mbe Published: 04 July 2022

Research article

Existence and uniqueness results for fractional Langevin equations on a star
graph

Wei Zhang”, Jifeng Zhang and Jinbo Ni

School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan 232001,
China

* Correspondence: Email: zhangwei_azyw @ 163.com.

Abstract: This paper discusses a class of fractional Langevin equations on a star graph with mixed
boundary conditions. Using Schaefer’s fixed point theorem and Banach contraction mapping principle,
the existence and uniqueness of solutions are established. Finally, two examples are constructed to
illustrate the application of the obtained results. This study provides new results that enrich the existing
literature on the fractional boundary value problem for graphs.

Keywords: fractional Langevin equation; boundary value problem; star graph; fixed point theorem;
existence and uniqueness

1. Introduction

In the last two decades, the topic in the study of fractional calculus theory has attracted significant
attention from researchers. The strong interest stems not only from the important application of the
theory, but also from the consideration of its mathematical nature. Indeed, many phenomena arising
from scientific fields, including biology, physics, chemistry, financial economics, control theory,
materials, medicine, and anomalous diffusion, are precisely described by fractional differential
equations [1-3]. As an important topic for the theory of fractional differential equations, the existence
results of fractional boundary value problems (BVPs) have been investigated comprehensively by
scholars [4-7].

On the other hand, the theory of differential equations on graphs originated from Lumer’s research
work in the framework of ramification spaces in the 1980s [8]. Differential equations on graphs appear
in various fields, including chemical engineering, biology, physics, and ecology [9—12]. For this reason,
many scholars study mathematical models described by fractional BVPs on graphs.

In 2014 [10], Graef et al. investigated the existence of solutions for fractional BVPs on a star
graph, which is composed of three nodes and two edges, that is G=V U E with V={y,,v1,y,} and
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E = {)Ty()), )Ty())}, where 7y, represents the junction node, y;y; is the edge connecting y; and y, with

length [; = |)Ty6 ,i =1,2. On each edge W), i = 1,2, the authors considered the fractional BVPs in a
local coordinate system with ; as origin on x € (0, /;), given by

{ —Dg+u,- = mi(x)f,-(x, l/li), O<x< ll‘, i=1,2. (1 1)
u1(0) = 1 (0) = 0, wi(ly) = wx(la), D§+u1(11)+D§+u2(lz)=0, '

where Dfj +,D§ . are Riemann-Liouville fractional derivative operators, 1 <a <2, 0 < < a,m; €
C[0,;],i = 1,2 with m(x) # O on [0,/;] and f; € C([0,/;] X R,R),i = 1,2. By using Schauder fixed
point theorem and Banach contraction mapping theorem, the existence and uniqueness of solutions of
BVP (1.1) are obtained.

Later in 2019 [11], Mehandiratta et al. extended the results of Graef et al. on a general star graph
(see Figure 1), which is a graph consisting of k + 1 nodes and k edges, that is, the authors considered a
graph G = VU E, V={vy,vi,---, i}, E ={e; = \Tv()),i =1,2,---,k}, where v is the junction node, m
represents the edge connecting v; and vy with length /; = |M| ,i =1,2,---, k. The author investigated
the following fractional BVPs on the star graph G given by

CDg wi(x) = i, w(x), Dy wi(x)), 0 < x <l i = 1,2, -k,
ui(O) = O, 1= 1,2’ .. .,k,

ui(li) = uj(lj)9 l9,] = 1’ 29' ) k’ i+ j,

S W) =0, i= 1,2,k

(1.2)

where Cngx,CDg’x are Caputo fractional derivative, 1 <o <2, 0 << a-1,f,i = 1,2,---,k are
continuous functions on [0,/;] X R X R. The existence and uniqueness results for BVP (1.2) are
established using Schaefer’s fixed point theorem and Banach contraction mapping theorem.
o
V3
o Junction

vV,
o 9 o o Boundary

o

oVk—1 e Edge

Vi oVk

Figure 1. A general star graph with k edges.

Based on the two studies mentioned above, the subject of fractional BVPs on graphs has received
significant research attention, and various interesting results have been recently established [12—-19].
For example, in [12], Zhang and Liu discussed BVPs of fractional differential equations on a star
graph with n + 1 nodes and n edges. The existence and uniqueness of solutions are established using
Schaefer’s fixed point theorem and Banach contraction mapping principle. Etemad and Rezapour in
[13] studied the BVPs of fractional differential equations on ethane graph. The existence results of
solutions were obtained using Schaefer’s fixed point theorem and Krasnoselskii’s fixed point theorem.
In [14], Baleanu et al. investigated the existence of solutions for BVPs of fractional differential
equations on the glucose graphs. In [15], Ali et al. studied the existence of solutions of BVPs for
fractional differential equations on the cyclohexane graphs using the fixed point theory. In [16],
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Mehandiratta et al. considered a nonlinear fractional BVPs on a particular metric graph. They proved
the existence and uniqueness of solutions using Krasnoselskii’s fixed point theorem and Banach
contraction principle.

It is well known that Langevin first formulated the Langevin equation in 1908. Langevin equation is
an important tool for describing the evolution of physical phenomena in fluctuating environments [20].
However, people have realized that the traditional integer Langevin equation cannot accurately describe
dynamic systems for complex phenomena. Therefore, one way to overcome this disadvantage is to
use fractional derivative instead of integer derivative [21]. This gives rise to the fractional Langevin
equation. Studies of BVPs on fractional Langevin equations have increased in recent years, and new
research is constantly emerging [22-25]. For example, in [22], Fazli et al. studied the anti-periodic
BVPs of fractional Langevin equation and obtained the existence and uniqueness solutions using the
coupled fixed point theorem for mixed monotone mappings. In [23], Matar et al. established the
existence, uniqueness and stability of solutions for the coupled Caputo-Hadamard fractional Langevin
equation with the help of the fixed point theorem. In [24], Salem et al. considered the fractional
Langevin equation with three-point boundary value conditions and obtained the existence of solutions
by using Krasnoselskii’s fixed point theorem and Leray-Schauder nonlinear alternative theorem.

From the literature review, no result is concerned with fractional Langevin equations on graphs. To
fill this knowledge gap, this study aims to establish the existence and uniqueness results for fractional
Langevin equations on a star graph subject to mixed boundary conditions. Precisely, we investigate the
following problems:

D3 (D + )ni(x) = 6i(x, 1;(x), “Dy 0,(x0), 0 < x < p;, i = 1,2,--,k,

0;(0)=0, i=12,---k,

vi(ei) =), ,j=1,2,--k, i#] (1.3)
k

i) =0, i=12--k
i=1

where 0 <a <1, 0<y<a, 4, €R", i=1,2,---k, CD&X, CDg’x are Caputo fractional derivative, D
is the ordinary derivative, g; € C([0, p;] X R%,R), i = 1,2,---, k. The star graph has k£ + 1 nodes and &

edges, thatis G = VU E, V={vg, vy, -, i}, E = {e; = WV_()), i =1,2,---,k}, where vy is the junction
node, ¢; = v;v, represents the edge connecting v; and vy with length p; = |m , i =1,2,---, k. We

consider a local coordinate system with v; as origin and x € (0, p;) as the coordinate. The existence
and uniqueness of the solution of BVP (1.3) are discussed using Schaefer’s fixed point theorem and
Banach contraction mapping principle.

The rest of paper is organized as follows: In Section 2, we recall some basic definitions of fractional
calculus and present an auxiliary lemma (Lemma 2.6), which transforms the problem (1.3) to BVP
(2.1). In Section 3, we study the existence and uniqueness results of BVP (2.1) by using Schaefer’s
fixed point theorem and Banach contraction principle, respectively. Finally, two illustrative examples
are discussed at the end of this paper.

2. Preliminaries

In this section, we recall some definitions of fractional calculus and provide preliminary results
which we will use in the rest of the paper.
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Definition 2.1 [1]. The Riemann-Liouville fractional integral of order @ > 0 for a function f € C(a, b)
is defined by

1 f(t) = ﬁ f (t—5)""f(s)ds, a<t<b.

Definition 2.2 [1]. The Caputo fractional derivative of order @ > 0 for a function f € C"(a,b) is
presented by
1

C na _
Dg, f(t) = T

f t (t— sy f(s)ds, a<t<b,
where n = [a] + 1.
Lemma 2.1 [1]. Let @ > 0. Suppose that u € AC"[0, 1]. Then
Ing&tu(t) =u(t) + co+ 1t + ot + - + cut",
wherec; R, i=1,2,---,n, n=[a] + 1.
Lemma 2.2 [26]. Let >0, neN, and D = d/dx. Suppose that (D" x)(¢) and (¢ D*™"x)(¢) are exist. Then

a,t

(CD2,D"x)(1) = (CDI" x)(@).

Lemma23[1]. If8>0, y>pg-1, t >0, then

A A )
" T T+ 1-p)

Theorem 2.4 [27]. (Scheafer’s fixed point theorem) Let X be a Banach space. Assume that 7 : X — X
is a completely continuous operator and the set Q = {x € X, x = uTx, u € (0,1)} is bounded. Then T
has a fixed point in X.

Lemma 2.5 [11]. Suppose that p is a function defined on [0, p] such that CDg’Xr) exists on [0, p] with
a > 0andlet x € [0,p], t = x/p € [0, 1], ¥(t) = y(pt). Then

“Dj n(x) = p~"(“D§ y(1)).
Lemma 2.6 Suppose that 1 be a function defined on [0, p] such that CDg’xr) exists on [0, p] with a €
(n—1,n)and let x € [0,p], t = x/p € [0, 1], y(¢) = y(pt). Then

“D§ (D + Dy(x) = p~7'DG (D + p)y ().
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Proof. By using the Definition 2.2 and Lemma 2.2, we can obtain

“Dg (D + Dn(x)="Dg} ' n(x) + 1D, U(x)

:F(nl 5 fx (x_s)n—a—ll)(n+l)(s)ds+ f (x — n a-1 (n)(S)dS
f (pt s)n a-1 (n+1)(s)ds+ f (pt S)n a-1 (n)(S)dS (x = pt)
F(n - a) ( —a)
l"(n a) f (l A)n a—1 (n+l)(ps)ds+ f (f S)n a-1 (n)(ps)ds (S _ S/p)
—oz 1
l"(n_a) f (l S)n a—-1 (n+l)(S)dS+ f (t s)n a—-1 (n)(s)ds (y(n)(t)_p I)(n)(pt))

=p~ 71 Dg; (1) + Ap™ DG (1)
=p™""'“Dg (D + Ap)y(»),

This completes the proof of Lemma 2.6.

By a direct calculation with help of Lemmas 2.5 and 2.6, BVP (1.3) can be transformed into a BVP
defined on [0, 1] given by

D3 (D + Aip)yi(1) = p* gi(t, yi(0), p;” Dy yi(1)), 1 € (0, 1),

yi0) =0, i=12,---k,
yiD) =y;(1), i,j=12,--+k i# (2.1)

k
Yolyi)y=0, i=1,2,--,k,
i=1
where y;(?) = v,(pit), gi(t,u,v) = gi(pit,u,v), i=1,2,--- k.
3. Main results

In this section, we investigate the existence and uniqueness results of problem (2.1). To this end,
we consider the space Y= {y : y € C[0, 1], CDgJy € C]0, 1]}, endowed with the norm

lylly = IIyll + €Dy .

where ||y|| = max @I, II°D] = max ICDgJy(t)I. Then (Y, || - |ly) is a Banach space, and the product
space (Y%, || - ”Yk) equ1pped with the norm

k
1m0 90l = D Villys G yase- s 3i) € ¥

k

r-———/\——'—\
is also a Banach space, where Y* =Y x Y x ---x Y.

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9636-9657.



9641

Lemma 3.1 Let i, € C[0, 1], i = 1,2,---, k. Then the BVP of fractional Langevin equations

D (D + 4ip)yi(t) = hi(t), t € (0, 1), @ € (0,1), i = 1,2,k

yi0)=0, i=12,---k,

yi) =y, i,j=12,--k i#] (3.1
k

Yoily()=0, i=1,2,--k,
i=1

1s equivalent to the integral equations

t k
)’i(f)z—ﬂipif yi(s)ds + 15T (o) + IZ Ci(Ajpyi(1) =I5 hj(®)l=1)
0

=
k 1 1
> f,-( - 40, f yi(s)ds + Aip; f Vi(s)ds + I3 (D)t — 13:1hi<t>|t:1),
j=1,j#i 0 0
o'
where ; := o+—, i,j=1,2,---,k.
j=1Pj

Proof. Applying the operator I, on both sides of Eq (3.1) and combining with the Lemma 2.1, we
obtain
(D+Aip)yi(t) = Ig, hi(t) + ¢},

where c"1 eR, i=1,2, -,k The above equation can be rewritten as
Yit) = =Aipyit) + I§, hi(t) + . (3.2)
Integrating both sides of Eq (3.2) from O to ¢, we get
!
yi(t) = =Aip; f yi($)ds + 1§ hi(®) + ¢t + y;(0).
0

By conditions y;(0) =0, i = 1,2,--- , k, we conclude

73
yi(t) = —Ap; f yi(s)ds + I8 hi(t) + ¢ (3.3)
0

k

Applying the conditions ) p;'y/(1) = 0 and y;,(1) = y(1), i,j = 1,2,--- ,k, i # jin Eqs (3.2) and
i=1

(3.3), respectively, we find

k
Do (= Aipiyi(1) + I hi(@liey + ¢}) = 0,

i=1
and

1
- /L'Pif yi($)ds + 1§ hi(@li=1 + ¢}
0
1 .
= —/ljpjf yi(s)ds +Igf1hj(t)|,:1 +c{,i,j =1,2,--- ,k, i # ]
0
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Combining the above two equations, we get

k
D05 (= pyi(D) + I, (0l=1) + o e

=1
k k 1 1
— p7lei+ Z pj‘l /l]pjf yi(s)ds + I§ hj(0)l=y + /L'pif yi(s)ds — I(‘)’ilhi(t)lzzl)-
J=1.j#i j=lj# ’
This yields
k k
Zp;‘c’l =- Zp}l( = p;yi(1) + I, hj(Dli=1)
j=1 J=1
k 1 1
+ Z PJ_'I(—/lejf )’j(S)dS+/1iPif yi($)ds + I h(O)l=1 _Igjlhi(t)lle)’
oLt 0 0

from which we deduce that

1

k 1
Z (- Ap; f yi(s)ds + Ap; f Yils)ds + IgT hy(O)liey = 1§ ()= )
0

Jj=1,j#i 0

k
= D 6= oy () + ROl = 1,2,k

=1

Substituting c’i (i =1,2,---,k) into the Eq (3.3), we get the desired result. The converse of the
lemma is calculated directly. The proof is completed.

In view of Lemma 3.1, we define the operator T : Y* — Y* by
Ty, 5@ = (T Y2, Y0, Ta(y, y2, - -+ 5 )@, s Ty, ya, - -+, yi)(@),
forte[0,1]andy; €Y, i=1,2,---,k, where
Ty, y2,- -+, y(©)

(1+1
Aipi f yi(s)ds + = f (t = 5)°8i(s, yi(s), p; "D}y yi(s))dss

+1)
k a/+]
+1 fj( Py (1) = T )f (I -s5)" lg,(s yi(s), P; chy yj(s))ds)
=1 (3.4)
k 1 a+1
+1 Z ¢ - Ap; j; yi(s)ds + = 0 f (1 - 5)"g(5.y,(s).p;” D} y,(5))ds)
J=Lj#i
k a+l 1
{’ 1 — 5)%gi(s, y; chyid/liifid.
w3l F(cy+1)f( 850D s + Ay [ i)
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In the following part, for convenience of presentation, we denote the notations:

1 1 1 1
M, = + + + ,
I'a+2) TI(e+1l) TQR-yI(a+1) T'QR-yI(a+?2)
2 1 1 1 1
M2 =

+ + + + .
Ta+2) La+1) La-y+2) TC-yl@+l) TIQ-y(a+2)

Theorem 3.1 Assume that

(H,) The functions g; : [0,1]xR?> - R, (i = 1,2,---, k) are continuous and there exist functions
a;(t) € C([0, 11,[0, +0)), i = 1,2, - -+ , k, such that

lgi(t, u,v) — gi(t,ur, vi)| < ai(t)(|lu — ui| + v —vi),

for all ¢ € [0, 1] and (u, v), (11, v;) € R%. Then the BVP (2.1) has a unique solution on [0, 1], provided

that . . .
SRy A) 30

i=1 i=1 i1
where
k
_ a/+] oz 7+1 a'+1 a y+1
Pi= My Y (" +pi ) + Mol )
j=1,j#i

3/lp £ 2,p;
_ . iMi I~ —
Ql - 3/1sz + F(2 _ + E Jp] 1—~(2 )) A H%(?X |a (t)l

J=1j#i
Proof. Applying the Banach contraction mapping principle, we have to prove that T is a contractive
mapping. To prove this, we lety = (y1,y2,---, %), ¥ = (1,52, ,3) € Y*, 1 € [0,1]. By Eq (3.4),
we have

|Tiy(2) — Tiy(2)|

a+1
f(—@@uﬂ@awmn@>&@ﬂ@g”ﬂwwws

F(a/ +1)

+/L,0,f lyi(s) — yl(S)IdS+th (Apjly;(1) = y,(DD

Z

a+1

f(—@“munmpwmmes&unwpwmnwws

@fmwnwhHmefmwxwm

j=Lj#i

k
=1
k
a+1
=1 j#
1,

ln+Dfu~meﬂmﬁﬂn®)mmwmﬂﬂnwws

(1

+
+1
i +nf< — )"lgi(s, (), 9,7 DY i) — gi(s, 5i(5), ;DY Fu(s))lds.

I'a

J=1j#i
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By using the assumption (H;) and r € [0, 1], ¢; € (0,1), j=1,2,--- ,k, we deduce

Tiy(®) — Tiy(0)]

C
1_,( +2)||yj yj||+ Z T )” DOtyJ OzyJ”

j=Lj#i

a+1 a—y+l1
— p c C —
< — Al i+—A D? yi — D} 3ill + 2,0illy; — 3
*Ta +2) illy:i = ¥ill r( 2 I"Dy,y il iilly: = yill
p(t+l
+Zﬂ,p,||yj yﬂ'*ﬂZﬁ]ﬂx”h yJ||+ZF( Tl
k ay+1
C Y
= "Dy yill
OtyJ 0.7
Z‘ ['(a +1)
k a+1 k a y+1
=1,j

2Al

F(a/ + 2)(pa+l a y+l)(||yl y’” + ”CDz),,tyi Ozyt”)

k
#3pllyi =5l + ) 24,05lly; = 5

J=1,j#i

k
a (Z 1
§ (a+1) F O = 3l + 1°DG ) = Dy il
=1

k

Z (a+z)(p”” P57y = 3l + 1D y; = D 3,1
=1,j

Then for any y, j € Y*, we obtain

IT5y = Tl
2 1
< + a+1 + q—y+1 Ai = 3illy + 3/1,- T
B (F(a+2) (e + 1))(’)! p; Al = villy oillyi = Villy )
1 k
+ a+l c.v—7+1A. 5l 4+ 1 oodlys — 5l
,12#, T@+2) Ta+ 1))(9 VAl = Fjlly ,:12#,- oilly; = illy

On the other hand, by using Lemma 2.3, we have

°Dg, Tiy(1) = “Dy T;3(1)]

0z+l
< —F((y v+ 1)f (t— s)a 7|gl(s y,(s) p_VCDV y:(s)) gl(s yz(S) p—)’CDD’ y,(s))lds
+ F(l — f (t = 9)7"yi(s) = yi(s)lds + F(2 )Z iy (1) = 3D
17 k

Te-yr@ 4 JP?“f (1=)""Ig (5, y(5), 9, D} y(5)ds—g,(5,5,(5). p;” Dy Fi(s)lds
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F(2 ’)’) Ilzﬁl[/ljpjfly](s) yj(S)ldS+r(2 lzlﬂ/l,pl fb;l(s) yl(s)lds

/
-y
+
Ir-yla@+1

k
) > et f (1-9)"1g,(5,5(5), 0,7 D} .y ()= (5, 3,(8), p; 7Dy F,(s))ldls

j=1, j#t
-
F(Z YI(a+1)

Z P f (1 = 9)"Igi(s, yi(8), p; DG yi(8)) = 8i(s, 3i(5), p; "D Ji(s))lds.

Jj=1,j#i
In a similar manner, we deduce
c c -
€D}, Ty(0) - DY, Ti5(1)
a+1 {k—7+1

pl _ i i C
< — |\ il + ——————
T(a—y + 2)”y LS TPy

otyz Otyl” ”yl )_71”

r(z— )

1 1
+ Apjlly; = 9l + Ay -3l
F(2—y) Z ]p] y] y] F(Z—)/)F(a"f‘ 1) ;pj J y] y]

1
a— y+1A CD
F(Z V(@ +1) Z ” 0V~ otYJ”

1 +1 =
E E Ay — 3
r(z " Apilly; — yill + r2-l@+2) p o5 Ajlly; = yill

J=Lj# 1, j#i
k

‘17+1A CD)’ CDV—
"Ta- y)F(a+2) Z il Do,yj == Do, il

p‘“’l a—y+1
: y i C D’ CcryY
i~ Ji ; D ;
"Te- Y (a +2)”y yill+ T2 -y)(a +2)” 0.Yi = Do Jill
1 (1’
S R G T DAy = 3ill + 1D} yi = €Dy 3ill)
3Aipi
R o R A )Z Apjlly; = il
J=Lj#i
1 k
(xl a +1 C c
+F(2—7)F(a+1)zl(pf+ DAl = 5+ 1Dy ;= CDY 3D
J=
1 k
"T@-pla+2) ©5* + 05 DAL, = 34+ 1D, = Dy 3l
Y Jj=1j#i
1

"Te—yl@+2) "+ o DAl = 3ill +11€DY,yi — DY Fil).

This implies that, for any y, y € Y*,
1D}, Tiy(1) = Dy Tyl
( 1 1 1
[Na-y+2) F(2 Y+ 1) F(2 VI +2)

)i+ DAl = Filly
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1 1 k
+ + (_y+l+ g—y+l Ally: — 5,
(F(2—7)F(0/+ 1) F(Z—)/)F(a+2)) Z _(p, p; Ay = Filly

J=1j#i 16

3,0i L 240, (3.6)
ut S JFj _

Tl + Z Tl
j=1,j#i

By a direct calculation with help of (3.5) and (3.6), we get
IT;y = Tyl + 1°Dy Tiy - Dy T

34
< Moo + ot DAY = illy + (3o + i~ i
< Mo + 7" DAy - Filly + (3o fo - ))ny — illy
k k
(0% a— - 2/1 p -
+M, Z (pj+1+pj DAy - 3lly+ Z (2/1jpj+r(2j_;))||)’j—yj||Y~
=T =i
From this it follows that
Wiy — Tijlly
k k
< (Moo + o7 + M, Z @)D A1) Dy = illy
Jj=L,j#i i=1 =
2/11101 c
+(34;0i + + Aipj + lly; = ¥ill
( r(z 7) ]12]¢, o) rQ - ; J iy
k
:(Pi(Z i)t O leyj_yj||Y~
i=1 =1

As a consequence, we obtain
k k k
1Ty = T5llye = Y Ty = Tislly < () Pi(Z + 0y =Sl
i=1 i=1

i=1 i=1

k k k
It follows from the condition )’ Pi(z Ai) + >, Q; < 1 that T is a contractive mapping. Hence, T
=1 i=l i=1

has a unique fixed point on Y*, that is, BVP (2.1) has a unique solution. Therefore, we obtain the
conclusion of the theorem.

Theorem 3.2 Assume that

(H») The functions g; : [0,1] x R? - R, (i = 1,2,---,k) are continuous and there exist functions
pi(®), qi(0), ri(t) € C([0,1],[0, +o0)), (i =1,2,---,k) such that

|gi(7, u, V)| < pi(t) + gi(D|u(®)] + r(OIv(D)],

for all € [0, 1], u,v € R. Then the BVP (2.1) admits at least one solution in Y provided that

Zk:H,- <1,
i=1
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where

6 =Ag +p ) o+ ) Aia)+p)r) + @),
j=1,j#i
and

p; = maxIpi(0l ¢; = max lg:0l, 1] = max r(0l, A = Mapf™,

34pi . 2/11‘.0]'

@; =34ipi+ =, W =2,p; + =,
P TR =y TP R2 —y)

Aj=M p;’“.

Proof. We divide the proof into two steps.

Step 1. We need to verify that the operator 7 is a completely continuous. In fact, since the functions
gii = 1,2,---,k) are continuous, we can easily prove that the operators 7;(i = 1,2,---k) are
continuous, and thus 7 is continuous. Next, we have to show that 7' is compact. To see this, we define
the bounded subset A = {y; € Y, ||yilly < &} on Y, then for any y = (y1,y2,:- , %) € A, by (H,), we
find that

a/+l
ITiy(D| <40 f lyi(s)lds * oD f (= 9)%gi(s, yi(s), p; YCD’ Yi()lds
a+l

+Zf] Aipjly; r( ; f (1= 9 Ig (5, y1(5), ;7 D} y(s))lds)
j=1

k a+1
+ Z 5] ,pjf IyJ(S)Ids+ f (1 = $)"1gi(s,y(5),p;”“ D} yj(S))Ids)
Jj=1,j#i
k a/+1 1
+J;¢lfj l"(a/+1)f (I = 9)%gi(s,yi(s),p; "~ D) y,(s))lds+/l,p,\[0 |yz(S)|dS)
a+1
Sﬁ,pillyill+p—(p +gilyill + p; " r DY yill)
Ma+2)"" ! 0.t
k k pa+l
+Zﬁjp]||y,|| Zr( 1)(19, gillyill +p;77; ri°Dy )
j=1
k k oz+1
£ dpoli+ Y = Fas @+ Gl + o7 Ry
Jj=1j#i j=1j#i
(x+1
+ ———(pr + g Iyill + p; " F1IEDY yill) + Aipilly;
Fat2 )(pl q;llyill + p; "r; 11" Dy yill) + ipillyill
pq+1
</1i illVi + ——(p'+ (g + TV i
<Apillyilly r(a+2)(p’ (g; +p; r)lyilly)

k a+1

k
p *
+ D Al + Zﬁ(mﬂ%ﬂo, I I)

J

I
—_

a/+1

k
Aplyjlly + Z TaT @+ eyl

J#EL j=1j#

+
J

,_M»

1l
—_
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a+1

+
I'la +2)
From which we can deduce that

-y %

(p; + (q; +p; " rDIyilly) + Aipillyilly-

1

2
Tyl <34;0illyilly + (F( +2) F(a + 1)

)os 7 + (g; + o7 rDlyily)

k k
1 (l 3k = &

Jj=1j#i j= ]#:z

1
F(a +1) F(af +2)

1 a+

S(3/l,p, (F( ) F(a+1)) '(q; +p; ’”))”)’z”y (3.7)
k

+ 2

j=1,j#i

220; + )0+ a; + o} ) Iyl

2 1 oz+1 * . 1 1 a+1  x
+(F(a+2)+F(a+l)) Z T+ 1) r(a+2))pf Py

Jj=1,j#i

On the other hand, by Lemma 2.3 and (H;), we also can get the estimate
Dy, Tiy(t)l

oz+1
F(l _ )f ( - S) )I|yl(S)|dS+(—,y)f (t— S)a/ Ylgl(s yl(s) pl_)’CD())”Syi(s)Nds

-y k a+1
1 1 — )% 1 YCDV )
+ e ~5) ;fj( ]pjlyj( )|+1_,( ) f ( s) Ig,(s yj(s) p yj(s))|ds)
-y k a/+l
-yC yY
+ F(Z—’y) Z f] ]pjf |y](S)|dS+ 1)f (1- S) |gJ(S y](s) p D y](s))|ds)
j=1j#i
tl—y k pa+1 1 1
—_— — —VCDV i o '
r2-vy) Z ff(r(m nJ, ¢ $)°lgi(s, yi(s), p; "~ Dy yi(s)lds+Aip; fo [yi(s)lds)
j=Lj#
Aip; ol e
< yill+=—— (pi + qillyill + ;111D il
F<2—7>y Tty roy /i Hailbill+p 0.

'+ gyl + o i€ DY
r(z )Z A;pjlly;ll + ra- y)F(a+1)Zp (p; +qjllyjll+p; 7" Dy il

Z Aoyl + 7= )F(a+2) Z P P; + g llyill + o, I D) )
Jj=Lj#i Jj=Lj#i
a+1

Pi

Te-y

(P; + g il + o, 111D yill) + Iyl

F(2 (e +2) r(z )
In a similar manner, we deduce
€D}, Tyl
1 1 1
< + (1+1 + 4.< .
- (F(a—y+2) rC—yla+) TC- y)F(oz+2)) (g +pi rolyilly
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9649

k
2/1110] 1 1 a+l *
+ - My ;
j;ﬂ fe—y Feprarn " Taprasn)? @ oIl
k
1 3p
+ a+l  x ; (38)
12‘;&, r2- y)F(a+ R ) AR e L
1 1 1
+( + + ) eHpr,
[Na-y+2) TQR-yI(a+1) T2-yI(a+?2)
From (3.7) and (3.8), we get that
1Tyl + 1Dy, Tyl
k
a+l, = —Y *
< Mopi*'(q; + ;7 r)lyilly + (3ot r(2— )||y,||y+]§;# Aipj+ r<2 ))ny,ny
¢ Z Mg (g + 0l lly + Mo pf + Z Mg p;
J=1j#i J=1j#i
k k k
=Ag; + o, Dl +@illville Y Aaio lvillv+ D Sillvllv+Aipi+ Y Ap
J=Lj# J=1.j# j=1,j#i

k
< (Alg; +p; 7)) + @pllyilly + Z (Aj(CIj' +Pj_-y”j-) +@)llyilly + Aip; + Z Ajpj-

Jj=1,j#i Jj=Lj#i

k k
<[@ig +p7) +m)+ D Ailg;+p7r) + @) Z Iy, lly + N;

j=1j#i

k
N =Ap: + Z Al i=1,2, k. (3.9)

Jj=1,j#i

Form this it follows that
k k
ITllye = Z 1Tyl < Z (> &)+ D> N
i=1 j=1 i=1

Hence, the operator 7 is uniformly bounded on A.
Now, We will show that the operator T 1is equicontinuous on A. Indeed, for
Y=Ly . €A, 1,1, €[0,1], 1 <1, we have

Tiy(t2) = Tiy(t))|

(1+1
<F(a+1) f (12 = )" (0 = $))ds + f (t2 = $)°ds)(p; + g;lyll + o, r} 1D} yill)
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k a+l
#6100 Y (Ul + s (05 + 4l + 071D )
j=1
k a+1
-1 Y (el + TaT it ol +p)"r rICD} D)
j=1j#
pa £ * -
+ (- 1 )(ﬁ(pi + gillyill + ;71 1€ DY il + ipillyill) + Aipillyill(ea — 1)
<) N (R O sy S 1) B G109
< A;pigi(tp — ) + t —f
pici(ty — 1) T(@+2) 2 )
k a+1 * * ® 7Y
pj (pj+(qj+rjpj )8]')
]:
k (Y+1( * * * 0 \o . a+1 [ % * x Y
P+ (gHrp e P (pi+(g;+rip; &)
+(t—1y) (/ijjb“ﬁ e ) (tr— 1)( l —— +/1ipi8i),
JIZ T(a +2) T(a+2)
and
°D}, Tiy(m = €D} Ty(ny)|
il 5]
r(l )Ily,ll( ((t1 =97 = (2= 9)7ds + f (f = 5)7ds)
151
a+l( Y x1C s t
pi +q;llyill + o, I 11°Dg yil) , 1 2
Ta 75D = f ((ta=5)"7=(ty = )" )ds+ f (f = 5)"7ds)
a_y n
(tl 'y Y)Za Iyl + 0 Z TP+ gl + p} DY il
(téy—tiy) n -1 .
42 1 7 Py 1 + a+1 + + Y CDY
PR FIZ,,-# P+ pme +2>,Z,¢,p 5+ gillyjll + o, FIC DY )
CRE o 6" =6 iyl (.11

gyl + o FICDY yil) + =2
r(2_)/)r(01+2)(l71 g;llyill + p; " ri1I" Dy yill) T2y

Lpie; _ U pr+(qr+p,7rED)
< DiEi (tl —y 1 Y 12t — tl)l_y) N P; (p; +(q; P; 1)E) l‘g y+1
re-y! F(a —y+2)

(tl Y _ tl )’) (tl—y _ t]—y)
2 1 a+l, * —y s
TQ2-7) Z Lipsest IrQ-yra+1) Zp (p; +(q; +pjyrj)8j)

—y+1
_tfy )

(tl Y _ tl 7) (tl—)’ _ tl 7)
2 1 (02 % % -y %
T Z Ajpjej + Z piH P+ (g +p, e

re-y 4, r2-ya+2) 44
7 -yt (G = DA
S+ (q; +p, e +

TQ -y +2) P+ @+ pre) T2 -y)
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Form (3.10) and (3.11), we get

ITiy(t2) = Tiy(e)lly

pt}/+1 pa/+1 5
< (3Aipigi + l + +07Pre) )t — t
_( pie (F(a+1) F(a+2))(p’ @i +p; r’)g))(z Y
(1+1
* Y a @ 2,p:8 | 1- -
F( + 2)(17, (g +p; TeNEs™ =11 + 1-(2[1 y)(té )
p{y+1 p{x+1 1 1
i 1 * * _—)’ * ; ¢ -y _ ¢t -y
M ((r(z Tf@+2)  TC-pla+ 1))(p, + (g} +p; 7))ty v )
Aipi€i - - - P;Hl . o o
( p_ )(t} Y _ t; Y + 2(t2 - [1)1 7) + 1"(0_—,},_’_2)(‘0’ + ( +pz r )8,)(t v+1 t] 7+1)
k a+1 a+1
2/ljp/8/ ,Oj j " . =y s 1=y 1=y
* + (G0 )N —
,:122, Q- y) r(z—y)r(a+ 1) F(Z—*y)]—‘(a+2))(p] (gj+p, r])gj))(z 1)
k 0{+1 pa+1
J % G . _
' FIZL, 2pit (Fa v Faan) P @ e e)e -

which implies ||T;y(t;) — T;y(t)|ly = 0 ast, — t;, and so ||[Ty(t,) — Ty(t;)|lyx — O as t, — t;. Therefore,
the operator 7T is equicontinuous on A. According to Arzeld-Ascoli theorem that 7' is completely
continuous.

Step 2. By applying Scheafer’s fixed point theorem, we now prove that 7 has fixed point in Y. To
this aim, we define Q = {(y;,y2, - ,y) € Yk O1y2, 0590 = uT (1, y2, -+, yi), 4 € (0, 1)} and
show that € is bounded. In fact, for (yi,y2,- -, ) € Q, then (y1,v2, -+ ,y%) = uT (1,2, , Yi), that
is, for ¢ € [0, 1], we have y;(t) = uT:(y1,y2, - ,¥), i = 1,2,--- , k. Similarly in the proof of (3.7), by
assumption (H,), we deduce

1
[ +2) F( + 1)

i)l <u(30:+( Jort'a; + o7 r)lyilly

k
1 1
2/1 a+l .
+ §1 Pt T @ e )il

J=1,j#i
2 1
(

k
1
+ a+1 * a+1_ x
T(a+2) F(a+1) ]z;#l F(a+1) r(a+2))pf ril

from which we obtain

1
Lyl s(3ﬂip,-+(r( M vn 1)) o *! (g7 + 077 ) lyilly
k
e ( : L Vot + 7))yl
L T Tav D) T T+ ¥ P T illy (3.12)
J=1.j#i

k

2 1 atl o * 1 1 a+l
+(F(a+2) F(a+1)) » Z Fa+1) r(a+2))pf P

Jj=1,j#i
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In a similar manner of deduce (3.8), by assumption (H,), we also can obtain the estimate

€D} yi(o)
! ! 1 (1+1
e  fe e D " te—prapk @ *o Dbl
S 240, 1 1 - .
i ,;J to—y e ress fTarasn) @ A il

k ! 1 a+l
" Z (F(Z YI(a+1) 1"(2—y)1“(a+2))p1 pj+ m”%”y

Jj=1,j#i

1 1 1 .
+( + + ) i pl]
Ta-y+2) TQR-yla+1) TC-y(a+2)

Then for ¢ € [0, 1], we get

1Dy il
1 1 1 (x+1
<(Fasysn ' feoprasn e prar )k @ taT il
+ zk: ( 24,p; n ( 1 1 ) a+1( N *.))” "
j=1,j#i I'2-v) F2-yl(a+1) F(2 YI(a + 2) ql p T )W jlly

k 1 1 a+1 %
+JZ;; (F(Z Y (a + 1) F(Z—y)r(a+2))pl P+ mllyllly

1

1 1 1
+( + + ) ety
Fa-y+2) TQ-yl@+1l) TQ-yl(a+2)
Combining this with (3.12) gives
llyill + 11°Dyyill
k
_ 3,0 24,0;
< Map™ (g + p ¥ )illy + (3054 ly+ 2250+ =5y,
077 + 0 rDlyilly + (34ip T3 ))||y||y > (2 m_y))ny]ny

J=1,j#i

+ Z Mo (g + 077l lly + Map™ i + Z Mg p;

J=Lj#i Jj=Lj#i

k
<6, ) Iyilly + N,
j=1

where N, is defined as in (3.9), from which we deduce that

k k k
Dllye = D Ivilly < D 6ilyllye + >Nz
i=1 i=1 i=1

It follows from Z 0; < 1 that Q is bounded. By Theorem 2.4, the operator T has at least one fixed

point, that is, the BVP (2.1) has at least one solution.
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4. Examples

Example 4.1 Consider the BVP (1.3) with k=3, a=1,y=1, Lj=b==p1=15, p2=5;, P3=35, and

1
g1(x,1,0) = cos x + 2 (sinu + ), (x,u,0) € [0,01] X R XR,

g(x,1,0) = — \/_ o 21 (I |+ [o), (x,1,0) € [0,02] XRXR,

g3(x,u,n):1+x +

( u
3(x+3)>°\1+u

+0), (x,1,0) € [0,p3] X R XR.

In view of Lemma 2.6, we get the equivalent system

CD1/2(D_,_L)y1 (;):(%)3/2[cos 1+ (t+12)2 (sin Vi (t)+(i0)_ (1)/,3 1(t))]

100
1 1\32p 1
CDI/Z(D+ﬁ)Y2() (20) [\/- 2(2 e (|)’2( )+ ( ) |CD1/3y2(t)|)]

Va(#) @D

1 32 1 -1/3
CDUZ(D*ﬁ)%(”:(%) [1+’2+3(r+3)3(1+y3(z)+(%) Dy ya(1)].

y1(0) = y2(0) = y3(0) = 0, yi(1) = y2(1) = y3(1),
(1/10)"'y, (1) + (1/20)~'y4(1) + (1/30)"'y5(1) = 0

From (4.1), fort € [0, 1], u, v, u;, v, € R, we can conclude that

lg1(t, u,v) — g1(t, ur, vi)| < (I = wr| + v = vi)),

(t +2)?

1
lg2(t, u, v) = ga(t, ur, vi)l £ ————(lu — | + [v = wi)),

21> +4)

|g3(t9 u»V)_gS(t, ulavl)l < (|u_ul| +|V—V1|).

3(t + 3)°

So, we get

1 1
r2r O e T 3Gy

By simple calculation, we obtain

a(r) =

1 1 1
Ay = tfggﬁ la; ()| = 1 Ay = tfel%&ii] lax(1)| = 3 Az = g&ﬁ laz(1)| = 3T

P, =0.8256, P, =0.7281, P; =0.7183, O, =0.0983, 0, = 0.0878, Q3 = 0.0843.

Then \ ; ;
(Z P,-)(Z Aj)+ Z 0 =0.9374 < 1.
i=1 i=1 i=1

From Theorem 3.1 that the BVP (4.1) has a unique solution.
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Example 4.2 Consider the BVP (1.3) with k=3, a=3, y=31, 4i=b=A3=5;, p2=1, p1=p3=15, and

X 1 1
gi(x,,p) = — + u+ v, (x,u,0) € [0,01] X RXR,
1) = 15 2x+3)7  5VI0(x +2) (53,0 € [0,

1 X
X,1,0) = sinx + u+ —0, (x,1u,0) € [0, X R X R,
9( ) 302" 20 ( ) €10, p]
1 1
gz(x,u,0) = 2x + u+ v, (x,1,0) € [0,03] X R XR.
’ (x+5°  129I0(x+2) ’

Then by Lemma 2.6, we obtain the equivalent system

_(Lyrp, sinn@ “D%yi(0)
cD1/2(D+ m)m() ( ) [1—0 + 2(t+3)3 5\/_(t+2) ]

1 1\3/2p . ) t
CDW(D + m)yz(t) = (5) [smt + 3(?24_ 2 + 035 1/3)’ ( )]

C /2 1 1 \32 v3(f) 1/%)’3(0
DD+ —)ys(1) = 2 ,
D+ oo = (75) |20+ G5 12\/_(t+2)]
y1(0) = y2(0) = y3(0), y1(1) = y2(1) = y3(1),
(1/10)"y,(1) + (1/5)"1y5(1) + (1/10)"y4(1) = 0

4.2)

Then
1 1
MO Sy " T sy 0T s
t 1 1
r(t) = 20" g5(1) = _(H 5)2’ ra() = 12(t+2)

1

1

- By calculation, we get

Ay =0.1783, A, = 0.1253, @, = 0.0316, &, = 0.0211,
Ay =0.4043, A, = 0.3544, @, = 0.0632, @, = 0.0421,
Az =0.1783, A3 = 0.1253, @3 = 0.0316, @5 = 0.0211,

So,
= Ai(q; +p, 1) + @1 + (Dalqs + p;'r;) + @) + (As(q; + pgyrg) + ©73)=0.1934,
0, = Mo(q5 + p, 1) + @a + (Ai(q) + p, 1) + @) + (As(q5 + p3 13) + @3)=0.2057,
05 = As(qs +p3 r3) + @3 + (A(q] + p, 1)) + @) + (Aa(qs + p, 15) + @2)=0.1935.
Thus,

6 +92+03i0.5926 < 1.

According to Theorem 3.2, the BVP (4.2) has at least one solution.
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5. Conclusions

This paper considers the fractional Langevin equations on a star graph of the form (1.3). By using
Lemma 2.6, the problem (1.3) is transformed into an equivalent system of fractional Langevin
equations supplemented with mixed boundary conditions defined on [0, 1], that is, problem (2.1).
Making use of the fixed point theorems (Schauder’s fixed point theorem, Banach’s contraction
mapping principle), sufficient criteria for the existence and uniqueness results are derived. Finally, we
present two examples to illustrate the validity of the obtained results. As a possible extension of this
paper, we will study the higher-order fractional Langevin-type equations on star graphs in the future,
such as

Df (D + 2)9i(x) = 6i(x, :(x0), “Df pi(x), 0 < x <y i = 1,2, ,k,

supplemented with the boundary conditions
y.(0)=0,0)=0, i=1,2,---,k,
0l =v ), i,j=1,2,- ki# ],
k
Z‘—l I)Ni(li) = 0’ i = 1727 tee ’k,

and

l)li(o) = r)l(l) = 07 l = 1’27' o ’ka

0l =" ), i j =12 ki #

k

Z'*l I)Ui(li) = O’ l = 1$2a Tt aka
where0<a <1, 0<B8<a, L, €R*, i=1,2--- k, CDg’x, CDg’x are Caputo fractional derivative, D?
is the ordinary second-order derivative, g; € C([0, ;] x R%,R), i = 1,2,--- , k. The star graph has k + 1
nodes and k edges, thatis G = VUE, V={vg,v1,-- ,w}, E = {e; = v, i = 1,2, - -+, k}, where vy is the
junction node, ¢; = \T)Vo represents the edge connecting v; and v, with length /; = |\W)| =12, k.
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