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Abstract: Heart failure (HF) is widely acknowledged as the terminal stage of cardiac disease and 

represents a global clinical and public health problem. Left ventricular ejection fraction (LVEF) 

measured by echocardiography is an important indicator of HF diagnosis and treatment. Early 

identification of LVEF reduction and early treatment is of great significance to improve LVEF and the 

prognosis of HF. This research aims to introduce a new method for left ventricular dysfunction (LVD) 

identification based on phonocardiogram (ECG) and electrocardiogram (PCG) signals synchronous 

analysis. In the present study, we established a database called Synchronized ECG and PCG Database 

for Patients with Left Ventricular Dysfunction (SEP-LVDb) consisting of 1046 synchronous ECG and 

PCG recordings from patients with reduced (n = 107) and normal (n = 699) LVEF. 173 and 873 

recordings were available from the reduced and normal LVEF group, respectively. Then, we proposed 

a parallel multimodal method for LVD identification based on synchronous analysis of PCG and ECG 

signals. Two-layer bidirectional gate recurrent unit (Bi-GRU) was used to extract features in the time 

domain, and the data were classified using residual network 18 (ResNet-18). This research confirmed 

that fused ECG and PCG signals yielded better performance than ECG or PCG signals alone, with an 

accuracy of 93.27%, precision of 93.34%, recall of 93.27%, and F1-score of 93.27%. Verification of 

the model’s performance with an independent dataset achieved an accuracy of 80.00%, precision of 

79.38%, recall of 80.00% and F1-score of 78.67%. The Bi-GRU model outperformed Bi-directional 

long short-term memory (Bi-LSTM) and recurrent neural network (RNN) models with a best selection 
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frame length of 3.2 s. The Saliency Maps showed that SEP-LVDPN could effectively learn features 

from the data. 

Keywords: multi-modal; phonocardiogram; electrocardiogram; neural network; left ventricular 

dysfunction 

 

 

1. Introduction  

Heart failure (HF) is a terminal stage of cardiac disease associated with a poor prognosis, 

high mortality, and expensive medical costs [1] and has become a serious clinical and public health 

problem [2,3]. Although HF incidence rates in developed countries have stabilized or even decreased, 

HF incidence rates in low-income areas and the total number of HF patients worldwide continue to 

increase [3]. Indeed, HF represents a major economic and medical burden, with approximately 64.34 

million patients affected worldwide [4]. 

At present, echocardiography, B-type and N-terminal pro-B-type natriuretic peptide analysis are 

the mainstays of diagnosis of HF. Left ventricular ejection fraction (LVEF) measured by 

echocardiography is not only an indicator of HF diagnosis but is also applied in treatment [5,6]. Based 

on LVEF measurements, HF can be classified into three types: HF with preserved EF (HFpEF; 

LVEF ≥ 50%), HF with mid-range EF (HFmrEF; 40% ≤ LVEF < 50%), and HF with reduced LVEF 

(HFrEF; LVEF < 40%) [7]. Current evidence suggests that the 1-year mortality rates are 14.1 and 

12.1% in HFrEF and HFpEF patients and in the middle for HFmrEF patients [8,9]. Previous studies 

suggested that HF with restored LVEF or HF with improved LVEF had a better prognosis than HF 

with persistently decreased LVEF [1]. Changes in LVEF in HF patients are more likely to occur in 

earlier stages of the disease [10]. Therefore, early identification of reduced LVEF is significant for 

diagnosis and treatment. However, LVEF is mainly measured by echocardiography, which is highly 

dependent on examiners' skills, image quality, and modality [11]. Therefore, there is an urgent need 

for a simple and accurate method for left ventricular dysfunction (LVD) in clinical practice. 

It is widely acknowledged that electrocardiogram (ECG) and phonocardiography (PCG) signals 

reflect mechanical and electronic movements, respectively. Both are non-invasive, low-cost, and easily 

available for medical examinations. Over the years, researchers have extensively analyzed PCG or 

ECG using deep learning methods to detect cardiovascular diseases. Wu et al. built an ensemble CNN 

model for heart sounds classification using the PhysioNet/Computing database in the Cardiology 

Challenge of 2016 [12], which achieved a sensitivity of 86.46% and specificity of 85.63% in hold-out 

testing. Using the same database, Deng et al. proposed a new Mel-frequency cepstrum calculation 

method, and their model based on a deep convolutional and recurrent neural network achieved a 

classification accuracy of 98% [13]. Li et al. built a fusion framework based on multi-domain features 

and deep learning features of PCG for coronary artery disease detection [14]. They confirmed that the 

fusion framework performed better than the multi-domain or deep learning features alone. Interestingly, 

a previous study also used a deep learning network to recognize cardiac murmurs [15]. Clinically, 

ECGs are mainly used to detect arrhythmia (ARR), myocardial infarction, ventricular hypertrophy, 

and electrolyte disturbances. Dami and Yahaghizadeh proposed a long short-term memory-deep belief 

network (LSTM-DBN) model to predict arterial events a few weeks or months before the event by 
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analyzing ECG with a mean accuracy of 88.42% [16]. Last but not least, Gumpfer et al. proposed an 

artificial intelligence model based on a CNN to detect myocardial scars with a sensitivity of 70%, 

specificity of 84.30%, and accuracy of 78% [17]. 

Computer-aided detection technology has been used to analyze PCG or ECG signals for HF 

identification in recent years. Liu et al. used an extreme learning machine classifier to identify HFpEF 

by analyzing PCG features extracted by multifractal detrended fluctuation analysis (MF-DFA) with an 

accuracy, sensitivity, and specificity of 96.32, 95.48 and 97.10%, respectively [18]. However, the 

features were manually extracted in this research and may have omitted other important features. Gao 

et al. proposed a gated recurrent unit (GRU) model that distinguished healthy people, HFpEF patients, 

and HFrEF patients with an average accuracy of 98.82% [19]. This research showed that the GRU 

model performed better than the long short-term memory (LSTM) model, FCN model and support 

vector machine (SVM). However, HS databases for HFrEF and HFpEF are lacking; therefore, 

generalized tests cannot be performed on other public databases. Furthermore, HF recordings in this 

study were collected from 42 HFrEF and 66 HFpEF patients. Gjoreski et al. combined the traditional 

method with a deep learning method for chronic heart failure identification based on HF data obtained 

from only 51 CHF patients [20] 

Cho et al. developed a 12-lead ECG analysis artificial intelligence algorithm for HFrEF 

identification based on a deep learning network which yielded an area under the curve for internal and 

external verification of 0.913 and 0.961, respectively [21]. Their study achieved a sensitivity, 

specificity, and accuracy of 90.5, 75.6 and 77.5% during internal validation and 91.5, 91.1 and 91.1%, 

respectively, during external validation. Li et al. proposed a deep convolutional neural network-

recurrent neural network (CNN-RNN) model for different stages of HF recognition [22]. This research 

showed that ECG signals between normal subjects and HF patients were significantly different, based 

on a combination of ECG features with many other clinical features for classification, such as gender, 

age, coronary heart disease, hypertension, history of diabetes, and percutaneous coronary intervention, 

which may be inconvenient for clinical practice. Eltrass et al. proposed a new ECG diagnosis algorithm 

that combined CNN with the Constant-Q non-stationary Gabor transform for congestive heart failure 

(CHF) and ARR identification with an accuracy, sensitivity, specificity and precision of 98.82, 98.87, 

99.21 and 99.20% [23]. This study adopted the BIDMC Congestive Heart Failure Database, containing 

only 30 ECG recordings. Previous studies that used PCG or ECG signals for HF identification are 

shown in Table 1. 

It is well-established that acoustic cardiography combines ECG and PCG to evaluate cardiac 

function. The major cardiac acoustic biomarkers associated with HF include electromechanical 

activation time (EMAT) [24], systolic dysfunction index(SDI) [25], EMAT/RR interval (%EMAT), 

and left ventricular systolic time (LVST) [26]. One of the most critical biomarkers is EMAT, defined 

as the period from the onset of the Q wave to the first peak of the first heart sound (S1). This reflects 

the time delay of the electrical excitation and mechanical movement. In a recent study, Li et al. 

demonstrated that an EMAT ≥ 104 ms diagnosed LVEF < 50% with a sensitivity of 92.1% and 

specificity of 92% [24]. A previous study showed that %EMAT ≥ 0.15 diagnosed LVEF < 40% 

with a sensitivity of 54%, specificity of 92%, and accuracy of 72% [27]. Moyers et al. confirmed that 

EMAT/LVST performed better than EMAT in detecting left ventricular dysfunction (defined as the 

presence of both LVEDP > 15 mmHg and LVEF < 50%) [26]. Acoustic cardiography comprehensively 

evaluates the mechanical and electronic functions of the heart [28]. Li et.al proposed a multi-modal 

machine learning method to predict cardiovascular diseases by integrating ECG and PCG [29]. This 
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study showed that the performance of multi-modal method outperformed the other cases with single 

model based on ECG or PCG. Integrating ECG and PCG features may also play an essential role in 

assessing HF. However, there is no research on the simultaneous analysis of PCG and ECG based on 

deep learning networks. 

 

Figure 1. Comprehensive SEP-LVDPN framework. This figure describes how the SEP-

LVDPN model works with data flow as a medium. The input consists of synchronized but 

independent PCG and ECG signals sent to the neural network for prediction after 

preprocessing. The input data are first independently extracted using two-layer Bi-GRU 

for high-dimensional features in the neural network. Then, the two independent feature 

matrices are fused per channel, and Gaussian noise is mixed in an additional channel. 

Finally, the fused feature blocks are learned and classified by the residual network, and the 

prediction results are output. 

In the present study, we first established a dataset called “Synchronized ECG and PCG Database 

for Patients with Left Ventricular Dysfunction (SEP-LVDb)” a medium-scale ontology of cardiac 

physiological signals, including 1046 recordings, which is, to our knowledge, the first deep learning 

dataset containing synchronized ECG and PCG signals using LVEF as a binary label. Signals in this 

database include PCG and ECG synchronized in the time dimension, and the basic information 

contains sex, age, systolic pressure, diastolic pressure, and LVEF. Based on this dataset, we proposed 

a deep neural network called “Synchronous ECG and PCG Left Ventricular Dysfunction Prediction 

Network (SEP-LVDPN)” as a performance benchmark (Figure 1). SEP-LVDPN is a two-stage 

multimodal fusion neural network consisting of a two-layer bidirectional gate recurrent unit (Bi-GRU) 

and residual network 18 (ResNet-18). This model was designed for left ventricular dysfunction 
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screening by simultaneous analysis of PCG and ECG. The input signals of our model are one-

dimensional PCG and ECG signals.  

Table 1. Summary of other research using PCG or ECG signals for HF classification. 

Authors Purposes Recordings(subjects) Methods Results 

Liu et.al (2019) [18] HFpEF vs. normal 
401 normal 

441 HFpEF 

PCG features were 

extracted by MF-DFA 

and classified by ELM 

Acc = 96.32% 

Sen = 95.48% 

Spe = 97.10% 

Gao et.al (2020) [19] 
normal vs. HFpEF 

vs HFrEF 

Unknown (42 HFrEF) 

Unknown(66HFpEF) 

1286 normal 

PCG features were 

learned and classified 

by the GRU model 

Acc = 98.82% 

Gjoreski et.al (2020) 

[20] 

Normal vs. Chronic 

HF 

Recomp. Vs. Decomp 

159 Heathy (110) 

22 Recomp. (22) 

52 Decomp. (51) 

PCG features were 

extracted by an ML and 

an end-to-end DL, then 

classified by a 

recording-based ML 

Acc = 84.2% 

Sen = 66.3% 

Spe = 93.5% 

Acc = 93.2% 

Sen = 90.9% 

Spe = 95.5% 

Li et.al (2019) [22] 

Normal vs. 

Stage A vs. 

Stage B vs. 

Stage C vs. 

Stage D 

172 normal 

84 Stage A 

156 Stage B 

105 Stage C 

56 Stage D 

ECG features were 

extracted by CNN and 

classified by RNN 

combined with other 

clinical features 

Acc = 97.6% 

Sen = 96.3% 

Spe = 97.4% 

Eltrass et.al (2021) [23] 

CHF vs. 

arrhythmia vs. 

normal 

576 ARR (47) 

180 CHF (15) 

216 NSR (18) 

ECG features were 

extracted by the 

AlexNet and 

discriminated by MLP 

Acc = 98.82% 

Sen = 98.87% 

Spe = 99.21% 

Pre = 99.20% 

Cho et.al (2021) [21] HFrEF vs. non-HFrEF 

Hospital A 

20,882 Non-HFrEF (19693) 

2,021 HFrEF (342) 

Hospital B 

4173 Non-HFrEF (4020) 

189 HFrEF (156) 

ECG features were 

learned and classified 

by CNN 

internal validation 

Sen = 90.5% 

Spe = 75.6% 

Acc = 77.5% 

external validation 

Sen = 91.5% 

Spe = 91.1% 

Acc = 91.1% 

Sun et.al (2021) [30] LVD vs. non-LVD 
1262 LVD 

25530 non-LVD 

ECG features were 

extracted by LeNet-5 

architecture 

Acc=73.9% 

Sen= 69.2%  

Spe= 70.5% 

PPV=70.1% 

NPV= 69.9% 

*Note: Abbreviation:(1) Sen: sensitivity; Spe: specificity; (2) MF-DFA: multifractal detrended fluctuation analysis; 

(3) ELM: extreme learning machine; (4) ML: machine learning; (5) DL: deep learning; (6) MLP: Multi-Layer 

perceptron; (7) ARR: arrhythmia; (8) CHF: congestive heart failure; (9) NSR: normal sinus rhythm; (10) PPV: 

positive predictive value; (11) NPV: negative predictive value 
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2. Materials and methods 

2.1. Database 

Herein, we aimed to establish a deep learning network model to analyze PCG and ECG 

simultaneously to identify patients with LVD. To the best of our knowledge, no database containing 

synchronized ECG and PCG signals using LVEF as a binary label has hitherto been documented in the 

literature. A new database called “SEP-LVDb” is introduced in this section. All recordings were 

collected from inpatients in the Fourth Affiliated Hospital of Zhejiang University School of Medicine 

from March 2021 to August 2021.  

2.1.1. Ethics approval of research 

This research was approved by the Human Research Ethics Committee of the Fourth Affiliated 

Hospital of the Zhejiang University School of Medicine. Informed consent was obtained from all the 

patients before collection. The adverse reactions and risks to the subjects were minimal and written 

informed consent may pose a threat to the subjects’ privacy. Thus, the Human Research Ethics 

Committee of the Fourth Affiliated Hospital of the Zhejiang University School of Medicine approved 

the use of oral consent. 

2.1.2. Acquisition process 

This research included patients aged from 18 to 90 years. Most patients came from the Department 

of Cardiology, and a small part came from the Department of Endocrinology and Nephrology. Patients 

with any of the following conditions were excluded: (1) ventricular paced rhythm, (2) sick sinus 

syndrome, (3) third-degree atrioventricular block, (4) pre-excitation syndrome, (5) onset ventricular 

tachycardia or reentrant tachycardia, (6) after valve surgery and (7) dextrocardia. The causes of LVD 

included myocardial infarction, valvular diseases, ischemic cardiomyopathy, and non-ischemic dilated 

cardiomyopathy. All patients completed echocardiography, and the results were interpreted by experts. 

In this study, the recordings were collected using the DUO101 DUO ECG + digital stethoscope 

(Diglo, United States), which could record PCG and ECG signals synchronously. This stethoscope has 

four types of audio filters: diaphragm (100–500 Hz), bell mode (20–200 Hz), midrange (50–500 Hz), 

and extended (20–2000 Hz). The PCG frequency was 10–200 Hz, but the frequency of some murmurs 

could be extended to 600 Hz [31]. Recordings were collected in a real ward environment, with 

significant surrounding noise. Therefore, we chose a midrange audio filter during acquisition in this 

study. The recording length was 15 s. 

Patients were placed in a supine position during data collection. Due to the severe condition of 

some patients who could not hold their breath, we only required the patients to breathe lightly. We 

collected the recordings from the precordial area. The stethoscope probe was placed in the 3rd to 4th 

intercostal spaces to the left side of the sternum at an angle of 30° with the sternum. A software called 

Eko was downloaded. The stethoscope was connected to the mobile phone through a spike connection. 

Signals were collected using a stethoscope probe. The recordings were automatically saved on the 

cloud platform. The recordings were then downloaded from the platform. ECG and PCG recordings 

were all saved in the wav format. If the patient's LVEF was less than 50% for the first time, we 
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completed the recording collection within 48 h before and after echocardiography. The recordings of 

the normal LVEF and reduced LVEF groups are shown in Figure 2. The ECG signals collected in this 

database were from single-lead ECG devices. The study flow chart is shown in Figure 3. 

 
(a) Normal LVEF 

 

(b) Reduced LVEF 

Figure 2. (a) One recording of the normal LVEF group; (b) One recording of the reduced 

LVEF group. 

 

Figure 3. Study flowchart. 
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2.1.3. Database description 

SEP-LVDb is a medium-scale ontology of cardiac physiological signals. This database contains 

a total of 1046 recordings from 107 patients with reduced LVEF and 699 patients with normal LVEF. 

Patients with reduced LVEF included 75 men and 32 women. Patients with normal LVEF included 397 

men and 302 women. One to five recordings were collected per patient. In this study, according to the 

LVEF, the data were divided into two groups: reduced LVEF group with 173 recordings and the normal 

LVEF group with 873 recordings. Patients with heart failure usually have many cardiac and non-

cardiac complications, some of which may influence ECG and PCG signals. These complications also 

occur in normal patients. It has been established that the most common non-cardiac complication is 

chronic obstructive pulmonary disease (COPD)/bronchiectasis (26%) [32]. Causes of cardiac 

complications are hypertension (55% in elderly patients), coronary artery disease, atrial fibrillation, 

bundle branch block, and valvular heart disease [33,34]. In this database, participants were not 

excluded because of the above situations in both the reduced and normal LVEF groups. The details of 

SEP-LVDb are shown in Table 2 and Figure 4. 

Table 2. Details of SEP-LVDb and demographic information of subjects. Every recording 

is considered to be collected from an independent individual. 

Parameters 
Reduced LEVF 

Group (173) 

Normal LVEF 

Group (873) 

LVEF (Mean ± SD, %) 37.30 ± 8.36 64.90 ± 5.27 

Age (Mean ± SD) 68.30 ± 13.2 62.92 ± 13.15 

Male (%) 121 (69.9%) 495 (56.7%) 

Blood Pressure (mmHg) 116.37/66.55 125.48/69.15 

Hypertension 91 (52.6%) 542 (62.1%) 

COPD 27 (15.6%) 45 (5.2%) 

Atrial Fibrillation 26 (15.0%) 45 (5.2%) 

Complete Left or Right Bundle Branch Block 31 (17.9%) 46 (5.7%) 

Moderate or Severe Valve Regurgitation 58 (33.5%) 49 (5.6%) 

Moderate or Severe Valvular Stenosis 6 (3.4%) 8 (0.9%) 
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                       (a)                                      (b) 

Figure 4. (a) Percentage of complications in reduced and normal LVEF groups. There is a 

significant difference in some indexes between the two groups. (b) Violin plot of basic 

patient information with LV dysfunction and non-LV dysfunction featuring a kernel 

density estimation of the multiple underlying distributions at once. 

As the recordings were collected in a ward environment, the PCG recordings contained significant 

noises, such as conversations, alarm sounds from medical instruments, television noises, footsteps, 

rubbing of the stethoscope and chest wall, breathing, and intestinal peristalsis. The ECG recordings 

were mainly affected by poor contact with the electrode and the myoelectric activity of the respiratory 

muscles. Given that the electrodes need to be in close contact with the skin, it was challenging to 

collect recordings from underweight patients. 

2.1.4. SEP-LVDb relevance 

1) To the best of our knowledge, this is the first documented database containing PCG and ECG 

synchronous signals using LVEF as a binary label. Each recording was provided with the 

corresponding clinical information, such as the patient’s gender, age, blood pressure, echocardiography 

results, and comorbidities, which facilitate further research. 

2) This database was designed to develop computer-aided technology for LV dysfunction 

detection. As patients with LV dysfunction usually have many complications, participants were not 

excluded because of these complications, increasing the difficulty of PCG and ECG analysis, but in 

line with reality. 

3) The PCG signals compiled in this database can be used for medical education on cardiac 

auscultation for medical students. 

2.2. Methods 

This model uses a multimodal parallel method to construct a dual-mode, dual-input, and 

multimodal deep neural network. During the preprocessing process, multimodal input signals were 

converted into a synchronized data frame and transformed into an input suitable for the neural network 

due to the heterogeneity of sampling rates. SEP-LVDPN is a two-stage model consisting of Bi-GRU 

and Resnet-18. The preprocessed data were extracted and classified by this model. 
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2.2.1. Data preprocessing 

ECG signals are well-recognized as low-frequency signals with an effective frequency range of 

0.05–100 Hz. PCG signals are also low-frequency signals, and the signal components are mainly 

concentrated in the range of 10–200 Hz. The Nyquist theorem was used for data preprocessing, using 

the following formula.  

nFF *2s   

It can be concluded that the sampling frequency of the ECG signal is at least 200 Hz and the 

sampling frequency of the PCG signal is not less than 400 Hz. Since the purpose of the algorithm is to 

detect anomalies in the signal, the sampling rate for collecting ECG was set to 500 Hz, and the 

sampling rate for PCG to 4000 Hz. 

 

Figure 5. (a) ECG preprocessing process. (b) PCG preprocessing process. 

In this study, the ECG recordings were collected from the hospital at a frequency of 500 Hz, 

which conformed to the sampling theorem. The ECG preprocessing is shown in Figure 5(a). The ECG 

signal was extremely weak; accordingly, the baseline was easily affected by external interference (i.e., 

poor electrode contact and myoelectric activity of respiratory muscles). In this study, low-frequency 

interference in the ECG signal was eliminated through a median filter. The median filtering method 

has a good filtering effect on the impulse noise, and the baseline drift phenomenon of the ECG signal 

can be eliminated. While filtering the noise, the median filter can protect the edge of the ECG signal 

and prevent it from being blurred. 

𝑔（𝑥, 𝑦） = 𝑚𝑒𝑑{𝑓(𝑥 − 𝑘, 𝑦 − 𝑙), (𝑘, 𝑙 ∈ 𝑊)} 

During acquisition, ECG signals were easily affected by high-frequency signals (such as 

electromyogram signals).  
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Figure 6. ECG preprocessing based on median filtering and wavelet transformation. The 

original signal is displayed above and the signal after median filtering below. 

For ECG signals that underwent the above processing, every segment with 5000 sampling points 

(the time length of each segment is 10 s) was intercepted at a random starting position. The intercept 

position ensures that the distance from the end of the signal is greater than or equal to 5000. If the total 

length of the signal is less than 5000, it will be filled as 0. Finally, this signal segment is converted into 

a spectrogram after a short-time Fourier transform (STFT). The STFT formula is as follows: 

𝑆𝑇𝐹𝑇(𝑡, 𝑓) = ∫ 𝑥(𝜏)ℎ(𝜏 − 𝑡)𝑒−𝑗2𝜋𝑓𝜏
+∞

−∞

𝑑𝜏 

Where ℎ(𝜏 − 𝑡) is the analysis window function, the window length is 50 (0.1 s, 10% of sample 

rate), corresponding to the signal's spectrogram. The ECG signal transformation involved using 

Fourier transform, with time on the horizontal axis, frequency on the vertical axis, and color 

representing the amplitude. The amplitude is the time-frequency distribution of the signal and can be 

understood as the color representing the energy distribution. The data format of the spectrogram is an 

n × m matrix. An ECG processed by STFT is shown in Figure 7. 

 

Figure 7. Spectrogram based on STFT. 

The PCG signals were handled similarly to the ECG signals, and the preprocessing is shown in 

Figure 5(b). They were also collected from the hospital at a frequency of 4000 Hz. The PCG signal 

was also weak and susceptible to external interference. 

We filtered out high- and low-frequency signals through a 10–2000 Hz bandpass filter during this 

research. Then, the processed PCG signal was intercepted with 40,000 sampling points (10 s) for 

analysis and converted to a spectrogram through STFT change. 
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2.2.2. Synchronous ECG and PCG left ventricular dysfunction prediction network (SEP-LVDPN) 

SEP-LVDPN is a two-stage multimodal fusion neural network consisting of two-layer Bi-GRU and 

ResNet-18. The details of the model are shown in Figure 1. The two-layer Bi-GRU was used to extract 

features in the time domain. Next, the two input modalities were dimensionally spliced to obtain a two-

dimensional feature matrix, and the data were classified using Resnet-18 and Sigmoid activation function. 

The SEP-LVDPN model is an essential innovation in this study; it harnesses the powerful feature 

extraction capabilities of Resnet-18 and Bi-GRU to directly classify normal and abnormal heart signals 

from the original data. This model omitted the intricate segmentation and manual feature extraction 

steps of PCG and ECG and thoroughly used their global features and extracted frequency and time 

domain information simultaneously. Therefore, the SEP-LVDPN model achieved an excellent 

performance in classifying LVD patients using synchronized PCG and ECG. 

Stage 1: Extraction and encoding of time-series features  

 
(a)                              (b) 

Figure 8. (a) Framework of two-layers Bi-GRU. (b) Cell of Bi-GRU. 

ECG and PCG signals are highly relevant data in the time domain; accordingly, an RNN is 

suitable for this scenario. However, RNNs are subject to limitations such as vanishing gradients. RNN 

cells gradually forget what they have learned before or find it difficult to obtain new knowledge when 

the length of the input signal increases [35]. Bi-GRU is a time-series neural network that can extract 

the time series features contained in the data well. Bi means “bidirectional”; indeed, a neural network 

experiences positive and negative time flow cycles. First, the compressed spectrogram progresses 

forward with time and in the reverse direction when time is reversed [36–38]. The GRU is a variant of 

the LSTM network with a more straightforward structure than the LSTM network, yielding a relatively 

better effect in some scenarios [37,38]. 

The two-layer Bi-GRU model and the cell of the Bi-GRU are shown in Figure 8. The calculation 

formula for each GRU unit is as follows: 

𝑧𝑡 = 𝜎(𝑊𝑧 ∗ [ℎ𝑡−1, 𝑥𝑡]) 

𝑟𝑡 = 𝜎(𝑊𝑟 ∗ [ℎ𝑡−1, 𝑥𝑡]) 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊 ∗ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡]) 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡 

ℎ𝑡−1 is the output at the previous moment, while 𝑥𝑡 and ℎ𝑡 represent the input and output at 

the current moment, respectively. It has an update gate and a reset gate. The update gate (𝓏𝓉) is used 

to control the percentage of the previous state information brought into the current state. The larger the 
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value of the update gate, the more the information on the state from the previous moment. The reset 

gate (𝓇𝓉) is used to control the degree to which the state information is ignored at the previous moment. 

The smaller the reset gate value, the more information is ignored. Every gated unit adaptively learns 

how much new information should be remembered and how much old information should be forgotten 

during the training process. A dropout layer was added between each Bi-GRU layer to alleviate the 

over-fitting phenomenon, and the rate was set to 0.6. Moreover, they can reduce the excessive 

dependence on the feature learning process and improve the generalization ability of the model [39]. 

Stage 2: Feature fusion and classification 

 

Figure 9. Feature fusion and classification using residual neural network. 

 

Figure 10. Convolution operation block (left) and remote jump connection (right). 

In the third segment of the network, the PCG and ECG features were independently extracted by 

the Bi-GRU model and fused, and Gaussian noise was mixed to improve the model’s generalization 

ability. Gaussian noise is a type of noise whose probability density function obeys a Gaussian distribution. 

As shown in Figure 9, the network input is an m × n × 3 feature matrix, where m and n are the 

dimensions of the matrix, and the number of channels is three. The fused features with three channels 

will be input into the residual network. Each operation block of the residual network is composed of a 

convolutional layer, pooling layer, batch normalization (BN) layer, and PRelu layer. BN normalizes 

the input of specific layers through a mini-batch, thereby fixing the mean and variance of the input 

signal of each layer. This is a more effective local response normalization method to prevent gradient 

dispersion [40]. A long-distance jump connection is built between every two convolutional layers. At 

the end of the network, there is a linear layer and a sigmoid activation function. The output of the 
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activation function is the classification result. The presence of LV dysfunction was determined 

according to the value of the output neuron and confidence. The convolution operation block and 

remote jump connection are shown in Figure 10. 

𝑦 = 𝐻(𝑥, 𝑊ℎ) + 𝑥 

The output 𝑦  is a linear superposition of 𝐻(𝑥, 𝑊ℎ);  𝑥 , is the identity map channel to the 

gradient; 𝑥 is the input data and 𝐻(𝑥, 𝑊ℎ) is the output of the weight layer. The operation of each 

layer is given by the formula above. The residual network solves the vanishing gradient problem of 

deep convolutional networks through remote jump connections. The remote jump connection directly 

maps the shallow features to the deep network, thus simplifying the learning process and enhancing 

gradient propagation [41,42]. The residual network reduces degradation and increases expressive 

ability by breaking the asymmetry. 

2.2.3. Experiment 

All data are collected from frontline clinics by professional medical staff. All data were cleaned, 

and the missing and abnormal values were corrected. All codes were run in the Python 3.6 environment, 

and the neural network part was mainly constructed by the Pytorch deep learning framework. All 

experiments were performed on the workstation configured as follows: (1) CPU: Ryzen R9-5900X 

with 12 cores and 24 threads, 4.8 GHz; (2) GPU: Nvidia RTX 3090 with 24 G memory; (3) Memory: 

Multi-channel 3200 frequency 64 G memory; (4) Operating system: Ubuntu 20.04. 

During the model training process, owing to the excellent video memory of the GPU, we set the 

batch size to 256. A larger batch size could provide a specific regularization effect for the deep learning 

model, increasing its generalization ability. For each model training, 800 iterations were conducted. 

Based on a large amount of data in our dataset, the optimizer chose Adam [43]. The initial learning 

rate was set to 0.0005, and as the training progressed, the ReduceLROnPlateau algorithm was used for 

adaptive adjustment. After finding that the loss no longer decreased or the accuracy value no longer 

increased, we reduced the learning rate [44,45]. Therefore, the matching degree of the learning rate 

and the learning process were maintained to the greatest extent to ensure that the model could fully 

absorb knowledge from the dataset [44–46]. The learning rate change process and loss value decrease 

are shown in Figure 11. The model successfully converged through learning and was close to the 

optimal value. 

 

Figure 11. Adaptive correction of learning rate and convergence of loss value. 
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2.2.4. Performance evaluation 

Five-fold cross-validation was conducted in this study. First, the PCG and ECG recordings of all 

subjects were divided into five subsets by stratified sampling, and the recordings in each subset were 

chopped into 3.2 s segments. Four subsets were used as the training set and the remaining as the 

validation set. Then, five iterations were performed, and the final classification result was the average 

of the cross-validations. As data of the reduced and normal LVEF groups were imbalanced, we 

replicated a set of reduced LVEF group data before stratified sampling. T, F, N and P were used to 

define true, false, negative and positive. Four evaluation indicators (EI) were introduced, including 

accuracy (Acc), precision (Pre), recall (Rec) and F-Score for assessing classification performance. 

𝐴𝑐𝑐 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒 ∗ 𝑅𝑒𝑐

𝑃𝑟𝑒 + 𝑅𝑒𝑐
 

Furthermore, to evaluate the performance of imbalanced data, the weighted avg was also used to 

consider the balanced performance with Pre, Rec and F-Score. 

𝑊𝑒𝑖𝑔ℎ𝑡 𝐴𝑣𝑒 = 𝐸𝐼𝑃 ∗
𝑃

𝑃 + 𝑁
+ 𝐸𝐼𝑁 ∗

𝑁

𝑃 + 𝑁
 

3. Results 

3.1. Separation and fusion of features 

This study used the fusion features of ECG and PCG for LVD prediction. We compared the 

performances of the fusion, single ECG, and single PCG features for the LVD classification based on 

the Bi-GRU model with a 3.2 s slice length. Every feature was trained ten times independently, and 

the optimal performance obtained in the iteration process was recorded. Finally, the average accuracy 

of each model was calculated and compared. As the data was imbalanced, the weighted avg was used 

to consider the balanced performance.  

Table 3. Experimental results of fusion feature, ECG, and PCG (Mean ± STD). 

Input Accuracy Precision Recall F-Score 

ECG + PCG 93.27 ± 1.36 93.34 ±1.45 93.27 ± 1.36 93.27 ± 1.39 

ECG 90.43 ± 1.35 91.23 ± 1.31 90.43 ± 1.35 90.62 ± 1.31 

PCG 90.32 ± 1.40 90.45 ± 1.53 90.31 ± 1.43 90.32 ± 1.45 
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As shown in Table 3 and Figure 12, the fusion feature yielded the best performance compared to 

ECG and PCG signals alone in terms of average accuracy (93.27 vs. 90.43 and 90.32%), precision 

(93.34 vs. 91.23 and 90.45%), recall (93.27 vs. 90.43 and 90.31%) and F-Score (93.27 vs. 90.62 and 

90.32%, respectively).  

 

Figure 12. Comparison of different physiological signals based on the Bi-GRU model. 

Notably, fusion features yielded the best performance. 

3.2. Different time series models 

The high-dimensional fusion features obtained from a time-series network to classify LVD were 

the core of SEP-LVDPN. Therefore, it was necessary to carefully design the timing network structure 

to extract features from the time and frequency domains simultaneously. We compared three 

mainstream timing models of neural networks: RNN, Bi-GRU and Bi-LSTM.  

Table 4 shows the experimental results of the Bi-GRU, RNN, and Bi-LSTM models. The Bi-GRU 

model achieved an accuracy, precision, recall and F-score of 93.98, 94.09, 93.99 and 93.98%, 

respectively. The RNN model achieved an accuracy, precision, recall and F-score of 90.94% 91.13, 

90.94 and 91.00%, respectively. The Bi-LSTM model achieved an accuracy, precision, recall and F-

score of 88.46, 89.22, 88.46 and 88.67%, respectively. As shown in Figure 13, the Bi-GRU model 

yielded the best performance and was relatively stable. 

Table 4. Experimental results of Bi-GRU, RNN and Bi-LSTM models (Mean±STD). 

Models Accuracy Precision Recall F-Score 

Bi-GRU 93.98 ± 0.76 94.09 ± 0.67 93.99 ± 0.75 93.98 ± 0.73 

RNN 90.94 ± 0.51 91.13 ± 0.64 90.94 ± 0.51 91.00 ± 0.55 

Bi-LSTM 88.46 ± 2.19 89.22 ± 1.75 88.46 ± 2.19 88.67 ± 1.84 
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Figure 13. Accuracy comparison of the Bi-GRU, Bi-LSTM and RNN models. Notably, 

the Bi-GRU model performed the best. 

 

Figure 14. Confusion matrix of Bi-GRU, RNN and Bi-LSTM. The data predicted by the 

model and the actual data were largely consistent. 

3.3. Frame length 

We found that the length of the slice window significantly affected the model's performance. 

Different time slice lengths also significantly affected the calculation load. Given that the heartbeat 

cycle was approximately 0.8 s, we used a time interval of 1.6 s to search for the best slice length. The 

time interval of the search start position was 1.6 s, and the end position was 11.2 s. We added 1.6 s 

each time and retrained the neural network multiple times during the search process, and took the 

average value to comprehensively evaluate the model's performance. As shown in Figure 15, an 

optimal selection frame length of 3.2 s yielded the best performance and conducted the correct amount 

of calculation. 
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Figure 15. Comparison of the impact of different time-slice lengths on model performance. 

The model was trained for each time slice length, and the average values of Acc, Pre, Rec 

and F-score were counted. At the same time, the prediction time for 256 data pieces was 

calculated. The left axis is model performance, and the right axis is time. 

3.4. Validation by an independent dataset 

Table 5. Details of the independent dataset. 

Due to the lack of available databases, we collected 40 synchronous ECG and PCG recordings 

from 39 inpatients in different periods to establish a separate dataset to verify the model's performance. 
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Acc Pre Rec F-Score Time

Parameters 
Reduced LEVF 

Group (12) 

Normal LVEF 

Group (28) 

LVEF (Mean ± SD, %) 40.06 ± 7.41 63.04 ± 4.32 

Age (Mean ± SD) 61.92 ± 14.76 58.25 ± 13.31 

Male (%) 9 (75.0%) 17 (60.7%) 

Hypertension 7 (58.3%) 19 (67.9%) 

COPD 0 (0.0%) 1 (3.6%) 

Atrial Fibrillation 1 (8.3%) 2 (7.1%) 

Complete Left or Right Bundle Branch Block 1 (8.3%) 0 (0.0%) 

Moderate or Severe Valve Regurgitation 6 (50.0%) 1 (3.6%) 

Moderate or Severe Valvular Stenosis 0 (0.0%) 0 (0.0%) 
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The reduced LEVF group had 12 recordings collected from 11 inpatients, while the normal LEVF 

group had 28 recordings collected from 28 inpatients. Based on the Bi-GRU model with a time-slice 

length of 3.2 s, this model achieved an accuracy, precision, recall and F-score of 80.00, 79.38, 80.00 

and 78.67%, respectively. Details of the independent dataset are shown in Table 5, and the confusion 

matrix of the results is shown in Figure 16. 

 

Figure 16. Confusion matrix of the results of validation by an independent dataset. 

3.5. Interpretable visualization experiments 

 

Figure 17. The Saliency Maps of SEP-LVDPN, it highlighted the primacy of the regions 

around the QRS wave, ST segment, T wave, the first heart sound (S1), the second heart 

sound (S2) and LVST. 

The interpretability of deep learning has always been one of the world's trickiest problems with 

sources of its unreliability. Saliency Maps are adopted for model interpretation, which can be employed 

to figure out the important variables for the model. It can also express the importance of each feature 

by calculating the gradient while the value of the derivative reflects the influence of changes in the 

input data on the final results. We applied the Saliency Maps, combine the calculated derivative matrix 

with the original signal to analyze its attention distribution in the original data. The Saliency Maps of 

SEP-LVDPN were shown in Figure 17, with highlights of the primacy of the regions around the QRS 

wave, ST segment, T wave, the first heart sound (S1), the second heart sound (S2), and LVST (interval 

between S1 and S2). 
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4. Discussion 

An important feature of this study was that LVD was detected by using synchronized ECG and 

PCG signals based on a neural network. In this study, we found that fusion features were significantly 

better than ECG or PCG alone for LVD classification. Over the years, ECG or PCG signals have been 

extensively used for HF classification [18–23]. Synchronized ECG and PCG signals analysis imply 

integrating ECG features with PCG features, such as QRS wave, ST segment, T wave, S1, S2 and 

LVST. Furthermore, an increasing body of evidence suggests that the time delay of cardiac electrical 

excitation and cardiac mechanical movement was extended in HF patients [24,26,27]. Moreover, SEP-

LVDPN was designed for LVD screening by simultaneous analysis of PCG and ECG. It could 

recognize features in the frequency domain and learn the time phase features between them in the time 

domain. These may account for the good performance of the PCG and ECG synchronous analyses. 

The Bi-GRU model outperformed the Bi-LSTM and RNN models in this study. Consistently, in a study 

conducted by Gao et al., the performance of the GRU model was better than the LSTM model [19]. 

Although the LSTM network structure was more complex than GRU, its model performance was 

unstable and subject to large variations in this study. The possible reason was that the LSTM model 

might be too large and easily lead to overfitting. A simple RNN network might not be able to solve the 

gradient explosion problem; accordingly, its performance was significantly weaker than the Bi-GRU 

model. This study also demonstrated that 3.2 s was the optimal frame length option. A possible reason 

was that the field of view of the neural network and the continuity between features might be destroyed 

if the frame length was too small. In contrast, a large frame length might give the neural network 

extremely messy information, making it difficult for the network to focus its attention on the feature 

set effectively.  

5. Conclusions 

This research led to the development of SEP-LVDb, a medium-scale ontology of cardiac 

physiological signals, including 1046 recordings. The reduced and normal LVEF groups consisted 

of 173 and 873 recordings. Patients with or without LVD may have many complications that influence 

ECG or PCG signals. An essential feature of this database is that these subjects were not excluded, 

which makes this dataset more broadly representative. Furthermore, detailed clinical information is 

available for every recording, providing the foothold for further research. 

This research proposed a multimodal parallel method for LVD identification based on PCG and 

ECG synchronous analysis. PCG and ECG signals were converted to spectrograms by STFT. Then, a 

two-layer Bi-GRU was used to extract the time domain and frequency domain features from PCG and 

ECG, respectively, and the features were fused and mixed into Gaussian noise. Finally, the multi-

features used the Resnet-18 neural network for feature learning and classification. 

We conducted experiments and comparisons of fusion features with PCG or ECG alone to validate 

that hybrid feature learning is effective. The results showed that fusion features were significantly 

better than the single feature. To better extract the features to be fused from the time-frequency domain, 

three different time-series neural networks were compared: RNN, Bi-GRU and Bi-LSTM. Bi-GRU 

achieved an optimal score owing to its appropriate model capacity and strong feature learning 

capabilities. The time slice length affects the calculation time and affects the model's performance. 

Interestingly, when a time slice length of 3.2 s is selected, the model can obtain better performance 

while ensuring that the amount of calculation does not increase significantly. We also conducted 
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interpretable visualization experiments in this study. The Saliency Maps showed that SEP-LVDPN 

could effectively learn the features from the data. 

A larger database with high-quality data from multiple centers will be used for analysis in our 

future works. To increase the generalizability of our model, a hospital field noise signal model can be 

added to the input terminal, whereby branch reduction technology is applied to reduce redundant units 

and the amount of calculation, and improve the overall performance. 
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