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Abstract: Under the uncertain market demand and quality level, a total profit model of green closed-

loop supply chain system (GCL-SCS) considering corporate environmental responsibility (CER) and 

government differential weight subsidy (GDWS) is constructed. Based on incentive-compatibility 

theory, the optimal subsidy allocation policy and green investment level were explored. Fuzzy chance-

constrained programming (FCCP) is used to clarify the uncertainty factors of this model; while genetic 

algorithm (GA) and CPLEX are used to find and compare a calculating example’s approximate optimal 

solution about this model. The main calculating results indicate that: (1) Enterprises can make optimal 

recycling, production and sales strategies according to different potential demand; (2) Without 

government subsidy, enterprises’ higher green investment level will reduce their average gross profit, 

increase the quality level of recycled products and decrease the recycling rate, hence reduce their 

environmental protection willingness; (3) Based on incentive-compatibility theory, when government 

subsidy weight is set as 0.34~0.41 for consumers, enterprises’ higher green investment level will 

enhance their average gross profit, reduce the quality level of recycled products and increase the 

recycling rate, which will improve their environmental protection willingness; (4) Under uncertain 

environment, the combination of reasonable government subsidy policy and enterprises green 

investment can make up for the defect of enterprises green investment alone, maximize utilities of 

government and enterprises, and optimize the green closed loop supply chain. 

Keywords: uncertain demands and recovery quality; corporate environmental responsibility; 

incentive-compatibility; government differential weight subsidy; CPLEX & Genetic algorithm 
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1.  Introduction  

With the shortage of natural resources and the continuous deterioration of ecological environment, 

circular economy has attracted more and more attention from all walks of life [1]. As an important part 

of the closed-loop supply chain system in the circular economy, recycling and remanufacturing 

activities can not only realize the efficient utilization of resources, but also reduce the adverse effects 

of waste pollution and over exploitation of resources [2]. Moreover, remanufacturing production, if 

properly handled, can decrease production cost, enhance productivity efficiency, and effectively 

improve the competitive advantage of enterprises [3]. However, closed loop supply chain management 

is more complex and there are still many challenges, for instance, how could enterprises make optimal 

decisions under uncertain environment and how could government formulates reasonable subsidy 

allocation policy to enhance enterprises’ green investment level and the implementation effect of 

recycling and remanufacturing [4]. 

Major uncertainty factors such as market demand, recovery quality, recycling rate, green level of 

recycled products, and buyback and remanufacturing costs, make green closed loop supply chain 

management more sophisticated and add more difficulties for enterprises to make recycling, 

production, and sales decisions [5]. Disturbances in market demand greatly affect production 

operation [6]. Uncertain recovery quality simultaneously affects recycling rate, buyback and 

remanufacturing costs, and green level of recycled products [7]. Therefore, demand and recovery 

quality are more important uncertainty factors. Wang et al. [8] regarded uncertain demand and 

manufacturing cost as fuzzy variables and analyzed optimal pricing policies considering green 

investment and sales effort. Li et al. [9] took random demand into consideration and established a 

theoretical model in which the remanufacturer plays as a leader and the recycler acts as a follower. Dai 

et al. [10] considered a dual-channel supply chain composed of a manufacturer and a retailer in which 

each member obtains heterogeneous forecasting information about uncertain demand. Zhu et al. [11] 

optimized decisions for hierarchical industrial status of the SME, CE and CB under the uncertainties 

of market demand. Zeballos et al. [12] proposed a scenario-based stochastic mixed-integer 

programming model considering uncertain recovery quality. Jeihoonian et al. [13] designed a closed-

loop supply chain network under uncertain quality status with a case of durable products. Heydari et 

al. [14] investigated a two-echelon reverse supply chain considering uncertain recovered quality that 

follows a uniform distribution. The above studies separately analyzed uncertain market demand or 

recovery quality. However, in reality, market demand is often divided into new products demand and 

remanufactured products demand [15], moreover, for enterprises, the proportion of new products and 

remanufactured products is related to the quality of recycled products. Based on above analysis, this 

paper simultaneously discusses uncertain market demand (new products and remanufactured products 

demand) and recovery quality. 

Stochastic programming, robust optimization, and fuzzy chance constrained programming are 

currently used methods to solve the uncertainty problem in closed-loop supply chain. Ghelichi et al. [16] 

established a two-stage stochastic programming model for the design of an integrated green biodiesel 

supply chain network from Jatropha Curcas feedstocks, and a flexible stochastic programming approach 

was developed and applied to the supply chain network model. Farrokh et al. [17] used robust optimization 

to solve the problem of uncertain demand and studied the impact of uncertain demand on net 

profit.  Ahmadi et al. [18] established a multi-objective mixed integer linear programming model 

considering uncertain requirements and adopted the fuzzy chance constraint programming method to 

solve uncertain problems. Josefa et al. [19] compared stochastic programming with fuzzy chance-



9522 

Mathematical Biosciences and Engineering  Volume 19, Issue 9, 9520–9549. 

constrained programming to solve the problem of uncertain demand and concluded that fuzzy chance-

constrained programming is easier to obtain the optimal solution.  Lima et al. [20] used a fuzzy 

programming approach to design and plan the downstream oil supply chain under uncertainty. Ziya-

Gorabi et al. [21] used fuzzy chance constrained programming to solve and optimize the problem of a 

mixed-integer linear programming (MILP) model with three objectives in both definite and indefinite 

states. By comparing the three methods, it can be found that stochastic programming can solve 

uncertain problems relatively accurately, but it requires enough statistical data and is too complicated 

to solve multi-scene problems [19].  Robust optimization can effectively deal with the changes of fuzzy 

parameters, but too much emphasis on confidence level will lead to conservative results [22].  Relatively 

speaking, fuzzy chance constraint programming can not only solve the problem of lack of accurate 

values, but also constrain confidence level according to the attitude of decision-makers, and avoid 

overly conservative results, thus making the model flexible, and more in line with the actual situation 

of enterprise decision-making [23].  In this paper, fuzzy chance-constrained programming is thus used 

to solve the demand uncertainty problem of both new products and remanufactured products.   

The purpose of building a green supply chain is to pursue both economic benefits and green 

benefits, that is, environmental benefits, so as to achieve the sustainable development of society. At 

present, enterprises pay attention not only to their competitiveness but also to their social image [24]. 

In recent years, many scholars have conducted extensive research on consumers' green preference 

behavior. Jian et al. [25] designed a green closed-loop supply chain with profit sharing contract 

coordination fairness. Liu et al. [26] optimized the network's worst-case performance based on a trade-

off between upside risk and economic cost expectations in a green closed-loop supply chain. Asghari 

et al. [27] examined a single-stage green closed-loop supply chain (GCLSC) in which the green 

manufacturer, retailer, and collector try to reform the environmental effects of their operations, 

products, and services across the value chain according to their environmental responsibilities. The 

above research only involve the study of green preference behavior, but this paper intends to take 

greenness as a parameter to specifically study the relationship between total profit, weighted subsidy 

and greenness level.   

Corporate Environmental Responsibility (CER) can not only enhance economic benefits and 

improve corporate image, but has a practical significance for environmental protection [28]. Moreover, 

consumers' preference for environmentally friendly products can bring unique competitive advantages 

for enterprises [29]. Marchi et al. [30] found that CER played a strategic role in closed loop supply 

chain management. Huang et al. [31] explored the impact of carbon policy and environmental 

responsibility investment on the integrated inventory. Hong et al. [32] considered stakeholders’ 

environmental responsibilities in a two-echelon supply chain in which a manufacturer designed and 

produced green products. Cheng et al. [33] established six game models considering environmental 

protection responsibility in order to address the optimal power structure problem. Han et al. [34] 

constructed an environmental responsibility improved input-output measurement model of corporate 

energy consumption and pollution discharge in industrial parks. Yang et al. [35] employed game 

models of a sustainable supply chain, considering environmental responsibilities under different 

channel leaderships. The above studies discussed the impact of corporate environmental responsibility 

on the optimal decision in a single cycle closed loop supply chain production. However, in real 

production activities, manufacturing and remanufacturing production is often carried out in multiple 

cycles [36]. Therefore, this paper studied CER through green investment in the multi-cycle closed loop 

supply chain. 

Government subsidies play an important role in encouraging enterprises to make green investment 

and improving the implementation effect of recycling and remanufacturing [37].  Zheng et al. [38] 
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discussed the impact of government subsidies on technological improvement and market demand and 

concluded that government’s subsidies to manufacturers are beneficial to reduce technological 

improvement costs and expand green product market.  Chen et al. [39] established an evolutionary 

game theory model based on carbon tax and subsidy, and studied the optimal decision of manufacturers 

under four different combinations of carbon tax and subsidy.  Cohen et al. [40] studied the effect of 

subsidized consumers on production and pricing decisions in the context of demand uncertainty.  Bian 

et al. [41] conducted a comparative study on the impact of subsidies to consumers and manufacturers 

on carbon emission reduction and social welfare. Deng et al. [42] studied the problem of optimal 

government-to-patient subsidy differential (G2P-SD) policy design. Wang et al. [43] analyzed the low-

carbon decision of the construction supply chain under government subsidies with the help of 

differential game theory. Chen et al. [44] investigated the optimal production and subsidy rate of the 

supply chain considering consumer environmental awareness.  In the above literature, subsidies to 

manufacturers and consumers were discussed separately, the unit total subsidy is fixed, and also the 

influence of recycled product quality level on the subsidies is not considered. This paper studies the 

influence of the government's differential weight subsidies to manufacturers and consumers on the 

optimal decision-making of closed-loop supply chain, moreover, the government will consider the 

quality level of recycled products in the process of giving subsidies.  

Incentive-compatibility theory makes both enterprises and government tend to maximize utility 

through incentive strategies [45]. Reasonable incentive mechanism formulated by government can 

effectively expand green product market, and increase recycling rate and economic benefits while 

guide enterprises to make a higher green investment level [46]. Wang et al. [47] investigated a couple 

of incentive mechanisms for collaboratively enhancing product greenness and found that the proposed 

incentive mechanisms can contribute to improve overall utility. Qu et al. [48] studied the incentive 

problems associated with inventory investment and found that incentive distortion arised when retailers 

had to allocate inventory over time. Wang et al. [49] regarded government subsidy as incentive 

mechanism and concluded that subsidy incentive could affect the synergetic development. Zhang et al. [50] 

found that only the tariffs incentive set by government and the values of environmental impact satisfied 

a three-dimensional area, can two competitive firms ensure a stable market. Guo et al. [51] examines 

notions of incentive-compatibility in an environment with ambiguity-averse agents. Barberà et al. [52] 

proved that incentive-compatibility extends to groups, and that strategy-proofness implies strong group 

strategy-proofness in the special case of private values. Based on incentive-compatibility theory, this 

paper studies optimal subsidy allocation policy when both government and manufacturer tend to 

maximize utility considering government differential weighting subsidy for manufacturer and 

consumers purchasing remanufactured products. 

Exact algorithm and meta-heuristic algorithm are often used to solve non-linear optimization 

issues with mixed integer variables. Among them, the exact algorithm can find the most accurate 

solution. In this paper, a classical accurate solution software, CPLEX is used to find the accurate 

solution of a calculating example of the model. Meta-heuristic algorithms are widely used to solve 

function optimization and discrete problems, such as monarch butterfly optimization (MBO), slime 

mould algorithm (SMA), moth search algorithm (MSA), hunger games search (HGS), Runge Kutta 

method (RKM), colony predation algorithm (CPA), Harris hawks optimization (HHO), and Genetic 

algorithm (GA). Feng et al. [53] found that MBO can outperform many state-of-the-art optimization 

techniques when solving global numerical optimization and engineering problems. In order to 

demonstrate the superior performance of the MBO algorithm, Wang et al. [54] carried out a 

comparative study with five other meta-heuristic algorithms through thirty-eight benchmark problems, 

and found that the MBO method is able to find the better function values on most benchmark problems 

https://www.sciencedirect.com/topics/engineering/numerical-optimization
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as compared to five other meta-heuristic algorithms. Rahman et al. [55] used moth search algorithm 

(MSA) to optimize and validate the trade-off between the total cost of tardiness and batch delivery. 

Chouar et al. [56] investigated slime mould algorithm (SMA) to reduce cost in a PI-SCN hybrid 

framework based on an artificial neural network. Yang et al. [57] believed main feature of hunger 

games search is its dynamic nature, simple structure, and high performance in terms of convergence 

and acceptable quality of solutions. Nguyen et al. [58] introduced a novel and robust hybrid model for 

predicting BIGV based on the Hunger Games Search optimization algorithm (HGS) and ANN. 

Ambrosio et al. [59] provided a nonlinear stability analysis for a class of stochastic Runge-Kutta 

methods (RKM), applied to problems generating mean-square contractive solutions. Shi et al. [60] 

created an efficient intelligence method for the diagnosis of COVID-19 from the perspective of 

biochemical indexes, which is called the colony predation algorithm (CPA). Mashaleh et al. [61] 

presented a novel spam classification on email spam technique, which integrated the Harris Hawks 

optimizer (HHO) algorithm. The above research involve new algorithms in recent years, we can find 

the better function values on most benchmark problems as compared to other meta-heuristic algorithms. 

However, they are rarely used in closed-loop supply chain models at present. 

Genetic algorithm (GA), as a heuristic random intelligent optimization algorithm to find the 

optimal solution through iteration, can process multiple individuals in the population at the same time, 

thus reducing the risk of falling into the local optimal solution. As a classical intelligent optimization 

algorithm, GA is widely used in function optimization and path optimization in the field of closed-loop 

supply chain [62]. Aiming at the carbon emission of e-commerce companies, Liu et al. [63] proposed 

GA to solve the joint design model of multi-cycle reverse logistics network. Sahebjamnia et al. [64] 

developed hybrid meta-heuristic algorithms, such as GA, Simulated Annealing (SA) and so on to 

improve the solution quality and decrease the computational time for solving the sustainable closed-

loop tire supply chain network. Feng et al. [65] optimized BP neural network based on GA and PSO. 

Zhao et al. [66] carried out GA to validate the feasibility and applicability of emergency 

distribution route optimization for EV mobile power supply. 

Considering that the main contribution of this paper is to establish a profit models of green closed 

loop supply chain system, the validity of the model is verified by numerical examples.  In the past few 

years, GA has proved its good applicability and many papers also use GA as a reliable calculating 

method, by comparing the calculation results of CPLEX and GA in the small-scale case, the 

effectiveness of GA algorithm is verified in this paper. 

Based on above analysis, this paper studies enterprises’ optimal recovery, production and sales 

decisions under uncertain environments; and fatherly, based on incentive-compatibility, government’s 

optimal subsidy allocation policy and enterprises’ green investment level are also analyzed when both 

government and enterprises tend to maximize their utilities. This study could help enterprises make 

optimal decisions when faced with uncertain market demand and recovery quality, and also provide 

quantifiable suggestions for government to formulate reasonable subsidy allocation weight so as to 

effectively promote enterprises' enthusiasm for green investment and encourage enterprises to engage 

in recycling and remanufacturing. The comparison between the above literature and this study is shown 

in Table 1. 

The uniqueness and contributions of this paper are listed below: 

(1) Incentive-compatibility theory is proposed to construct a green closed-loop supply chain model. 

(2) The proposed green closed-loop supply chain model can solve the problem of optimal 

operation of remanufacturing enterprises under uncertain environments of market demands and quality 

level of recycled products. 

(3) Two profit models of green closed loop supply chain system are constructed under no 

https://www.sciencedirect.com/science/article/abs/pii/S0957417421003055#!
https://link.springer.com/article/10.1007/s11053-021-09903-8#auth-Hoang-Nguyen
https://www.sciencedirect.com/topics/computer-science/particle-swarm-optimization
https://www.sciencedirect.com/topics/engineering/route-optimization
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government subsidy and government differential weight subsidy considering CER.  

(4) Quantified subsidy for government and green investment level for enterprises are provided. 

Table 1.  Feature comparison of some relevant studies. 

 
Green Closed-loop 

supply chain 

Incentive-

compatibility 

Uncertain 

demand 

Uncertain recycling 

quality 

GDWS 

 

CER 

Dominguez et al. (2019)    √   

Atabaki et al. (2020)    √   

Liao et al. (2020)    √   

Khorshidvand et al. (2021)    √   

Cohen et al. (2016)   √ √   

Jeihoonian et al. (2017)    √   

Li et al. (2019)   √ √   

Almaraj et al. (2019)    √   

Zhu et al. (2020)   √ √   

Aminipour et al. (2021)   √    

Dai et al.（2022）   √    

Zhu et al. (2022)   √    

Deng et al. (2021)   √  √  

Wang et al. (2022)   √  √  

Wang et al. (2020)   √  √  

Chen et al. (2022)    √ √  

Zheng et al. (2022) √   √   

Jian et al. (2021) √   √   

Liu et al. (2021) √      

Asghari et al. (2022) √      

Zhang et al. (2017)  √     

Qu et al. (2018)  √     

Suliman et al. (2019)  √     

Nielsen et al. (2019)  √     

Wang et al,2020  √     

Wang et al,2021  √     

Huiyi Guo et al.(2022)  √     

Barberà et al. (2022)  √     

Cheng et al,2017   √   √ 

Marchi et al,2018   √   √ 

Hong et al,2019   √   √ 

Heydari et al, 2020   √   √ 

Huang et al,2020   √   √ 

Wu et al, 2020   √   √ 

Feng et al, 2021   √   √ 

Yang et al,2022   √   √ 

Han, &Cao,2021   √   √ 

This article √ √ √ √ √ √ 
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The remainder of this paper is organized as follows: problem definitions, assumptions, and 

notations are stated in Section 2. Section 3 provides a derivation of the established models. Section 4 

introduces solution techniques GA and CPLEX. The computational results, sensitivity analysis and 

managerial insights are rendered in Section 5. Finally, key conclusions of this study and potential future 

extensions are rendered in Section 6. 

2.  Problem definitions, notations, and assumptions 

2.1. Problem definitions 

Two gross profit models of green closed loop supply chain system were constructed under no 

government subsidy and government differential weight subsidy considering CER and incentive-

compatibility respectively. This paper mainly deals with the following questions: 

(1) How do uncertain demands of new products and remanufactured products affect 

manufacturers’ optimal recycling, production, and sales decisions in the green closed loop supply chain? 

(2) In the case of considering CER alone without government subsidy, how can green investment 

level affect gross profit, recycled products greenness, recycling rate, and manufacturer's enthusiasm 

for green investment?  

(3) In the case of considering CER and government differential weighting subsidy, based on 

incentive-compatibility theory, how can government set a reasonable subsidy allocation weight to 

effectively incent manufacturer to set a higher green investment level, so as to achieve the effect of 

incentive-compatibility and the purpose of environmental protection? 

2.2. Notations 

To model the green closed loop supply chain system (GCL-SCS), the following notations 

are introduced. 

2.2.1. Input parameters 

Input parameters Definition 

𝜎 Recycled product greenness coefficient; 

𝑤 Subsidy weight for consumers, 0 < 𝑤 < 1; 

𝛼𝑛 Potential demand for new products per unit time; 

𝛼𝑟 Potential demand for remanufacturing products per unit time; 

𝜏1 Price sensitivity coefficient;  

𝜏2 Cross price sensitivity coefficient; 

𝜇 Sensitivity coefficient of demand to subsidy; 

𝑙 Sensitivity coefficient of demand to recycled products greenness; 

𝑏 Parameter of recycling rate function,  0 ≤ 𝑏 ≤ 1; 

𝜑 Parameter of recycling rate function; 

𝑎 Parameter of buyback cost function, 0 ≤ 𝑎 ≤ 1; 

𝜃 Parameter of buyback cost function; 

c Parameter of remanufacturing cost function, 0 ≤ 𝑐 ≤ 1; 
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𝛿 Parameter of remanufacturing cost function; 

𝑒 Green investment level;  

𝜋 Green investment cost parameter; 

𝑞𝑠 Standard quality level of recycled products; 

𝑡 Adjustment factor of subsidy coefficient, 0 ≤ 𝑡 ≤ 1; 

1/𝛽 Manufacturing rate, [unit]/[time] , 0 <β<1; 

1/𝛾 Remanufacturing rate, [unit]/[time] , 0< γ<1; 

ℎ𝑠 Holding cost per unit time of serviceable stock; 

ℎ𝑟 Holding cost per unit time of recycled products stock; 

ℎ𝑟𝑎𝑤 Holding cost per unit time of raw material stock; 

𝐶0 Ordering cost; 

𝐶n Manufacturing cost per unit; 

𝐶raw Purchasing cost for raw material per unit; 

𝑆1 Manufacturing installation cost; 

𝑆2 Remanufacturing installation cost; 

𝑑𝑛 Triangular fuzzy number of potential demand for new products; 

𝑑𝑟 Triangular fuzzy number of potential demand for remanufacturing products; 

𝑗 Confidence level of potential demand for new products; 

𝑘 Confidence level of potential demand for remanufacturing products. 

2.2.2. Output parameters 

Output parameters Definition 

𝐷𝑛 Demand for new products per unit time; 

𝐷𝑟 Demand for remanufacturing products per unit time; 

𝐷 Overall demand per unit time; 

𝑉1 Average setup cost for manufacturing; 

𝑉2 Average ordering cost; 

𝑉3 Average raw material holding cost; 

𝑉4 Average manufacturing cost; 

𝑉5 Inventory costs of raw materials and new products per unit time; 

𝑑 Recycling rate; 

𝑝 Buyback cost ratio; 

𝑠 Remanufacturing cost ratio; 

𝑟 Subsidy for unit remanufacturing product; 

𝑆𝑚 Total subsidy for manufacturer; 

𝑆𝑐 Total subsidy for consumers who buy remanufacturing products; 

𝑇𝑚 Time interval of one remanufacturing lot; 

𝑇𝑛 Time interval of one manufacturing lot; 

𝐼𝑀 The maximum new products inventory; 

𝐼𝑅 The maximum remanufacturing products inventory; 

𝐼𝑟 The maximum recycled products inventory; 

𝐼𝑟𝑎𝑤 The maximum raw material inventory; 
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𝐻𝑀 Inventory carrying cost of remanufacturing products per unit time ; 

𝐻𝑅 Inventory carrying cost for new products per unit time; 

𝐻𝑟 Inventory carrying cost of recycled products per unit time; 

𝐻𝑟𝑎𝑤 Inventory carrying cost of raw material per unit time; 

𝑉6 Average setup cost for remanufacturing ; 

𝑉7 Average buyback cost; 

𝑉8 Average remanufacturing cost; 

𝑉9 Inventory costs of recycled products and remanufacturing products; 

𝑉10 Average green investment cost; 

𝐴𝑃 Average gross profit under no government subsidy; 

𝐴𝑃𝐺 Average gross profit under government differential weight subsidy. 

2.2.3. Decision variables 

Decision variables Definition 

𝑇 Length of one manufacturing and remanufacturing cycle; 

𝑚 Number of remanufacturing lots, positive integer; 

𝑛 Number of manufacturing lots, positive integer; 

𝑞 The required minimum quality level of recycled products, 0 ≤ 𝑞 ≤ 1; 

𝑔 Recycled product greenness; 

𝑝n Sales price of new products per unit; 

𝑝r Sales price of remanufacturing products per unit. 

2.3. Assumptions 

To model the green closed loop supply chain system, the following assumptions are introduced. 

(1) The quality level of returned used products obeys standard normal distribution [67]. 

(2) Raw materials are purchased only once in a cycle [68]. 

(3) All recycled products are remanufactured [69], because there is a minimum quality level 

required for product recycling [70]. 

 (4) Take no account of lead time, out of stock or surplus [68]. 

(5) Recycled products greenness is proportional to the recovery quality level: 𝑔 = 𝜎𝑞 [71]. 

(6) Government subsidies manufacturers and consumers buying remanufacturing products with 

different allocation weights [72].The allocation weight for consumers is  𝑤, and the corresponding 

allocation weight for manufacturer is 1 − 𝑤. 

(7) Market demand for new products is  𝐷𝑛 = 𝛼𝑛 − 𝜏1𝑝𝑛 + 𝜏2𝑝𝑟 − 𝜇√𝑤𝑟 + 𝑙√𝑒, market demand 

for remanufacturing products is 𝐷𝑟 = 𝛼𝑟 − 𝜏1𝑝𝑟 + 𝜏2𝑝𝑛 + 𝜇√𝑤𝑟 + 𝑙√𝑒 , so the overall market 

demand is 𝐷 = 𝛼𝑛 + 𝛼𝑟 + (𝜏2 − 𝜏1)(𝑝𝑛 + 𝑝𝑟) + 2𝑙√𝑒 [73, 74]. 

3.  Mathematical modeling 

As can be seen in Figure 1, the green closed loop supply chain system consists of the following 

parts: (1) Manufacturer purchases raw materials for new products production and recycles used 
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products from consumers for remanufacturing activities. (2) Manufacturer undertakes CER by 

adopting green technology investment for new products and remanufactured products. (3) Consumers 

buy new products or remanufactured products and recycle used products to manufacturer. (4) 

Government subsidies manufacturer and consumers buying remanufactured products aiming to 

enhance the green investment level and implementation effect of recycling and remanufacturing. The 

whole process forms a material cycle flow. 

 

 

 

 

 

 

 

Figure 1. Green closed loop supply chain system (GCL-SCS) model. 

3.1. Cost of new products 

3.1.1. Setup cost for manufacturing 

At each cycle length T, manufacturing incurs a one-time production setup cost per unit time and 

it is given by: 

V1 = 𝑛𝑆1 𝑇⁄                                                        (1) 

𝑉1 represents average setup cost for manufacturing. 

3.1.2 Ordering cost 

Order cost is the cost incurred to replenish stocks. Its function is given by: 

 𝑉2 = 𝐶0/𝑇                                                        (2) 

𝑉2 represents average ordering cost, and total ordering cost for T period is 𝐶0. 
𝑉2 represents average ordering cost, and total ordering cost for T period is 𝐶0. 

3.1.3. Raw material holding cost  

Raw material holding cost is the cost incurred to maintain raw materials. Its function is the 
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following: 

𝑉3 = (1 − 𝛼)𝐷𝐶𝑟𝑎𝑤                                                 (3) 

𝑉3 represents average raw material holding cost, which equals to purchase quantity and unit cost 

of raw materials. 

3.1.4. Manufacturing cost 

Manufacturing cost is the cost for production activities. Its function is determined by: 

𝑉4 = (1 − 𝛼)𝐷𝐶𝑛                                                    (4) 

𝑉4  represents average manufacturing cost, which equals to manufacturing quantity and unit 

manufacturing cost. 

3.1.5. Inventory costs of raw material and new products 

A period T is composed of 𝑛 manufacturing periods 𝑇𝑛 and 𝑚 remanufacturing periods 𝑇𝑚. 

The inventory statuses are shown in Figure 2 [75].  

Remanufacturing process is set before manufacturing process, because the value of recycled 

products decreases gradually with the shelving time in a short life cycle. Remanufacturing products 

inventory builds up at a rate of (1/γ − 1)D units per unit of time and stops at its peak 𝐼R; recycled 

products inventory decreases at a rate of (α − 1/γ)D . Then manufacturing process begins, new 

products inventory builds up at a rate of (1/β − 1)D units per unit of time and stops at its peak 𝐼M; 

simultaneously, raw material inventory decreases at the rate of (1/β)D (as shown in Figure 2). 

 

 

 

 

 

 

 

 

Figure 2. Inventory statuses (Note: m=3 and n=2. Here is just an example). 

According to above analysis, the related formulas are listed below: 

T=m𝑇𝑚 + 𝑛𝑇𝑛                                                      (5) 

𝑚𝐷𝑇𝑚 = 𝛼𝐷𝑇, 𝑚𝑇𝑚 = 𝛼𝑇                                            (6) 
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𝑛𝐷𝑇𝑛 = (1 − 𝛼)𝐷𝑇, 𝑛𝑇𝑛 = (1 − 𝛼)𝑇                                    (7) 

After simple deduction, the following can be gained: 

𝐼𝑟𝑎𝑤 is the maximum raw material inventory: 

𝐼𝑟𝑎𝑤 = 𝑛𝐷𝑇𝑀 = (1 − 𝛼)𝐷𝑇                                          (8) 

𝐼𝑀 is the maximum new products inventory: 

𝐼𝑀 = (1 − 𝛽)(1 − 𝛼)𝐷𝑇/𝑛                                           (9) 

Then the inventory costs of raw material and new products 𝑉5 are:  

𝑉5 =
1

2
(𝛽 + 𝑛 − 1)ℎ𝑟𝑎𝑤𝐼𝑟𝑎𝑤𝑇𝑛

1

𝑇
+
1

2
ℎ𝑠𝐼𝑀𝑛𝑇𝑛

1

𝑇
 

      =
1

2𝑛
(𝛽 + 𝑛 − 1)ℎ𝑟𝑎𝑤(1 − 𝛼)

2𝐷𝑇 +
1

2𝑛
ℎ𝑠(1 − 𝛽)(1 − 𝛼)

2𝐷𝑇               (10) 

3.2. Cost of remanufactured products 

Recycled products, like raw materials, are deemed as a kind of production resource. If their price 

is higher than production cost, they will not be economically recycled. The quality level of recycled 

products can affect recycling rate, buyback, and remanufacturing cost.  

Recycling rate 𝑑 is related to the required minimum quality level of recycled products 𝑞. If we 

improve the required minimum quality level 𝑞, the recycling rate 𝑑 will decrease, and vice versa. 

With a constant demand rate 𝐷, recycling rate is defined as: 

𝑑 = 𝛼𝐷                                                          (11) 

Marginal recycling rate is the following [70]: 

        𝛼 = 𝑏𝑒−𝜑𝑞                                                        (12) 

    𝑏 and φ are parameters applied in different conditions. 

Based on model assumptions, required minimum quality level 𝑞  obeys standard normal 

distribution, 𝑞~𝑁(0.1) , 𝑥  is the quality level of recycled products,  𝑞 < 𝑥 < 1.  The probability 

density function is:  

𝑋(𝑥) = {
1

√2𝜋
𝑒−𝑥

2 2⁄ ,    𝑞 < 𝑥 < 1

0,                𝑜𝑡ℎ𝑒𝑟𝑠
                                      (13) 

3.2.1. Setup cost for remanufacturing 

At each cycle length T, remanufacturing incurs a one-time production setup cost per unit time and 

it is given by: 

         V6 = 𝑚𝑆1 𝑇⁄                                                       (14) 

𝑉6  represents average setup cost for remanufacturing. 
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3.2.2. Buyback cost 

Buyback cost ratio p (related to different quality level x) is the ratio of unit buyback cost to unit 

production cost of new product (here production cost is defined as manufacturing cost 𝐶𝑛 plus raw 

materials cost 𝐶𝑟𝑎𝑤). Buyback cost ratio is the following [70]: 

𝑝 = 𝑎𝑒−𝜃(1−𝑥)                                                     (15) 

Expected function of buyback cost ratio is: 

       𝐸(𝑝) = ∫
1

√2𝜋
𝑒−𝑥

2 2⁄ 𝑎𝑒−𝜃(1−𝑥)
+∞

−∞
𝑑𝑥 

                   = 𝑎𝑒
𝜃2−2𝜃

2 ∫
1

√2𝜋
𝑒−

(𝑥−𝜃)2

2 𝑑𝑥
1

𝑞
= 𝑎𝑒

𝜃2−2𝜃

2 [∅(1 − 𝜃) − ∅(𝑞 − 𝜃)]          (16)                              

Buyback cost function is determined by: 

          𝑉7 = 𝑑(𝐶𝑛 + 𝐶𝑟𝑎𝑤) 𝐸(𝑝) 

                = 𝛼𝑏𝑒−𝜑𝑞+(𝜃
2−2𝜃) 2⁄ [∅(1 − 𝜃) − ∅(𝑞 − 𝜃)]𝐷(𝐶𝑛 + 𝐶𝑟𝑎𝑤)               (17)                

𝑉7 represents average buyback cost, which consists of 𝐶𝑛, 𝐶𝑟𝑎𝑤, 𝐸(𝑝), and 𝑑. 

The reason why buyback cost is defined according to production cost is that recycled products 

are assumed to be a kind of raw materials. If we improve the required minimum quality level, the 

buyback cost will increase, and vice versa. 

3.2.3. Remanufacturing cost 

Similar to buyback cost function, remanufacturing cost ratio 𝑠 (related to different quality level 

x) is the ratio of unit remanufacturing cost to unit manufacturing cost of new product. Remanufacturing 

cost ratio is the following [68]:   

          𝑠 = 𝑐𝑒𝛿(1−𝑥)                                                     (18) 

Expected function of remanufacturing cost ratio is the following [75]: 

         𝐸(𝑠) = ∫
1

√2𝜋
𝑒−𝑥

2 2⁄ 𝑐𝑒𝛿(1−𝑥)𝑑𝑥
+∞

−∞

 

                    = 𝑐𝑒𝛿 ∫
1

√2𝜋
𝑒−

𝑥2

2−𝛿𝑥𝑑𝑥 =
1

𝑞
𝑐𝑒

𝛿2+2𝛿

2 [∅(1 + 𝛿) −  ∅(𝑞 + 𝛿)]             (19) 

If we improve the required minimum quality level, the remanufacturing cost will decrease, and 

vice versa. Remanufacturing cost function is determined by: 

     𝑉8 = 𝑑𝐶𝑛𝐸(𝑠)  

               = 𝑐𝑏𝑒−𝜑𝑞+(𝛿
2−2𝛿) 2⁄ [𝑒𝛿−(𝛿+𝜆)𝑞 − 𝑒−𝜆][∅(1 + 𝛿) − ∅(𝑞 + 𝛿)]𝐷𝐶𝑛        (20)  

𝑉8 represents average remanufacturing cost, which consists of Cn, E(s), and d. 
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3.2.4. Inventory costs of recycled products and remanufacturing products  

𝐼𝑟 is the maximum recycled products inventory: 

𝐼𝑟 = 𝛼 [(1 − 𝛼) +
𝛼(1−𝛾)

𝑚
]𝐷𝑇                                         (21) 

𝐼𝑅 is the maximum remanufacturing products inventory: 

𝐼𝑅 = (1 − 𝛾)𝛼𝐷𝑇/𝑚                                                (22) 

Then the inventory costs of recycled products and remanufacturing products 𝑉9  are:  𝑉9 =

1

2
ℎ𝑠𝐼𝑅𝑚𝑇𝑚

1

𝑇
+
1

2
ℎ𝑟𝐼𝑟𝑇

1

𝑇
 

       =
1

2𝑚
ℎ𝑠(1 − 𝛾)𝛼

2𝐷𝑇 +
1

2
ℎ𝑟 [𝛼(1 − 𝛼) +

1

𝑚
𝛼2(1 − 𝛾)]𝐷𝑇              (23) 

3.3. Incentive-compatibility functions 

Incentive-compatibility theory can avoid the agent to damage the principal's interests for their 

own benefits through various incentive strategies and ensure the agent act in accordance with the 

wishes of the principal, so that both parties tend to maximize their utilities [76]. 

According to above definition, incentive-compatibility theory consists of two parts: incentive and 

compatibility [77]. In this paper, the agent is set as manufacturer, and the principal is set as government. 

In order to undertake CER in production activities, manufacturer produces green products through 

green investment. In order to incent and guide manufacturer to set a higher green investment level, 

improve the implementation effect of recycling and remanufacturing, and achieve the purpose of 

environmental protection, government adopts differential weighting subsidy policy for manufacturer 

and consumers. Therefore, green investment is compatibility and government subsidy is incentive. 

3.3.1. Incentive function 

Government plays an important role in the formation and development of closed loop supply 

chain [78]. The operation of closed loop supply chain can be optimized and overall environmental 

benefits can be maximized by government subsidy incentive [72]. 

Government implements differential weight subsidy incentive for manufacturer and consumers 

purchasing remanufactured products according to model assumptions. With different quality levels of 

recycled products, the total subsidy amount for unit remanufactured product is 𝑟 = 𝑝𝑟𝑡(𝑞 − 𝑞𝑠)/𝑞 [24]. 

The allocation weights for consumers and manufacturer are 𝑤  and 1 − 𝑤 , so the total subsidy 

amount for manufacturer producing remanufactured products is: 

𝑆𝑚 = (1 − 𝑤)𝑟𝑑 = (1 − 𝑤)𝑝𝑟𝑡𝑏𝑒
−𝜑𝑞𝐷(𝑞 − 𝑞𝑠)/𝑞                       (24) 

The total subsidy amount for consumers purchasing remanufactured products is: 

𝑆𝑐 = 𝑤𝑟𝑑 = 𝑤𝑝𝑟𝑡𝑏𝑒
−𝜑𝑞𝐷(𝑞 − 𝑞𝑠)/𝑞                                  (25) 
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3.3.2. Compatibility function 

Manufacturer undertakes corporate environmental responsibility and produces green products 

through green technology investment. Green investment cost is a convex function of investment level 

𝑒. The average green investment cost is the following [79]: 

𝑉10 = 𝜋𝑒
2 𝑇⁄                                                        (26) 

3.4. Average gross profit 

The average gross profit of the green closed loop supply chain system considering only CER 

without government subsidy is: 

         𝐴𝑃 = 𝑝𝑛𝐷𝑛 + 𝑝𝑟𝐷𝑟 − 𝑉1 − 𝑉2 − 𝑉3 − 𝑉4 − 𝑉5 − 𝑉6 − 𝑉7 − 𝑉8 − 𝑉9 − 𝑉10 

         = 𝑝𝑛(𝛼𝑛 − 𝜏1𝑝𝑛 + 𝜏2𝑝𝑟 − 𝜇√𝑤𝑟 + 𝑙√𝑒) + 𝑝𝑟(𝛼𝑟 − 𝜏1𝑝𝑟 + 𝜏2𝑝𝑛 + 𝜇√𝑤𝑟 + 𝑙√𝑒) 

         − 𝑛𝑆1 𝑇⁄ − 𝐶𝑜 𝑇⁄ − (1 − 𝛼)[𝛼𝑛 + 𝛼𝑟 + (𝜏2 − 𝜏1)(𝑝𝑛 + 𝑝𝑟) + 2𝑙√𝑒](𝐶𝑛 + 𝐶𝑟𝑎𝑤) 

         − [
𝛽 + 𝑛 − 1

2𝑛
ℎ𝑟𝑎𝑤 +

ℎ𝑠
2𝑛
(1 − 𝛽)] [𝛼𝑛 + 𝛼𝑟 + (𝜏2 − 𝜏1)(𝑝𝑛 + 𝑝𝑟) + 2𝑙√𝑒]𝑇(1 − 𝛼)

2 

         −𝑚𝑆1 𝑇⁄ − 𝛼𝑏𝑒−𝜑𝑞+(𝜃
2−2𝜃) 2⁄ [𝛼𝑛 + 𝛼𝑟 + (𝜏2 − 𝜏1)(𝑝𝑛 + 𝑝𝑟) + 2𝑙√𝑒](𝐶𝑛 + 𝐶𝑟𝑎𝑤) 

         [∅(1 − 𝜃) − ∅(𝑞 − 𝜃)] − 𝑐𝑏𝑒−𝜑𝑞+(𝛿
2−2𝛿) 2⁄ [𝑒𝛿−(𝛿+𝜆)𝑞 − 𝑒−𝜆][∅(1 + 𝛿) − ∅(𝑞 + 𝛿)] 

         [𝛼𝑛 + 𝛼𝑟 + (𝜏2 − 𝜏1)(𝑝𝑛 + 𝑝𝑟) + 2𝑙√𝑒]𝐶𝑛 − [𝛼𝑛 + 𝛼𝑟 + (𝜏2 − 𝜏1)(𝑝𝑛 + 𝑝𝑟) + 2𝑙√𝑒] 

         [
ℎ𝑠

2𝑚
(1 − 𝛾)𝛼2 +

ℎ𝑟

2
𝛼(1 − 𝛼) +

ℎ𝑟

2𝑚
𝛼2(1 − 𝛾)] 𝑇 − 𝜋𝑒2 𝑇⁄                    (27) 

The average gross profit of the green closed loop supply chain system considering CER and 

government differential weight subsidy is: 

         𝐴𝑃𝐺 = 𝑝𝑛𝐷𝑛 + 𝑝𝑟𝐷𝑟 − 𝑉1 − 𝑉2 − 𝑉3 − 𝑉4 − 𝑉5 − 𝑉6 − 𝑉7 − 𝑉8 − 𝑉9 − 𝑉10 + 𝑆𝑚  

         = 𝑝𝑛(𝛼𝑛 − 𝜏1𝑝𝑛 + 𝜏2𝑝𝑟 + 𝑙√𝑒) + 𝑝𝑟(𝛼𝑟 − 𝜏1𝑝𝑟 + 𝜏2𝑝𝑛 + 𝑙√𝑒) 

         − 𝑛𝑆1 𝑇⁄ − 𝐶𝑜 𝑇⁄ − (1 − 𝛼)[𝛼𝑛 + 𝛼𝑟 + (𝜏2 − 𝜏1)(𝑝𝑛 + 𝑝𝑟) + 2𝑙√𝑒](𝐶𝑛 + 𝐶𝑟𝑎𝑤) 

         − [
𝛽 + 𝑛 − 1

2𝑛
ℎ𝑟𝑎𝑤 +

ℎ𝑠
2𝑛
(1 − 𝛽)] [𝛼𝑛 + 𝛼𝑟 + (𝜏2 − 𝜏1)(𝑝𝑛 + 𝑝𝑟) + 2𝑙√𝑒]𝑇(1 − 𝛼)

2 

         −𝑚𝑆1 𝑇⁄ − 𝛼𝑏𝑒−𝜑𝑞+(𝜃
2−2𝜃) 2⁄ [𝛼𝑛 + 𝛼𝑟 + (𝜏2 − 𝜏1)(𝑝𝑛 + 𝑝𝑟) + 2𝑙√𝑒](𝐶𝑛 + 𝐶𝑟𝑎𝑤) 

         [∅(1 − 𝜃) − ∅(𝑞 − 𝜃)] − 𝑐𝑏𝑒−𝜑𝑞+(𝛿
2−2𝛿) 2⁄ [𝑒𝛿−(𝛿+𝜆)𝑞 − 𝑒−𝜆][∅(1 + 𝛿) − ∅(𝑞 + 𝛿)] 
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         [𝛼𝑛 + 𝛼𝑟 + (𝜏2 − 𝜏1)(𝑝𝑛 + 𝑝𝑟) + 2𝑙√𝑒]𝐶𝑛 − [𝛼𝑛 + 𝛼𝑟 + (𝜏2 − 𝜏1)(𝑝𝑛 + 𝑝𝑟) + 2𝑙√𝑒] 

         [
ℎ𝑠
2𝑚

(1 − 𝛾)𝛼2 +
ℎ𝑟
2
𝛼(1 − 𝛼) +

ℎ𝑟
2𝑚

𝛼2(1 − 𝛾)]𝑇 − 𝜋𝑒2 𝑇⁄ + (1 − 𝑤)𝑝𝑟𝑡𝑏𝑒
−𝜑𝑞 

         [𝛼𝑛 + 𝛼𝑟 + (𝜏2 − 𝜏1)(𝑝𝑛 + 𝑝𝑟) + 2𝑙√𝑒](𝑞 − 𝑞𝑠)/𝑞                       (28) 

3.5. Fuzzy chance constrained clarifications 

Fuzzy Chance Constrained Programming (FCCP) is an uncertain mathematical programming 

method based on possibility theory and fuzzy set theory, which provides a powerful tool for solving 

uncertain problems [80]. Its main idea is to transform the fuzzy chance constraints into equivalent 

deterministic forms [81]. Fuzzy chance constrained programming is used to solve the problems of 

uncertain demand for new products and remanufactured products in this paper. The triangular fuzzy 

number of potential demand for new products and remanufactured products are defined respectively 

as 𝑑𝑛 = (𝑑𝑛1, 𝑑𝑛2, 𝑑𝑛3)and 𝑑𝑟 = (𝑑𝑟1, 𝑑𝑟2, 𝑑𝑟3). Their fuzzy membership functions are as follows: 

 𝑈𝑑𝑛̃(𝑡) =

{
 

 
𝑡 −𝑑𝑛1

𝑑𝑛2−𝑑𝑛1
, 𝑡 ∈ [𝑑𝑛1, 𝑑𝑛2]

𝑑𝑛3−𝑡

𝑑𝑛3−𝑑𝑛2
 , 𝑡 ∈ [𝑑𝑛2, 𝑑𝑛3]

   0        , others              

，𝑈𝑑𝑟̃(𝑡) =

{
 

 
  𝑡−dr1

dr2−dr1
, 𝑡 ∈ [dr1, 𝑑𝑟2]

𝑑𝑟3−𝑡

𝑑𝑟3−𝑑𝑟2
, 𝑡 ∈ [𝑑𝑟2, 𝑑𝑟3]

      0      ,   others              

     (29) 

According to the clear definition and lemma, we can get the following: 

 { 

𝑋𝑑𝑖 ≥ (1 − 𝑗) ∙ 𝑑𝑛1 + 𝑗𝑑𝑛2
𝑋𝑑𝑖 ≤ (1 − 𝑗) ∙ 𝑑𝑛3 + 𝑗𝑑𝑛2

𝑃𝑜𝑠{𝑋𝑑𝑖 = 𝑑𝑛 ≥ 𝑗}
, { 

𝑋𝑖𝑑 ≥ (1 − 𝑘) ∙ 𝑑𝑟1 + 𝑘𝑑𝑟2
𝑋𝑖𝑑 ≤ (1 − 𝑘) ∙ 𝑑𝑟3 + 𝑘𝑑𝑟2

𝑃𝑜𝑠{𝑋𝑖𝑑 = 𝑑𝑟 ≥ 𝑘}
                 (30) 

4.  Solution techniques 

Based on the above analysis, the optimization task this model deals with is a non-linear 

optimization issue with mixed continuous/integer variables. Exact algorithms and meta-heuristic 

algorithm are often used to solve this kind of problems [82]. Among them, meta-heuristic algorithms 

always have faster operation speed, but the results of their solution are approximate optimal 

solution [83]; an exact algorithm can find the most accurate solution, but it always takes more time.  

Among many meta-heuristic algorithms, GA is widely used because of its powerful global search 

ability [24]. Most researches use GA to obtain approximate optimal solutions for functional 

optimization, facility location, and vehicle routing optimization and so on [84]. Afzal et al. [85] used 

GA to solve a kind of function optimization problem. Guo et al. [24] verified the correlation model 

reliability by GA algorithm, and obtained approximate optimal solutions with high quality. 

Based on this, CPLEX is used in this paper to find the optimal solution of the calculating example, 

and also the validity of the model is verified. However, when the calculation scale is large, the solution 

time of CPLEX is very long, or the solution cannot be obtained. Therefore, this paper also uses GA to 

find the approximate optimal solution. By comparing the calculation results of CPLEX and GA in a 

small-scale case, the effectiveness of GA algorithm is verified. 
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4.1. Genetic algorithm 

   As one of the evolutionary computation techniques, GA has been receiving great attention and 

successfully applied for combinatorial optimization problems, various integrated production, 

distribution planning problems and so on [62,86]). Genetic algorithm is an intelligent optimization 

algorithm based on genetic mechanism and natural selection, which can make the population 

continuously evolve through replication, crossover and mutation operations until the optimal solution 

is obtained [87,88].  

The main operation steps of GA are as follows: 

Step 1: Chromosome coding and initialization. In this paper, chromosome genes number is set as 

6, maximum iteration number is set as 200, and population size is set as 50. Adopt binary coding to 

generate 0/1 initial population randomly, as shown in Table 2. 

Table 2. Genetic algorithm initial population. 

population 
binary coding 

𝑔   𝑚   𝑛   𝑇   𝑃𝑛   𝑃𝑟 

1 10…1  01  10  10…0  11…1  01…1 

2 01…0  10  01  01…1  10…0  01…1 

…  …  …  …   …  …   … 

49 11…1  11  10  10…1  10…1  10…0 

50 10…1  01  01  01…1  01…0  11…0 

Step 2: Calculate fitness values. The fitness value of a chromosome reflects the probability of 

being selected. According to fitness function f(x) = 𝑜𝑏𝑗𝑒𝑐𝑡 1000⁄   to calculate fitness value and 

𝑜𝑏𝑗𝑒𝑐𝑡 is the objective function equations (27) ~ (28) in this paper. 

Step 3: Individual selection. Roulette wheel method is used for individual selection. The larger 

the objective function value is, the easier the chromosome is to be selected. Individual selection 

probability is: 

𝑝𝑖 = 𝑓𝑖 𝑓𝑠𝑢𝑚⁄                                                       (31)  

 

Step 4: Crossover and variation. The process of crossover and mutation is shown in Table 3. In 

this paper, the crossover probability and mutation probability are set as 0.75 and 0.03. 

Table 3. Genetic algorithm crossover/mutation process. 

population crossover  mutation 

Parent 1 1 0 1 … 0 1 0 

Parent 2 0 1 0 … 1 0 1 

Child 1 0 0 1 … 0 1 0  

Child 2 1 1 0 … 1 1 0 

 

Step 5: Stop condition. If the termination condition (maximum iteration number) is met, output 

the optimal solution is; otherwise, return to step 2. 
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5.  Numerical experiments 

5.1. Numerical results 

According to the actual situation of the manufacturing industry and relevant literature research, 

parameter values are set and shown in Table 4 [68,24,70]. 

Table 4. Genetic algorithm crossover/mutation process. 

parameter value parameter value parameter value parameter value 

ℎ𝑠 2 ℎ𝑟 0.3 ℎ𝑟𝑎𝑤 0.2 𝐶𝑛 25 

𝐶𝑟𝑎𝑤 15 𝐶𝑂 850 𝑆1 1500 𝑆2 1500 

a 0.9 b 0.9 c 0.1 β 0.5 

γ 0.6 𝑑𝑛1 715 𝑑𝑛2 863 𝑑𝑛3 1020 

𝑑𝑟1 468 𝑑𝑟2 615 𝑑𝑟3 736 φ 2 

𝜏1 2.5 𝜏2 1.5 𝑞𝑠 0.2 μ 75 

k 65 π 70 e 3 t 0.9 

w 0.35 σ 1.1     

5.1.1. Optimal decision under uncertain environment 

In this paper, 10% range is used to assign values of 76%, 86% and 96% to 𝑗 and 𝑘 respectively, 

and Matlab software is used to write GA and CPLEX codes to solve calculation example comparatively. 

The difference ratio of optimal fitness value between GA and CPLEX is  𝑔𝑎𝑝 =

|𝐴𝑃𝐺GA − 𝐴𝑃𝐺CPLEX| 𝐴𝑃𝐺GA⁄ .  

The calculation results are shown in Table 5 and Table 6. For further study optimal decisions 

under different confidence levels, the variation trend are shown in Figure 3 under the condition that 𝑗 

and 𝑘 gradually increase from 76% to 96%. 

Table 5. Optimal decision under different confidence levels (GA). 

confidence level GA 

𝑗 𝑘 𝑔 𝑚 𝑛  𝑃𝑛 𝑃𝑛 𝐴𝑃𝐺GA 𝑆𝑚 𝑆𝑐 

 76% 0.5036 1 1 73.26 68.46 67815.07 4697.36 2529.35 

76% 86% 0.4204 2 1 70.64 66.58 69046.85 4985.72 2684.62 

 96% 0.3553 3 1 69.58 65.27 70383.08 5563.49 2995.73 

 76% 0.5456 1 3 73.45 69.14 69873.64 4758.65 2562.35 

86% 86% 0.4452 2 3 71.37 67.15 71467.36 5041.83 2714.83 

 96% 0.3817 3 3 70.95 65.93 73972.59 5657.45 3046.32 

 76% 0.5895 1 4 74.82 70.82 72586.37 5168.24 2782.90 

96% 86% 0.4537 2 4 73.14 68.21 74163.42 5437.26 2927.76 

 96% 0.4024 3 4 72.08 66.74 75452.63 5925.73 3190.78 
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Table 6. Comparison of optimal decision GA and CPLEX objective function values. 

confidence 

level 

 
GA CPLEX 

𝑔𝑎𝑝 

(%) 

𝑗 𝑘 𝑔 𝐴𝑃𝐺GA 𝑇𝑖𝑚𝑒(𝑠) 𝐴𝑃𝐺𝐶𝑃𝐿𝐸𝑋 𝑇𝑖𝑚𝑒(𝑠)  

       76% 0.5045 67815.07 22.15 67804.21 22.56 0.16 

76% 86% 0.4219 69046.85 24.61 69037.18 21.67 0.14 

 96% 0.3546 70383.08 25.45 70370.42 20.78  0.17 

 76% 0.5457 69873.64 26.57 69863.16 22.57  0.15 

86% 86% 0.4473 71467.36 22.89 71455.21 21.56  0.16 

 96% 0.3802 73972.59 22.36 73962.23 20.13  0.14 

 76% 0.5875 72586.37 26.67 72573.30 23.21  0.18 

96% 86% 0.4532 74163.42 25.89 74152.29 22.34  0.15 

 96% 0.4028 75452.63 22.15 75439.82 21.89  0.17 

It can be seen from Table 5 and Table 6 that: 

(1) The maximum difference ratio between CPLEX and GA is 0.18%, which indicates that GA 

algorithm is not trapped into local optimal solution, thus verifying the proposed algorithm’s validity 

and model’s reliability. In this numerical example, when 𝑗 and 𝑘 are 96%, 𝑚 is 3, 𝑛 is 4, 𝑃𝑛 and 𝑃𝑟 

are 72.08 and 66.74, the average gross profit 𝐴𝑃𝐺 reaches the maximum value 75452.63. At this 

moment, 𝑆𝑚 and 𝑆𝑐 are 5925.73 and 3190.78 respectively. 

(2) By comparing the relationship between running time and the optimal solution, it is proved 

to have a certain accuracy and efficiency, so as to verify the validity of the algorithm and the credibility 

of the model.  

(3) In actual enterprise production, enterprises often need to solve large-scale cost or profit 

problems, and expect to get a better cost or profit solution to reduce costs as soon as possible. However, 

if the scale of data is too large, CPLEX cannot find the feasible solution in reasonable time, which may 

cause the loss of its practical application value, therefore, the complementary solution of GA and 

CPLEX in this paper is more applicable. 

It can be concluded from figure 3 that: 

(1) When 𝑗 is certain, as 𝑘 increases gradually, 𝑔 ,  𝑃𝑛 and 𝑃𝑟 are decreasing; 𝑆𝑚 , 𝑆𝑐 and 

𝐴𝑃𝐺  are increasing gradually. That is to say, when 𝑗 is certain, with the increase of 𝑘, recycled 

products greenness decreases, sales price of new products and remanufactured products decreases, the 

subsidy amount for manufacturer and consumers gradually increases, and the average total profit 

increases gradually. That is because, with the increase of 𝑘, manufacturer's subsidy amount increases 

gradually, so the average total profit increases. 

(2) When 𝑘 is certain, as 𝑗 increases gradually, 𝑔 is increasing,  𝑃𝑛 , 𝑃𝑟 , 𝑆𝑚 , 𝑆𝑐 and 𝐴𝑃𝐺 

is increasing gradually, that is to say, when 𝑘 is certain, with the increase of  𝑗, recycled products 

greenness increases, sales prices of new products and remanufactured products increases, the subsidy 

amount for manufacturers and consumers increases, and the average total profit increases gradually. 

That is because, with the increase of  𝑗, average raw material procurement operating cost decreases 

gradually, so the average total profit increases. 

 (3) With the increase of 𝑘 , enterprises should produce more remanufacturing products and 

increase economic benefits by increasing government subsidy. With the increase of 𝑗 , enterprises 

should produce more new products and increase economic benefits by reducing raw material 
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procurement cost. Enterprises can make optimal recycling, production, and sales decisions according 

to potential demand, and hence gradually increase the gross profit. 

 

 

(a) Returned products greenness 𝑔          (b) Sales price 𝑃𝑛 and  𝑃𝑟 

 

(c) Total subsidy 𝑆𝑚 and  𝑆𝑐             (d) Average gross profit APG 

Figure 3. The effect of different 𝑗 and 𝑘 on the optimal decision. 

5.1.2. Optimal decision under no government subsidy 

In the case of considering CER alone without government subsidy, we study the effect of green 

investment level on gross profit, recycled products greenness, recycling rate, and manufacturer's 

enthusiasm for green investment. 

It can be concluded from figure 4 and figure 5 that: 

(1) When 𝑒 < 6.9  , as 𝑒  increases, 𝐴𝑃  goes up gradually; However, when 𝑒 > 6.9  , as 𝑒 

increases further, 𝐴𝑃 goes down instead. This is because, with the increase of 𝑒, green investment 

cost increases greatly, so 𝐴𝑃 decreases gradually. 

(2) When 𝑒 < 5.3  , as 𝑒   increases, 𝑔  goes down and 𝑑  goes up gradually; However, when 

𝑒 > 5.3, as 𝑒 increases further, 𝑔 goes up instead. This is because, the higher green investment cost 

pushes up the sales price, and the growth rate of market demand decreases brought by green investment, 

so 𝑔 goes up instead. 

(3) In the case of no government subsidy and only considering CER, a higher green investment 

level will make a decrease in average gross profit and recycling rate, and an increase in recycled 

products greenness, which leads to a lower green investment level and an insignificant effect on 
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environmental protection. 

    

    Figure 4. The effect of 𝑒 on 𝐴𝑃.       Figure 5. The effect of 𝑒 on 𝑔. 

5.1.3 Optimal decision under government differential weighting subsidy 

In the case of considering CER and government differential weighting subsidy, based on 

incentive-compatibility theory, we study the reasonable subsidy allocation weight set by government 

to effectively incent manufacturer to set a higher green investment level, in order to achieve the effect 

of incentive-compatibility and the purpose of environmental protection. 

         

Figure 6. The effect of  𝑤 and 𝑒 on 𝐴𝑃𝐺.    Figure 7. The effect of  𝑤 and 𝑒 on 𝑔. 

It can be concluded from figure 6 and figure 7 that: 

(1) When 0 < w < 0.41 , with the increase of 𝑒, 𝐴𝑃𝐺 increases gradually. Government subsidy 

has a positive effect on improving the green investment level of manufacturer, and the incentive effect 

is significant; However, when 0.41 < w < 1 , with the increase of 𝑒, 𝐴𝑃𝐺  firstly goes up and then 

goes down. Although the optimal value of 𝑒 is improved, the incentive effect is not high. 

(2) When 0.34 < w < 1  , with the increase of 𝑒 ,  𝑔  decreases and 𝑑  increases gradually. 

Manufacturer is incited to enhance the green investment level, and the market demand for green 

products is increased gradually. The incentive effect is significant; However, when 0 < w < 0.34 , 
with the increase of 𝑒, 𝑔  firstly goes down and then goes up, and  𝑑  firstly goes up and then goes 

down. Although the optimal value of 𝑔 decreases, the incentive effect is not high. 

(3) Based on above analysis, government differential weighting subsidy can reduce the financial 

burden of enterprises' green investment and expand the market demand for green products. When 

government sets the subsidy weight for consumer as 0.34~0.41, with the increase of green investment 
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level, average gross profit increases, recycled products greenness decreases, and recycling rate 

increases gradually, which continuously promotes enterprises to develop a higher green investment 

level, achieve the effect of incentive-compatibility and the purpose of environmental protection. 

5.1.4. Effect comparison before and after incentive-compatibility theory 

It can be concluded from figure 8 and figure 9 that: 

(1) Based on incentive-compatibility theory, when government sets the subsidy weight for 

consumer as 0.34 < 𝑤 < 0.41 (the corresponding subsidy weight for manufacturer as 0.59 < 1 − 𝑤 < 

0.66). 

(2) Compared with before the implementation of incentive-compatibility, with the increase of 

green investment level 𝑒 , average gross profit 𝐴𝑃𝐺  increases, recycled products greenness 𝑔 

decreases, and recycling rate 𝑑 increases gradually, which incite enterprises to continuously enhance 

the green investment level. 

(3) Therefore, by formulating reasonable subsidy policies, the government can reduce the financial 

burden of enterprises' green investment and expand the market demand for green products. 

       

Figure 8. The effect of 𝑒 on 𝐴𝑃 and 𝐴𝑃𝐺.        Figure 9. The effect of  𝑒 on 𝑔. 

5.2. Discussion (Managerial insights and main achievements) 

Based on above calculating results and analysis, managerial insights are rendered as the following: 

(1) Under uncertain environment, enterprises can adopt the following methods to optimize the 

green closed loop supply chain system (GCL-SCS): 

⚫ When the confidence level of potential demand for new products is certain, with the increase 

of confidence level of potential demand for remanufactured products, enterprise should 

recycle the used products with lower greenness, reduce the sales prices of new products and 

remanufactured products, and increase recycling rate and remanufacturing lot, so as to 

improve the gross profit. 

⚫ When the confidence level of potential demand for remanufactured products is certain, with 

the increase of the confidence level of potential demand for new products, enterprise should 

recycle the used products with higher greenness, increase the sales price of new products and 

remanufactured products, decrease recycling rate, and increase manufacturing lot, so as to 

improve the gross profit. 
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(2) In the case of only CER with no government subsidy, enterprises can optimize the green closed 

loop supply chain system by the following methods: 

⚫ In the case of only green investment, a higher green investment level will reduce the gross 

profit and recycling rate. Therefore, enterprises should set a lower level of green investment 

to avoid a higher green investment cost. 

⚫ In the case of only green investment, the optimal green investment level of the enterprise 

should be kept within a certain range, which is 5.3-6.9 in the calculating example of this paper. 

(3) In the case of considering CER and government differential weighting subsidy, based on 

incentive-compatibility theory, government can optimize the green closed loop supply chain system 

by the following methods: 

⚫ With the increase of green investment level, recycled products’ greenness decreases, recycling 

rate increases, and the average gross profit increases gradually. Through the formulation of 

reasonable subsidy system, the government can reduce the financial burden of enterprises' 

green investment. When the weight of government's subsidy to consumers and manufacturers 

is controlled within a certain range, which are 0.34-0.41 and 0.59-0.66 in the calculating 

example of this paper.  

⚫ By formulating the reasonable subsidy policy, government can expand the market demand for 

green products, incent and guide enterprises to develop a higher green investment level, 

improve the implementation effect of recycling and remanufacturing, and achieve the optimal 

effect of environmental protection. 

The main achievements could be the following: 

(1) Under uncertain environments of market demands and quality level of recycled products, two 

gross profit models of green closed loop supply chain system are constructed under no government 

subsidy and government differential weight subsidy considering CER. 

(2) Guiding enterprises to make optimal recycling, production, and sales decisions when faced 

with uncertain environments. 

(3) Based on incentive compatibility theory, this paper studies the optimal subsidy allocation 

policy and green investment level when both government and enterprises tended to maximize utility. 

6.  Conclusions 

Under uncertain environment of market demand and recovery quality, based on incentive-

compatibility theory, this paper studies the optimal subsidy allocation policy and green investment 

level when both government and enterprises tend to maximize utility. FCCP method is used to solve 

the fuzzy constraint problem; GA and CPLEX are used to solve a calculating example’s approximate 

optimal solution of the model in this paper. 

From this research we can get the following results: (1) Different levels of potential demand will 

affect enterprises’ optimal recycling, production, and sales decisions; (2) In the case of considering 

CER without government subsidy, enterprises' enthusiasm for green investment is low and 

environmental protection effect is not obvious; (3) In the case of considering CER and government 

differential weighting subsidy, based on incentive- compatibility theory, reasonable subsidy and green 

investment can reduce the financial burden of enterprises' green investment effectively, incent 

enterprises to set a higher green investment level continuously, improve recycling rate and gross profit, 

and hence make the green closed loop supply chain reach the optimal state. 
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This study can provide reference for enterprises to make optimal recycling, production, and sales 

decisions under uncertain environments and provide quantifiable suggestions for government to set 

reasonable subsidy level, so as to effectively promote enterprises' enthusiasm for green investment and 

improve the recycling rate and gross profit in the green closed loop supply chain. 

Limitations and further research: 

(1) Under uncertain environment, this paper only studies offline distribution channels. Further 

research can consider online and offline sales channels in the e-commerce environment. 

(2) This paper focuses on the recycling and manufacturing/remanufacturing of green products. 

Further research can consider more activities such as transportation and storage. 

(3) This paper assumes that product shortage and surplus are not taken into account. Further study 

can consider the effect of product shortage or surplus on the optimal decisions in green closed loop 

supply chain. 
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