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Abstract: We have provided a detailed analysis to show the fundamental difference between the
concept of short memory and piecewise differential and integral operators. While the concept of short
memory leads to different long tails in different intervals of time or space as a result of a power law
with different fractional orders, the concept of piecewise helps to depict crossover behaviors of different
patterns. We presented some examples with different numerical simulations. In some cases piecewise
models led to transitional behavior from deterministic to stochastic, this is indeed the reason why this
concept was introduced.
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1. Introduction

When searching the literature, we have noticed that several propositions have been made by several
researchers to find kernels that can be used to obtain fractional differential operators. The main reason
for this is that real-world problems show signs of processes resembling behaviors of some mathemat-
ical functions. Riemann, Liouville, Cauchy, and Abel’s works lead to a fractional calculus with a
power-law kernel. Their work was later modified by Caputo; this version has been used in many fields
of science because of its ability to allow classical initial conditions [1]. Prabhakar suggested a different
kernel as a product of power-law and the generalized Mittag-Lefller function with three parameters.
This version has also attracted the attention of many researchers, studies have been done on theory as
well as on applications. Indeed, the two kernels have their specific values, for example, power-law
helps only to replicate processes exhibiting power-law behavior, while the product of the power-law
and the generalized three-parameters Mittag-Leffler has also its field of application [2]. As nature is
complex, a new kernel was suggested by Caputo and Fabrizio, a special exponential kernel with Delta
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Dirac properties. A differential operator that is in fashion nowadays due to its ability to replicate pro-
cesses following fading memory. Indeed, this kernel brought a new shift into fractional calculus, as
the concept of the fractional derivative with a non-singular kernel was introduced [3]. A point made
by some researchers about the non-fractionality of the kernel led to a new kernel, the Generalized
Mittag-Lefller function with one parameter. This version was suggested by Atangana and Baleanu,
another new step forward in the field of fractional calculus. The operators have been used in several
fields of studies with great success [4]. In [5], the basic theory of fractional differentiation, existence-
uniqueness theorems, and analytical-numerical methods of solution of fractional differential equations
are presented. In [6], authors examined Noether’s theorems of fractional generalized Birkhoffian sys-
tems in terms of classical and combined Caputo derivatives. The development of the time-fractional
damage model for the hyperelastic body is considered in [7]. While looking at nature and its complexi-
ties, one can with no doubt conclude that these suggested kernels are not enough to predict all complex
behaviors of our universe. On this note, one will proceed to search for a different kernel or modified
kernel, or class of functions that will be used to introduce new differential operators. Sabatier recently
presented some variants of kernels that will also open new doors for investigation [8]. In addition to
these outstanding contributions, several other ideas were suggested, for example, the concept of short
memory was suggested, and a fractional derivative in Caputo sense is defined for different values of
fractional orders. The idea is initiated to have a different type of variable order derivative unlike the
well-known version that considers a fractional-order to be a function of time. This case was suggested
by Wu et al. [9] and applied in chaos. On the other hand, researchers have noticed that several real-
world problems exhibit processes with different behaviors as a function of time and space. A particular
case is a passage from deterministic to stochastic, or from power law to exponential decay. It was noted
that existing differential operators may not be able to account for these behaviors, thus piecewise dif-
ferential and integral operators were introduced to deal with problems exhibiting crossover behaviors
[10]. The main aim of this note is to provide a critical analysis of the possible applications, advantages,
and disadvantages of these two concepts.

2. Motivation for piecewise derivatives

We will illustrate the motivation with some examples.

Death body decay in different temperatures. Consider a corpse found in a snowy place, and
assume that such body has been found after 20 days. The corpse is taken and brought to the house and
kept in a normal temperature for a few days and later put in a mortuary and buried. The main aim here
is to replicate the process of decay. The first part will provide a very low decay. The second part will
provide a fast decay, the third part will again be a fast process and finally, a slow process. Indeed, slow
and fast processes can be characterized by some mathematical functions. The power-law function is

. 2.1

The exponential decay function with a Dirac delta property is

(2.2)

1 a
exp [——t .
However, a crossover from fast to slow decay processes can be modeled using the following Mittag-
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Leffler function with Delta-Dirac property
1

1-«

E, [— e f’] . 2.3)
l-«a

The process can be divided into several intervals to capture each behavior. In the first part, one can

have

SDYy(H) = -y (1) if0 <t <Ty. (2.4)

The second processes can be
DYy ()= -y () if Ty <1 < T (2.5)
The two last parts will be characterized by

2Dy (1) = -y () if T, <1 < T. (2.6)

t

Thus, the whole process will be a system with the following crossover behaviors

DYy (1) = —A1y(1) if 0 <1 < Ty,
CED2y (1) = =y (1) if T <t < T, 2.7)
2Dy (1) =~y () if T, <t <T.

Therefore in general the concept of piecewise derivative has been introduced.
3. Short memory concept

In this section, we present the definitions of both short memory and piecewise differentiation. For
the short memory case, the idea was already discussed, for example a paper published by Deng in
2007 has already discussed the short memory principle [11], which was then also been called the fixed
memory principle and logarithmic memory principle. Wu et al. [9] presented the concept of a frac-
tional variable-order derivative where the fractional order changes within an interval. The suggested
definition is given below as:

CDy (1) = f (y,1) for 1 € [y, 11],
DMy (1) = f(y,0) fort € [t1, 1], (3.1)
Dy (1) = f(y,1) fort € [1,13].

Here Caputo power law derivative is used, which is known to have a singularity at the origin for a class
of functions. The author did not give explicitly space of the functions as the derivative was defined in
general, therefore, if we assume a class of the functions for which % is continuous then at each t = ¢;,
f (v,1) should be zero.

On the other hand, the piecewise concept is defined as follows.

1) A piecewise derivative of f with classical, power-law and stochastic processes is given by

Dy() = f(t,y(t) if0 <t <1,
DIy (1) = fty(®) ift <t < b, (3.2)
dy(t) = f(t,y(@)dt + oy () dB (1) ift, <t < t5.
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2) A piecewise derivative of f with power, exponential and Mittag-Leffler laws is given as

DMy (1) = ft,y () if0 <t <1,
CEDYy (1) = f(t,y () ifty <t < b, (3.3)
2Dy (D) = f(ty (@) if i, <t < 1.

Several definitions can be found in [10].

In the next section, we will provide a deep analysis of these concepts.The aim of the section is to
present advantages and disadvantages of these two independent concepts. We note that

C Nna _ 1 fti _ -a
oD f@) = - S f@@E-0"dr, (3.4)
0
CF o 1 I d a
D@ = f = @exp|-— - ax (3.5)
0
ABC na 1 t d @ a
ABCDOF () = T;;j};fﬁﬂ%ﬁ;;;a—ﬂ]dr (3.6)
0

4. Analysis and difference

Here, we present a deep analysis that will help the readers to see the difference between the two
concepts. Let us start with the concept of short memory. A deep look inside the short memory concept
gives the following:

1) The short memory principle considers a change in constant variable order; however, it uses a
single kernel. Indeed, this can be viewed as variable order where the order is changed within
shorter intervals. Nonetheless, it describes same process and in the case of Caputo derivation,
this process will only describe a power-law process that is, this process will not have crossover
behavior.

2) The concept is unable to capture classical processes because the fractional order should change
in each interval.

On a serious note, however, if we have f (#,y (¢)) # 0,V € [0, T]. So at each ¢;

lim D7y (1) = f (6,3 () li=, - (4.1)
=1
Sinceﬁ—f 1s continuous,
lim £Dfy (1) = f (1;,y(1;)) # 0. (42)
J

However the right hand side produces f(¢,y(¢)) # 0, which is a contradiction. It infers that
f (t.,-, y (t j)) = 0. This may be used to explain the process with a renewal force that follows the power-
law process. For example, the trajectory of a flea with a constant jump. There are fewest real world
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problems that present these behaviors. However, due to the power-law singularity the definition sug-
gested by Wu may have some problems at the boundaries. Nonetheless, as a result of using non-
singular kernels, the concept of short memory will be well-posed since the conditions at the boundaries
will be well controlled and the renewal processes would be well-posed.

On the other hand, however, the concept of piecewise was introduced for different purposes. The
following example will give light to the situation. We consider evaluating the velocity of water within
a geological formation with fractures. We record the velocity as a function of time. The velocity
will obviously be slow in the matrix rock, however as the water reaches the fracture, there will be
a crossover behavior as the velocity will suddenly increase. The first part of this process follows
behaviors resembling a declining process and later an almost constant high velocity. Now if one want
to withdraw water from such a geological formation and record the water level, one will observe a
fading groundwater level in earlier time than when water is being taken from the fracture; we observe
a steady groundwater level. Thus, there is a crossover behavior from the fading process to long range,
which can be captured using an exponential function, then later power law. Therefore, the differential
operator able to replicate this process is

{ COCFD;;h(r, ) :_f(t, r,h(r,1) ifo <t<Ty, 43)
r, Dih(r,ty=f@,r,h(rn) ifT) <t <T.

Therefore, one can see a clear difference and objectives of both concepts. Piecewise differential
operators are thus conceived to capture processes exhibiting different patterns, or crossover behaviors.
Here the order does not change within an interval as changing order does not change the process but
only the memory with the same pattern, rather, the kernels change to bring into the mathematical
formulation the crossover behaviors by each kernel.

For example, using the piecewise derivative the decay equation

yr(t)=—-Ay() it0<t < Ty,
GOy (M) = -y () if Ty <t < T, (4.4)
dy(t)=-Ay()dt+oy(®)dB(t) if T, <t<T

which will lead to decay with crossover behaviors. From 0 < ¢ < T, we shall observe normal decay
process. From T, < t < T,, we shall observe power-law decay or the Mittag-Leffler decay. From
T, <t < T, we shall observe decay with randomness. On the other hand, with the short memory

SDM'y (1) = -y (1) if0 <t < Ty,
%D;”y (1) =-A@) if Ty <t <T,, 4.5)
CDPy (@) = -y (@) if T, <t<T

which leads only to power-law process or the Mittag-Leffler process.

5. Application to real world problems

In this section, we shall present clearly the difference between the two concepts by applying them
to some problems. We shall start with a simple problem about the decay problem with two intervals.
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Example 1. We consider a simple decay model within [0, 7] and [T, T>] . In the case of short

memory, we have
CDMy (1) = —Ay (1) if £ € [0,T)],
CDPy(1) = =Ay(t) if t € [Ty, To].

In the case of piecewise, we can consider the following

{ DO =y (r) ift € [0, T)],
y(t) =-Ay@) ifte[T,,T,]
or
ABCDey () = =y (1) if t € [0, T ],
dY(’) Ay (t) ift € [Ty, T,]

or
{ CFDey (1) = Ay (1) if t € [0,T1],

G D0y (1) ==y (1) ifr € [T, T,].
Using the Laplace transform on the above system yields in the case of short memory

{ y(t) = y(0) E,, [ "] if t € [0,T],
y(@) =y(T\) E,, [-A(t = T)™"] ift € [T}, T>].

In the case of piecewise, we have the following solution

y(@® =y(0)exp[-ar] if t € [0,T4],
{ y@O) =y(T)E,[-A(t-T)"] ift € [T}, T,]
or
y () :y(O) ifr =
Y () = A e | -1 t“]b ifre10,T1],

y(@® =y(T)exp[-A@-T))] ift € [T}, T>]

or .
y () :y(O) ifr =
B (V) @

Y0 = i exp[ TR ]blft €10, 711,

y(@O) =y (T) Eq[-A@ = T)] if 1 € [T, T2].

5.1

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

T, = 1 where the crossover occurs and 7, = 2.4 is the final time. The numerical simulations are

presented in Figures 1-4 below.

- N N N
02 04 06 08 1 12 14 16 18 2 22

Figure 1. Decay model with short memory for A = 3, @; = 0.9 and a, = 0.6.
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Figure 2. Decay model with piecewise derivative for 4 = 3.
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Figure 3. Decay model with piecewise derivative for A = 3.
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Figure 4. Decay model with piecewise derivative for 4 = 3.

Example 2. We consider the spread of an infectious disease. We consider a Susceptible, Exposed,
Infected and Recovered (SEIR) model. It was proven by Atangana and Seda that such model may not
be able to predict waves [12]. Thus to introduce waves, in particular two waves, we consider the spread
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to be in period [0, 7] and [T, T5] . In the case of short memory, we have

€DeS = puN —pus — &1
CD"E £l (y+a)E
gD;’I—aE v+l
ng’R:yI—,uR
CD)S =puN-pus -1
CDBE Bl _(u+aE
CIDBI—aE (y+ul
C DR =yl - uR

ifr € [0,71], (5.9

ift € [T,T,].

In the case of piecewise several scenarios can be obtained. So, we can have

S uN - pus - 21

= (’”")E ifr e [0,T)], (5.10)
I:aE—(y+,u)I
R:yl—,uR
ds = (uN — uS - B1)dt + o\ SdB, (1)
dE = (B! - (u+a)E)dt + 0, EdB; (1) it e [T.T]

dl = (aE - (y+ ) )dt + 031dB; (1)
= (yl —uR)dt + o4RdB, (1)

or

ds = (uN — pS - B1)dt + o\ SdB, (1)
BSI
dE = (& (,u+a)E)dt+0'2Ede(t) it e (0.7, 5.11)
dl = (aE - (y+p) )dt + o31dB;5 (1)
dR = (yl — uR) dt + o4RdB, (1)
D“S UN —uS — ﬁSI
ClD"E Bl (u+ a)E
%D;’I = aE (y+u)l
% D{R =yl — uR

ift € [T,,T,].

Noting that several more scenarios can be considered, however, we will only consider these two in
the case of piecewise. Before proceeding with the analysis of these models, we shall first provide
an interpolation of each case in terms of wave behaviors. In the case of short memory, the first and
second waves show the non-Gaussian distribution associated to the power-law variables 1! and 2.
Therefore, one will observe different long tails for 7' and #7*2>. On the other hand, however, the
first considered model shows that the first wave has a normal distribution, while the second wave has
random behavior. The second model shows that the first wave has a long tail spread while the second
has random behavior.

We now present the numerical solutions of the considered models. We shall consider the numer-
ical scheme suggested by Ghanbari et al. [13] for fractional cases. The short memory case can be
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simplified to
{ €Dy, (1) = Fi(t,y: (1)) if 1 € [0, T}],
C DYy, (1) = Fi(t,y; (1) if 1 € [T}, T) .

Applying the Ghanbari method yields

aVF; (10, y; (10)

n (@)
Zi%é)en'_jFi (fj,)’i (fj
ay, Fi (Ty,y;(T)))

n B)
+ Zjinﬁl enz—jFi (tj’ Yi (tj))

Y?IZYi(O)+ha(+ )))iflE[O,Td,

y?=ymﬂ)+w[ )ﬁtenbu]

where
(I’l _ 1)a+1 —nY (I’l —a- 1)
a0 = 1
" T(a+2) ’
1 l—a _
0" = (k=1)*! 2kr(fl+(i): e itk =0,
k - _etlogetl (pe)etl B ,
I'(a+2) ifk = 1, 2, e — 1
and

—p _ e B 1)

CO TF(B+2) ’
k= 1P = 2P 4 (k + 1)PH!
0 = (k-1 (k+ 1Y ifk=n +1,,.,m—1.
T(B+2)

In the case of the piecewise first model, we have

2F; (tj,y,- (tj)) At
yit =yi(0)+ XL, ~3F; (l‘j—l,yi (l‘j—l)) At | ift€[0,T1],
+3F, (t,-_z, Vi (t j_z)) At
2F, (173 (1)) At
YP=y@)+ 32, 5| —5F (fj—l»yi (tj—l)) At
+3F; (tj_z, Vi (tj_z)) At
+0,y; (B;”Jrl - B:’z)

For case 2, we obtain

%Fi (tj’yi (l‘j)) At
y?l =Y (0)"'2;12 —%Fi (tj_l,yl- (lj_l))Al
+%F,' (fj_z, Vi (tj_z)) At
oy S, (B~ B)
" _ o @ETLyi(T)
vii=yi(T) +h ( + Z?i,,;@?ff (tj,yi (lj

ifr€[0,T4],

)) ) ift e [T, T,]

ifre[T,,T,].

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)
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The numerical solutions for short memory are depicted in Figure 5 with the following parameters

N = 1000, = 0.01,8 = 0.6,a = 0.2,y = 0.03,

and the following initial conditions

S (0)
E (50)

1000, E (0) = 25,1(50) = 22,R(50) = 5,S (50) = 39
67,1(50) = 505, R (50) = 390.

1000

Sit)
Eit}
Iit)

Rit)

900

700 -

&00 -

200

400 -

Mumerical solutions

A

300 Lo/
[N A
200 |

100 !
0 10 20 0 40 50 60 0 80 @0 00
Time

(5.18)

(5.19)

Figure 5. Numerical solutions of Covid-19 model with short memory for a@; = 0.95, @, =

0.75.

The numerical solutions for cases 1 and 2 are respectively depicted in Figures 6 and 7 with the

following parameters

N =1000,u =0.01,8=0.6,a = 0.2,y = 0.03,

and the following initial conditions

S (0)
E (50)

1000, E (0) = 25,1(50) =22,R(50) = 5,5 (50) =35
44,1 (50) = 424, R(50) = 527, = 0.7.

(5.20)

(5.21)
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MNumerical solutions

wwm«

TI'ﬂc

Figure 6. Numerical solutions of Covid-19 model under the conditions of case 1 o =
0.000005, o, = 0.008, 03 = 0.0021, 04 = 0.009 and @ = 0.7.

2500 e
Eif)
ifth
Rit)

Mumerical solutions

500 | ‘ﬁl'

] .:_"'-L.)lf\:ia-i;':ﬁ‘:h-}-l’kcf";-{?: - —— |
0 i0 20 30 40 50 &0 70 &0 a1 00

Time
Figure 7. Numerical solutions of Covid-19 model under the conditions of Case 2 oy =
0.17,0,=0.25,03=0.21,04 = 0.19 and @ = 0.7.

Figure 5 shows the case of short memory effect, where the first and second parts present different
long tails behaviors characterized by @, and «,, however, both depict clearly the same process which
is the power law process. On the other hand, Figures 6 and 7 are the clear effects of the piecewise
differential operators; the first part in Figure 6 shows normal distribution, which is characteristic of
the classical differential operator, while the second part clearly shows the effect of randomness. The
complete model, therefore shows crossover behavior from deterministic to stochastic with no steady
state. In Figure 6, the process is different. We start with randomness then end up with long-tail
behaviors because of the power law kernel.

Example 3. We now consider a chaotic problem in particular the 8-wing attractor [14]. This model
has been studied by several researchers [15], the model is given as

x = ay-x)+f(@®)yz (5.22)

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8601-8620.
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y cx +dy—xz

Z

-bz + xy

where the function f (t) = M sgn (sin (wt)) + K. The constant w is known to be a switch frequency and

M and K are constant parameters.
In the case of short memory, we have

6D x=a(y—x)+f(1)y
SDY'y = cx+dy — xz iftr € [0,T],
SD"z = —bz + xy
CDPx=a(y—x)+f(0)yz
%szy:cx+dy—xz ift € [T,T,].
¢, D*z = —bz + xy

In the case of piecewise, we can consider three cases. For Case 1, we can write

aBCDix=a(y—x)+ f(D)yz
S‘BCny =cx+dy—xz ift € [0,T],
oBDez = —bz + xy
dx=(a(y—x)+ f(t)yz)dt + o1xdB (t)
dy = (cx +dy — xz)dt + o,ydB; (1) if t
dz = (=bz + xy) dt + 03zdB5 (1)

m

[Tl’ T2] .

For Case 2, we have

§Dix=a(y—x)+f(0)yz
ngy:cx+dy—xz if ¢
SDYz = —bz + xy
dx=(a(y—x)+ f(t)yz)dt + o1xdB (1)
dy = (cx +dy — xz)dt + o,ydB; (1) if t
dz = (=bz + xy) dt + 073zdB5 (1)

[O’ T]] s

m

m

[Ty,T,].

For Case 3, we can get

x=aly-x)+f(0)yz
y=cx+dy—xz if ¢

m

[0,74],
z=-bz+ xy
dx=(a(y—x)+ f(t)yz)dt + o1xdB (t)
dy = (cx+dy — xz)dt + o,ydB; (1) if ¢t
dz = (=bz + xy)dt + 03zdB; (t)

m

[T, T>].

(5.23)

(5.24)

(5.25)

(5.26)

We shall now present the numerical solution of each case. In the case of short memory, one can use the
numerical method based on Lagrange interpolation [16]. We can first simplify the model as follows.

OCDfl M;(t) =11, M; () ift € [0,Tq],
‘T71D§’2M,- ) =11(t, M; (v)) ift € [Ty, T>]

(5.27)
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Thus, applying such method on the above system yields

(ANt n k
(a1 +2) “k=1 I (tk’ Mi)

% (m—k+1D)"(n —k+2+a)) ]
— A _
M = M;(0) + o 0, (k2 2m)
T T(a1+2) “k=1 (tk—l’Mi )
(nl —k+ 1)a1+1
—(m =" (n —k+1+a)

(An)*2 n
F(QIZ"'Q) Zkil’l|+1 H (tk9 Mlk)
[ (1 —k+ 1) (ny —k +2 + @) ]
M™ = M, (T,) + ((At)z;z )n2 ( . 203
T T(ap+2) Sk=n;+1 (tk—laMi )
% (I’l2 —k+ 1)(12+1
—(m =k (my—k+1+ay)

ifr€[0,7T,],

X

ifte [T, T,]

(5.28)

With the piecewise case, we obtain the following numerical solution using a scheme based on Newton

polynomial interpolation [17]. Also, we simplify the model as follows.

oPCDIYM; (1) = T1(t, M; (1)) if t € [0, T4],
dM; (f) =TI1(z, M; (l)) dt + o;MdB; (t) ift € [T, T,]

Then applying this method yields

ny _ - ny a(AD)” n k=2
Mz' = M;(0) + AB(a)H(t”l’ Mi ) + AB(@)(a+1) k=2H(tk—2’ Mi )

x{(n; —k+ 1) = (n; — k)"}
a(An)® n _ _
+AB(cy()Ft()a+2) k1:2 [H (tk—l’Mf 1) - H(’k—Z’Mzk 2)]
(1’11 —k+ 1)“(1’11 —k+3+2a)
- =k —k+3+3®

s S [ ) 21 ) 1100

(nl_k+1)a[2(n1—k) +2(3a+10)(n1—k)
+2a° +9a + 12
X 2 ,OSISTl
o — | 20 R e 1006 =B
™ +6a2 + 18 + 12

23 ny+3 4 ny+2
Mn2+4 _ Mn2+3 + Zn3 EH (tn2+3’ M,' ) - §H (tl’l2+27 Mi ) At
i - i Jja=n1+3 +iH (t Mn2+1)
12 ny+1s i
+o M2 (B - BT Ty <1< Ty

1 1

(5.29)

(5.30)
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For case 2, we again apply the scheme with the Newton polynomial to obtain

M =M (0) + o Zkizn(t"ﬁ’j\/lt{C 2)

X {(n; —k+ 1)* = (n, — k)*}

+r((i22) i [H (tk—l, Mf_l) -1II (lk_z, Ml(‘—z)] ,
(n —k+ 1D (n; —k+ 3+ 2a)
—(n —k)*(n —k+3+3a)

+2F(A;):3) I [H (tla M,k) = 2I1 (tk—l, Mf‘l) +11 (fk—z, Mlk—Z)]

o| 21 = k)* + Ba + 10) (n; — k)
(m =k+1) [ +2¢7 +9a + 12 (5-31)
X 2 ,0<t<T
(g — b 2(ny — k)" + (Sa+ 10) (ny — k)
n +602 + 18 + 12
ny+3 ny+2
Mf12+4 — MI.12+3 + an %H (tn2+3’ Mi 2+ ) _ %H (tn2+2’ Mi 2+ ) At
i i J3=ma+3 +15—2H (tn2+1, M?2+1)
+0:M; (C.) (B2 = BP™) . Ty <t < T
where C,, € [f4,+4, tn,+3]. For case 3, we use the simple Adams-Bashforth methods as follows
23 ny+2 4 np+1
Mn2+3 — Mn2+2 + EH (tn2+2’ Mi2+ ) - §H (tn2+l’ Mi2+ ) ]Al 0<t< T1
i i 5 n WS IS
+ 211 (8, M?)
" " (5.32)
ot =y | B M) 80 002) |
' ! +15_2H(tn2+1, M?2+1)
+0iM; (C,,) (B2 = BP), Ty <t < Ty
where C,,, € [ty,+45 ty13] -
Numerical solutions are obtained for the following parameters
2n
a:l4,b:43,c:—1,d:16,M:9,K:lO,w:%. (5.33)

The numerical solutions for short memory are depicted in Figure 8 for the initial data x(0) =
22.3,y(0) =4.9 and z(0) = 2.6.

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8601-8620.



8615

a(l) ¥l

Figure 8. Numerical solutions for 8-wing attractor with short memory for @; = 0.96 and
a; = 0.98.

For piecewise, we consider the following stochastic-deterministic problem with power-law and
Mittag-Leftler kernels:

§Dyx=a(y—x)+f(0)yz+0xBr (1)
SDYy = cx +dy — xz + 05yBr, (1) ifr € [0,Th], (5-34)
SDYz = —bz + xy + 032Br5 (1)
ACDIx=a(y—x) + f(0)yz
Dty =cx+dy-xz  ift € [T1,T,]
25Diz = bz + xy

with the stochastic constants

oy =0.031; 0, = 0.035; 03 = 0.032. (5.35)

The numerical simulation for such a problem can be performed as illustrated in Figure 9 by using the
same initial data and parameters.
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2

a(f) witi

Figure 9. Stochastic-deterministic 8-wing attractor with piecewise derivative for @ = 0.99.

For piecewise, we consider the following stochastic-deterministic problem with power-law and
Mittag-Lefller kernels:

oBDx = a(y — x) + f (1) yz + o1 xBry (1)
ABCDEy = cx + dy — xz+oayBr () ift € [0.T1], (5.36)
QBCD;’Z = —bz+ xy + 032Br5 (1)
CDix=a(y-x+f0yz
%D"y:cx+dy—xz ift € [T, 7]

t
C na, —
7, Diz=—bz+xy

with the following stochastic constants

oy =0.031; 0, = 0.035; 03 = 0.032. (5.37)

The numerical simulation for such a problem can be performed as shown in Figure 10 by using the
same initial data and parameters.
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Figure 10. Stochastic-deterministic 8-wing attractor with piecewise derivative for @ = 0.94.

Also, we consider the following deterministic-stochastic problem with power-law and Mittag-
LefHler kernels:

SDix=a(y—-x)+f(D)yz
§Diy=cx+dy—-xz ifr € [0,T1], (5.38)
SDYz = —bz + xy
2CDIx = a(y—x) + f (1) yz + o xBry (1)
22Dy = cx +dy — xz + 02yBry (1) ift € [T),Ts]
fT‘f}CD?Z = —bz + xy + 03zBr;5 (1)

with the following stochastic constants:

o1 =0.02;0, =0.012; 05 = 0.021. (5.39)

The numerical solutions for the above problem can be depicted as shown in Figure 11 using same
initial data and parameters.
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e

Figure 11. Deterministic-stochastic 8-wing attractor with piecewise derivative for @ = 0.99.

Figure 7 shows the results obtained by applying the power-law short memory concept. To show the
difference within the interval, we have opted to consider the first part of the interval to be in blue and
the second to be in red. However, a quick look at the results shows clearly the effect of a power law, no
great change from one interval to another is observed since both depict long-tail behaviors as results
of the power-law kernel. In this case, there is no crossover behavior, just a repetition of different long
tail behaviors. On the other hand, in Figures 8 and 9, there is a clear change in patterns where the first
patterns show deterministic behaviors in particular, long-tails due to power law in Figure 8, and the
second part shows randomness, there is, therefore, a clear crossover from power law to randomness.
While, in Figure 9, we have two crossovers, the first is due to the Mittag-Lefller kernel that shows a
change from stretched exponential to power law and the second is stochastic.

Also, we consider deterministic-stochastic problem with power-law and Mittag-Lefller kernels:

0Dix=aly-x)+f(0)yz
S‘BCD?y =cx+dy—xz ift € [0,T], (5.40)
0Dz = —bz + xy

CDIx=a(y—x)+f@)yz+01xBr (1)
% DYy = cx +dy — xz+ 0,2yBr, (1) ift € [Ty,7T,]
¢ DYz = bz + xy + 032Br3 (1)

with the following stochastic constants:
o1 =0.02;0, =0.012; 03 = 0.021. (5.41)

The numerical solutions for the above problem can be depicted as shown in Figure 12 by using the
same initial data and parameters.
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Figure 12. Deterministic-stochastic 8-Wing attractor with piecewise derivative for @ = 0.9.

6. Conclusions

In the last decades, researchers have devoted their attention to better understanding complex real-
world problems even on a small scale. They have therefore developed several methods, different differ-
ential, and integral operators. To understand the process by which different long tails occur in different
intervals, the concept of short memory was introduced. This concept defines power-law derivatives in
different intervals and each interval has its own order. This order accounts for the long tail associated
with that interval. However, the process is scale-invariant in terms of patterns. On the other hand,
because there are many real-world problems that exhibit passages from one process to another, for
example, a passage from power law to randomness, the concept of piecewise was introduced. In this
work, a detailed analysis was given to show their different fields of applications and show also, when
short memory and piecewise concepts can be applied. This paper thus helps researchers to identify
what problem is suitable for short memory and piecewise.

Conflict of interest

The authors declare there is no conflict of interest.

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8601-8620.



8620

References

1.

10.

11.

12.

13.

14.

15.

M. Caputo, Linear model of dissipation whose Q is almost frequency independent-II, Geophys. J.
Int., 13 (1967), 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x

T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the
kernel, Yokohama Math. J., 19 (1971), 7-15.

M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog.
Fract. Differ. Appl., 1 (2015), 73-85. https://doi.org/10.12785/pfda/010201

A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular ker-
nel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769.
https://doi.org/10.98/TSCI160111018A

Podlubny 1., Fractional differential equations, mathematics in science and engineering, Academic
Press, 198 (1999).

Y. Zhou, Y. Zhang, Noether symmetries for fractional generalized Birkhoffian systems in
terms of classical and combined Caputo derivatives, Acta Mech., 231 (2020), 3017-3029.
https://doi.org/10.1007/s00707-020-02690-y

W. Sumelka, B. Luczaka, T. Gajewskia, G.Z. Voyiadjis, Modelling of AAA in the frame-
work of time-fractional damage hyperelasticity, Int. J. Solids Struct., 206 (2020), 30-42.
https://doi.org/10.1016/j.ijsolstr.2020.08.015

J. Sabatier, Fractional-order derivatives defined by continuous kernels: Are they really too restric-
tive?, Fractal Fract., 4 (2020), 40. https://doi.org/10.3390/fractalfract4030040

G. C. Wu, Z. G. Deng, D. Baleanu, D. Q. Zeng, Fractional impulsive differential equations: Ex-
act solutions, integral equations and short memory case, Fract. Calc. Appl. Anal., 22 (2019).
https://doi.org/10.1515/fca-2019-0012

A. Atangana, S. Igret Araz, New concept in calculus: Piecewise differential and integral operators,
Chaos Solit. Fract., 145 (2021). https://doi.org/10.1016/j.chaos.2020.110638

W. H. Deng, Short memory principle and a predictor-corrector approach for
fractional differential equations, J. Comput. Appl. Math., 206 (2007), 174-188.
https://doi.org/10.1016/j.cam.2006.06.008

A. Atangana, S. Igret Araz, Advanced analysis in epidemiological modeling: Detection of wave,
MedRixv, (2021). https://doi.org/10.1101/2021.09.02.21263016

B. Ghanbari, D. Kumar, Numerical solution of predator-prey model with Beddington-DeAngelis
functional response and fractional derivatives with Mittag-Leffler kernel, Chaos, 29 (2019).
https://doi.org/10.1063/1.5094546

G. Qi, G. Chen, M. A. Van Myk, B. J. Van Myk, Y. Zhang, A four-wing chaotic attractor gen-
erated from a new 3-D quadratic chaotic system, Chaos Solit. Fractals., 38 (2008), 705-721.
https://doi.org/10.1016/j.chaos.2007.01.029

G. Qi, Z. Wang, Y. Guo, Generation of an eight-wing chaotic attractor from Qi 3-D four-wing
chaotic system, Int. J. Bifurc. Chaos, 22 (2012). https://doi.org/10.1142/S0218127412502872

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8601-8620.


http://dx.doi.org/https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
http://dx.doi.org/https://doi.org/10.12785/pfda/010201
http://dx.doi.org/https://doi.org/10.98/TSCI160111018A
http://dx.doi.org/https://doi.org/10.1007/s00707-020-02690-y
http://dx.doi.org/https://doi.org/10.1016/j.ijsolstr.2020.08.015
http://dx.doi.org/https://doi.org/10.3390/fractalfract4030040
http://dx.doi.org/https://doi.org/10.1515/fca-2019-0012
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.110638
http://dx.doi.org/https://doi.org/10.1016/j.cam.2006.06.008
http://dx.doi.org/https://doi.org/10.1101/2021.09.02.21263016
http://dx.doi.org/https://doi.org/10.1063/1.5094546
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2007.01.029
http://dx.doi.org/https://doi.org/10.1142/S0218127412502872

8621

16. T. Mekkoui, A. Atangana New numerical approximation of fractional derivative with non-
local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus, 132 (2017).
https://doi.org/10.1140/epjp/s13360-022-02380-9

17. A. Atangana, S. Igret Araz, New numerical scheme with Newton polynomial: Theory, Methods
and Applications, Academic Press, (2021). https://doi.org/10.1016/B978-0-12-775850-3.50017-0

@ AIMS Press

Mathematical Biosciences and Engineering

©2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Volume 19, Issue 8, 8601-8620.


http://dx.doi.org/https://doi.org/10.1140/epjp/s13360-022-02380-9
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-775850-3.50017-0
http://creativecommons.org/licenses/by/4.0

	Introduction
	Motivation for piecewise derivatives
	Short memory concept
	Analysis and difference
	Application to real world problems
	Conclusions

