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Abstract: As one of the most popular combinatorial optimization problems, Traveling Salesman
Problem (TSP) has attracted lots of attention from academia since it was proposed. Numerous meta-
heuristics and heuristics have been proposed and used to solve the TSP. Although Ant Colony Opti-
mization (ACO) is a natural TSP solving algorithm, in the process of solving it, there are also some
shortcomings such as slow convergence speed and prone to fall into local optimum. Therefore, this pa-
per proposes an improved ant colony optimization based on graph convolutional network: Graph Con-
volutional Network Improved Ant Colony Optimization (GCNIACO). The graph convolutional net-
work is introduced to generate a better solution, and the better solution is converted into the pheromone
on the initial path of the ACO. Thereby, the guiding effect of the pheromone concentration for the ants
at the beginning of the algorithm is enhanced. In the meantime, through adaptive dynamic adjustment
of the pheromone volatility factor and the introduction of the 3-opt algorithm, the algorithm’s ability to
jump out of the local optimum is enhanced. Finally, GCNIACO is simulated on TSP datasets and engi-
neering application example. Comparing the optimization results with other classical algorithms, it is
verified that the graph convolutional network improved ant colony optimization has better performance
in obtaining the optimal solution.

Keywords: traveling salesman problem; ant colony optimization; graph convolutional network;
dynamic pheromone volatility factor; 3-opt algorithm

1. Introduction

This kind of optimization problem that finds the optimal solution in a finite set of feasible solutions
is called combinatorial optimization problem. With the wide application in various industries and the
rapid development of computer technology, the combinatorial optimization problem has developed into
an independent branch of operational research. The research questions involve financial investment
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[1], ecological environment [2], medical biology [3], logistics management [4], transportation [5],
industrial engineering [6], medical image [7] and many other fields. Traveling salesman problem
(TSP) is one of the most popular combinatorial optimization problems in recent years, and has been
widely used as a benchmark for various optimization techniques and meta-heuristic searches. The
traveling salesman problem was proposed in 1930, its goal is to find the shortest path to visit each city
exactly once and return to the starting point city based on a given list of cities and the distance between
cities. Since the feasible solution of this problem is the full permutation of all vertices, as the number
of vertices increases, combinatorial explosion will occur, so this is also an NP-hard problem. Accurate
algorithms such as cutting plane, branch and bound, the shortest spanning tree and the 2-matching can
be used to solve the exact solution of the TSP [8]. However, when the traveling salesman problem is
too large, the accuracy of the data sample is not enough, the problem target conflicts, etc., the accurate
algorithm runs for a long time and it is difficult to obtain satisfactory results. Therefore, scholars use
meta-heuristic and heuristic algorithms to effectively solve such problems. At this time, the algorithm
does not insist on an accurate optimal solution, but finds an acceptable optimal solution in a reasonable
time.

In the meta-heuristic algorithm, the principle and mechanism of ant colony optimization (ACO)
[9] make it a natural traveling salesman problem solving algorithm. When ants are in search of food,
they transmit information between individuals by releasing pheromone along the path they travel. At
the same time, the ants will choose paths with a higher concentration of pheromone to move. With
the continuous search of the ant colony, the shorter the path, the more ants will pass, and the higher
the pheromone concentration left on the path, prompting more ants to choose this path to move, thus
looping to form a positive feedback mechanism. This allows the ant colony to quickly find the shortest
path to find food. In 1991, Italian scholar Dorigo et al. just imitated this foraging behavior of ant
colonies in the biological world, and proposed a swarm intelligent bionic optimization algorithm: Ant
Colony Optimization (ACO). But the ACO itself also has certain defects and shortcomings. With
the continuous in-depth development of research, scholars have proposed many improvements and
algorithm fusion schemes. Good results have been achieved and many practical problems in different
situations have been solved.

With the rise of machine learning, especially the development of graph neural networks, the
learning-based approach is also effective in solving the TSP. The motivation of the paper is that al-
though the ACO has defects and deficiencies, it is possible to achieve good results after improvement.
At the same time, the graph convolutional network also has the ability to solve the TSP. Therefore, the
article proposes a new improved ant colony optimization based on graph convolutional network: Graph
Convolutional Network Improved Ant Colony Optimization (GCNIACO). Aiming at shortcomings of
the lack of pheromone and slow convergence in the initial stage of the ACO, the graph convolutional
network is introduced to generate a better solution, and this better solution is converted into the initial
pheromone of the ant colony through a pheromone conversion strategy. Thereby, the initial solving
speed of the algorithm has been improved. Then, aiming at the shortcomings of ant colony optimiza-
tion that it is easy to stagnation and fall into local optimum in the later stage of iterative stage, the ability
of the algorithm to jump out of local optimum is enhanced by dynamically adjusting the pheromone
volatility factor and introducing the 3-opt algorithm.
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Table 1. Summary of the literature review for solving the traveling salesman problem.
Methodology Mechanism Features Challenges

DJAYA [10]

A new discrete optimization
method based on Jaya algorithm
and transformation operators is
proposed.

In terms of mean, standard
deviation and relative error,
the results show that
DJAYA is competitive and
alternative.

Inferior to DSTAII in
some cases.

D-GWO [11]
Combined with the 2-opt
algorithm, a new discrete GWO
algorithm is proposed.

D-GWO is able to provide
adequate and comparable
solutions for symmetric
TSP.

Poor performance on
instances kroc100 and
kroe100.

DHOA [12]

A new hybrid optimization
algorithm is developed by
integrating the excellent
performance of deer hunting
optimization algorithm and
earthworm optimization algorithm.

Demonstrate better
convergence performance
and lower computational
complexity.

The applicability of the
algorithm in practical
engineering problems has
not been verified.

S-ROA [13]

A new hybrid optimization
algorithm is developed by
integrating the excellent
performance of spotted hyena
optimizer algorithm and rider
optimization algorithm.

Able to get rid of premature
convergence.

It takes longer time in
solving for large scale
number of cities.

DBAL [14] Lévy’s flights and neutral
crossover operator are introduced.

The ability of the algorithm
to jump out of the local
optimum is enhanced.

DBAL is not suitable for
very large-scale TSP
datasets (over 1002 cities);
and the running time also
needs to be further
optimized.

neural
combinatorial
optimization
framework [19]

Design their own critic to compute
a baseline for the tour length; and
introduce 2-opt heuristic.

Near-optimal results are
obtained on a 2D Euclidean
graph.

The applicability of the
algorithm on real TSP
instances has not been
verified.

GNN [20] Train the model to be an efficient
message-passing algorithm.

GNNs can learn the
decision variables of
solving the traveling
salesman problem with
very little supervision.

Model is not trained and
evaluated on the
comprehensive set of real
and random graphs.

model based on
attention
layers [21]

An attention layer-based model is
proposed and the model is trained
by using REINFORCE with a
simple baseline based on a
deterministic greedy rollout.

Significantly improve the
learning heuristic results of
TSP.

The simple masking
procedure in the model
cannot meet the feasibility
constraints of practical
problems.

BGNN [22]
Design a bidirectional message
passing layer and train the model
with imitation learning.

It can balance running time
and performance, and has
the ability to jump out of
local optimum.

The applicability of the
algorithm on real TSP
instances has not been
verified.

This study’s major contributions for the literature are as follows:

• A new improved ant colony optimization is proposed to improve its performance when solving
the TSP.
• The simulation test results indicate that GCNIACO can provide the solutions with good competi-

tive performance for the TSP.
• Provide a reference method for the combination of swarm intelligence algorithm and machine

learning.
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Table 2. Summary of the literature review on ant colony optimization improvement.
Methodology Mechanism Features Challenges

Fuzzy-ACO [23]

Introduce fuzzy logic module to calculate
pheromone value; and introduce Taguchi
concept to optimize algorithm
parameters.

The algorithm is more
appropriate for
handling complex
network.

The pheromone formula
and algorithm operation
in the actual environment
are not perfect.

DEACO [24] Dynamically adjust the parameters of the
ant colony optimization.

The convergence
speed and search
accuracy are
improved.

Theoretical analysis is
difficult, and the
experimental basis is
more than theoretical
research.

PACON [25]

Introduce an angle and angle calculation
rule in pheromone transfer rule; and
increase the weight of pheromone
concentration on the optimal path.

The algorithm
convergence speed
and convergence
accuracy have been
improved.

The applicability of the
algorithm in practical
engineering problems has
not been verified.

HAACO [26]
Introduce the heterogeneity of ACO;
introduce parameter adaptation rules; and
integrate 3-opt algorithm.

HAACO has better
algorithm
performance relative
to the compared
algorithms.

Solve poorly on some
very large instances of
TSP.

GA-ACO [27] The ant population is initialized using the
genetic algorithm.

It has stronger global
search performance
and fast convergence.

No simulation
comparisons with other
excellent algorithms have
been performed.

improved ant
colony
algorithm [28]

The heuristic function is improved; the
pheromone update mechanism is
improved, and the path selection strategy
is improved.

It outperforms
traditional algorithms
in terms of path length
and task waiting time.

The simultaneous
working of multiple
cranes has not been
analyzed.

improved ant
colony
algorithm [29]

The initial pheromone differential
distribution strategy is adopted; the local
path is optimized in blocks; the
pheromone update mechanism is
improved; and the path selection strategy
is improved.

It can plan the optimal
path with effective
obstacle avoidance
and little number of
folds.

The running time of the
algorithm has not been
analyzed.

IDAACO [30]

Heuristic strategy with direction
information; adaptive pseudo-random
transmission strategy; improved local
pheromone update mechanism and
improved global pheromone update
mechanism.

IDAACO has the
advantage in terms of
practicality and
efficiency.

It is difficult to balance
the relationship between
the parameters and the
calculation formula.

multi-factor
improved ant
colony
algorithm [31]

Construct multi-factor heuristic function;
distribute initial pheromone stepwise;
update pheromone by classification;
adopt max-min ant strategy and
adaptively adjust pheromone volatile
factor.

Good ability to adapt
to the environment.

It has not been analyzed
and compared with other
excellent algorithms in a
complex terrain
barrier-free environment.

IACO [32]

The formula of transition probability is
improved; the pheromone volatility
factor of self-adaptive adjustment is
designed; the variable neighborhood
local search embedded by insertion
operator and exchange operator is
introduced.

The improved effect is
obviously better than
that of the traditional
ant colony
optimization.

The model does not take
into account the
dynamics and
heterogeneity of customer
needs.

IACO [33]

A pheromone update mechanism based
on information entropy is designed, and
variable neighborhood search is
introduced.

Global and local
search capabilities
have been improved.

The running time of the
algorithm is prolonged.
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The other parts of the thesis are composed as follows: Section 2 is the relevant literature review;
Section 3 introduces the basic concept of the traveling salesman problem; Section 4 introduces the
basic ant colony optimization model; Section 5 introduces the principle and optimization mechanism
of the proposed graph convolutional network improved ant colony optimization. In Section 6, the im-
proved algorithm is simulated and tested on a wide range of benchmark examples, and compared with
the traditional meta-heuristic algorithm to verify the improved effect of the algorithm. Section 7 ap-
plies some statistical tests to confirm that the observed differences between the original and improved
versions are actually meaningful. Section 8 applies the improved algorithm to solve practical engineer-
ing problem to verify the practicality of the algorithm. Section 9 summarizes the overall research work
and presents an outlook for the future.

2. Literature review

This part mainly focuses on the literature review on the solution of TSP and the improvement of
ACO in recent years.

2.1. Traveling salesman problem solving

In order to obtain a satisfactory solution to the NP-hard traveling salesman problem, scholars have
proposed lots of meta-heuristics to solve the TSP. Gunduz et al. [10] proposed a new discrete op-
timization method called DJAYA for the permutation-coded optimization problems, and studied the
performance of the proposed algorithm on 14 different symmetric TSP data sets. Experimental re-
sults showed that the algorithm was an optional and competitive optimization algorithm. Panwar et al.
[11] based on the meta-heuristic algorithm for solving continuous optimization problems: gray wolf
optimizer (GWO), combined with the 2-opt algorithm, produced a novel discrete GWO algorithm for
solving the symmetric traveling salesman problem. And the effectiveness of the proposed method was
verified by experimental simulation. Kanna et al. [12] proposed a new hybrid algorithm by integrating
two meta-heuristic algorithms with good performance: earthworm-based deer hunting optimization al-
gorithm (DHOA). The proposed optimization algorithm showed better convergence performance and
lower computational complexity when solving the TSP. Based on the rider optimization algorithm
(ROA) and the spotted hyena optimizer algorithm (SHO), Krishna et al. [13] constructed a new hybrid
algorithm: spotted hyena-based rider optimization (S-ROA). By solving the traveling salesman prob-
lem case, the good competitive performance of the constructed method was verified. Saji et al. [14]
proposed a new discrete bat algorithm to solve the TSP. Lévy’s flights and neutral crossover operator
were introduced to enhance the ability of the algorithm to jump out the local optimum. The overall
performance of the algorithm was therefore improved. There are also meta-heuristic algorithms such as
discrete crow-inspired algorithms (DC) [15], discrete shuffled frog leaping algorithm (DSFLA) [16],
differential evolution (DE) [17], discrete spider monkey optimization (DSMO) [18], etc. have also
been proposed and applied to solve the TSP, and all have obtained good results. With the in-depth
research and development of machine learning and graph neural networks, solving the TSP based on
learning has also attracted the attention of scholars. Deudon et al. [19] proposed a neural combinatorial
optimization framework to solve the TSP. In the framework, the city coordinates were used as input,
and the neural network was trained by using reinforcement learning to predict the distribution of the
city arrangement. Then the good performance of the proposed framework was verified by experimental
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simulation. Prates et al. [20] successfully applied graph neural networks to solve the TSP, proving that
graph neural networks could learn the decision variables of solving the traveling salesman problem
with little supervision. Kool et al. [21] proposed a model based on the attention layer, and trained the
model by using REINFORCE with a simple baseline based on a deterministic greedy rollout. Finally,
satisfactory results were obtained when solving problems such as orienteering problem (OP) and prize
collecting TSP (PCTSP). Hu et al. [22] proposed a bidirectional graph neural network to solve the trav-
eling salesman problem on any symmetric graph. The network used imitation learning to sequentially
generate the next city to visit. At the same time, by designing a bidirectional message transfer layer,
the graph was coded based on edge and partial solutions, so as to construct a near-optimum solution
for traveling salesman problem on any symmetric graph. A summary of relevant literature reviews was
shown in Table 1.

2.2. Ant colony optimization improvement

Ragmani et al. [23] proposed a new hybrid algorithm based on fuzzy logic and ACO to improve load
leveling in cloud computing environments. The algorithm used Taguchi experimental design to obtain
the optimum parameter value of the ant colony optimization, and defined a fuzzy module to assess
pheromone value, thereby speeding up the computation of the algorithm. Aiming at the shortcomings
of the ant colony optimization’s slow convergence speed and prone to fall into the local optimum,
Ebadinezhad et al. [24] proposed a dynamic evaporation ant colony optimization (DEACO) that dy-
namically adjusted the parameters of the ACO. It was used to solve the TSP example, which verified
the good performance of the proposed algorithm in terms of convergence speed and search accuracy.
Aiming at the shortcomings of low convergence accuracy and slow convergence speed in the ant colony
optimization, Li et al. [25] proposed a pseudo-dynamic search ACO with an improved negative feed-
back mechanism. By introducing an angle and angle calculation rule in the pheromone transmission
rule, it affected the probability of city selection and improved the ability of the algorithm to jump out
of the local optimum. Then the algorithm updated the pheromone concentration on the optimum path
and the worst path at the same time, and enhanced the weight of the pheromone concentration on the
optimum path, thereby improving the convergence speed of the algorithm. Tuani et al. [26] proposed
a heterogenous adaptive ant colony optimization (HAACO), which modified the transition probability
formula in the ACO to introduce the heterogeneity of ACO. Then by introducing a set of parameter
adaptation rules, the adaptiveness of α and β parameters in the ant colony optimization was achieved.
At the same time, the 3-opt local search algorithm was integrated into the proposed algorithm to fur-
ther improve the algorithm’s search ability. Aiming at the problem that ACO has strong dependence on
pheromone and is prone to fall into local optimum, Zheng et al. [27] proposed an improved hybrid ge-
netic ant colony optimization. The optimal solution produced by the genetic algorithm was used as the
initial information of the pheromone in the ant colony optimization to improve the algorithm’s global
search ability and rapid convergence. Li et al. [28] proposed an improved ant colony optimization to
solve the path planning problem of unmanned cranes during hoisting, and improved the solution perfor-
mance of the algorithm by improving the heuristic function, pheromone update mechanism, and path
selection strategy. Aiming at the shortcomings of ant colony optimization to solve the path planning
problem, such as falling into local optimum and slow convergence speed, Tang et al. [29] proposed an
improved ant colony algorithm. They used a differentiated distribution strategy to improve the initial
pheromone concentration on the path. Then, the ACO was improved by adopting local path block op-
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timization strategy, introducing pheromone self-adjustment enhancement factor, introducing random
state transition parameters, etc., so as to improve the convergence and stability of the algorithm. Liu
et al. [30] proposed an improved dynamic adaptive ant colony optimization (IDAACO) to handle the
problem of pipe routing design. IDAACO had designed four improved new mechanisms: heuristic
strategy with directional information, adaptive pseudo-random transmission strategy, improved local
pheromone update mechanism and improved global pheromone update mechanism. Then, the excel-
lent performance of the improved algorithm in terms of practicability and high efficiency was verified
through experimental simulation. Yang et al. [31] proposed a multi-factor improved ant colony op-
timization to solve the path planning problem of mobile robots. The performance of the algorithm
was improved by constructing multi-factor heuristic functions, assigning initial pheromone stepwise,
updating pheromone classification, adopting the maximum and minimum ant strategy and adaptively
adjusting the pheromone volatility factor. He et al. [32] proposed an improved ant colony optimiza-
tion (IACO) to solve the vehicle routing problem with soft time windows. Based on the basic ant
colony optimization, they improved the transition probability formula, designed an adaptively adjusted
pheromone volatility factor, and introduced the variable neighborhood local search embedded by the
insertion operator and the exchange operator. They also set the conditions for starting and exiting the
local search, and updated the current local optimal solution. Finally, the effectiveness of the improved
algorithm was verified through experimental simulation. Wang et al. [33] proposed an improved ant
colony algorithm to solve the green periodic vehicle routing problem with time windows. By design-
ing a pheromone update mechanism based on information entropy in the algorithm and introducing
variable neighborhood search, the algorithm’s global and local search capabilities were improved. A
summary of relevant literature reviews was shown in Table 2.

3. Traveling salesman problem

Imagine you are planning a travel route now. You start from the city where you live and travel
through the cities you are interested in sequentially. You have passed through all these cities and only
once. Finally, you are back to the city where you live, so how do you plan your route to minimize the
distance you traveled? This is the typical traveling salesman problem (TSP). TSP includes symmetric
traveling salesman problem (STSP) [34], asymmetric traveling salesman problem (ATSP) [35], pickup-
and-delivery traveling salesman problem (PDTSP) [36], multiple traveling salesman problem (MTSP)
[37], multi-objective traveling salesman problem (MOTSP) [38], etc. This article mainly takes the
classic symmetric traveling salesman problem as the research objective, hereinafter referred to as the
traveling salesman problem. It can be described as: in the given n cities C = [C1,C2, ...,Cn], the
distance di j(i, j ∈ 1, 2, ..., n) between any two cities i and j is known, and di j = d ji; find a closed path
Ĉ = [Ĉ1, Ĉ2, ..., Ĉn] that minimizes the objective function value of Eq (3.1) and satisfies the constraint
condition of traversing each city once and finally returning to the starting point.

L(Ĉ) =

n−1∑
i=1

d(Ĉi, ˆCi+1) + d(Ĉn,Ĉ1) (3.1)

According to the knowledge of graph theory in operational research, the quiddity of the traveling
salesman problem is to seek a Hamilton loop with the smallest weight in a completely undirected
graph with weights. Let G = (V, E) be the weighted graph; V = (1, 2, ..., n) is the set of nodes formed

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8152–8186.



8159

by all cities; E is the set of edges; the distance between each node di j > 0(i, j ∈ V) is known, and
dii = 0, di j = d ji; let the expression of xi j(i, j ∈ V) be:

xi j =

1, if (i,j) is on the optimal closed path
0, otherwise

(3.2)

Then the TSP can be modeled as the following integer programming problem [10]:

min
∑

i

∑
j

di jxi j (3.3)

Subject to ∑
i∈V

xi j = 1,∀i ∈ V, i , j (3.4)

∑
j∈V

xi j = 1,∀ j ∈ V, i , j (3.5)

∑
i, j∈S

xi j ≤ |S | − 1, 2 ≤ |S | ≤ n − 2, S ⊂ V (3.6)

xi j ∈ {0, 1},∀i, j ∈ V (3.7)

where S is all non-empty subsets of the node set V , and |S | represents the number of vertices contained
in the set S . Equation (3.3) is the objective function, which means that the sum of distances is the
smallest; Eqs (3.4)–(3.7) are all constraints; Eqs (3.4) and (3.5) indicate that each node in the weighted
graph G is reached and left only once; Eq (3.6) constrains to eliminate the occurrence of subtour, and
ensures that the optimal closed path is a single large loop that passes through all points.

4. Ant colony optimization

The ACO is inspired by the collaborative work of ants. By abstracting the problem to be studied as
the problem of finding the optimal path, the node model is constructed. The construction process of the
solution is the selection and movement process of ants between nodes. Solution elements that satisfy
the solution conditions are continuously added to construct a complete feasible solution. Finally, it
converges to the optimum solution of the problem under the effect of the pheromone positive feedback
mechanism. The principle and mechanism of ant colony optimization make it a natural traveling sales-
man problem solving algorithm. This article also uses the traveling salesman problem as an instance
to introduce the classic ant colony optimization model [39]:

In order to ensure the generality of the algorithm, the number of cities is set to n; the number of
ants is set to m; the distance di j(i, j ∈ 1, 2, ..., n) between any two cities i and j is known, and di j = d ji,
the Euclidean distance is used in the paper; the pheromone concentration on the path between city i
and city j at time t is set to τi j(t). At the initial moment, the ACO sets the pheromone concentration on
all paths to same value. Then let the ant choose the next city to visit according to a certain selection
probability pk

i j(t), where pk
i j(t) is called the transition probability of the ant k at the time of t from the

city i to the city j, which is the path selection process of the ant. The specific formula is expressed in
Eq (4.1):
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pk
i j(t) =


[τi j(t)]α•[ηi j(t)]β∑

s∈allowk
[τis(t)]α•[ηis(t)]β

, j ∈ allowk

0, j < allowk

(4.1)

where ηi j(t) is called the heuristic function, which represents expectation degree of the ants from the
city i to the city j at time t, generally ηi j(t) = 1

di j
; allowk is the set of cities currently accessible by each

ant k; α is a pheromone factor, which reflects the influence degree of pheromone when the ant chooses
a path; β is a heuristic function factor, which reflects the influence degree of the heuristic function
when the ant chooses a path. When all the ants complete a complete traversal, that is, after each ant
independently completes its own feasible solution construction, the pheromone concentration on the
inter-city path will increase while the ants secrete the pheromone, and decrease at the same time as the
pheromone volatilizes. The specific update mechanism is as follows:

τi j(t + 1) = (1 − ρ) • τi j(t) + ∆τi j, 0 < ρ < 1 (4.2)

∆τi j =

m∑
k=1

∆τk
i j (4.3)

where ρ is the pheromone volatility factor, which reflects the degree of pheromone volatility, ρ ∈ (0, 1);
∆τi j represents the increased pheromone concentration that all ants secrete pheromone on the path
between city i and city j in one cycle; ∆τk

i j represents the increased pheromone concentration that a
single ant k secretes pheromone on the path between city i and city j in one cycle, the Ant-cycle model
[40] that can utilize global information is generally used to define ∆τk

i j:

∆τk
i j =

 Q
Lk
, ant k goes from city i to city j

0, otherwise
(4.4)

where Q is a pheromone constant, which denotes the total amount of pheromone secreted by each
ant after completing a complete traversal; Lk denotes the length of the path taken by a single ant k
after completing a complete traversal. Equation (4.2) simulates the ant’s pheromone update process,
including the volatility of pheromone and the superposition of pheromone on the path that the ant
passes; Eq (4.3) is to superimpose new pheromone on all nodes path, and the value of ∆τk

i j is calculated
according to Eq (4.4).

5. Graph convolutional network improved ant colony optimization

The ACO has strong robustness, and the positive feedback mechanism of pheromone makes the ant
colony optimization have a strong capacity to discover the optimum solution. But at the same time,
the algorithm also has the following shortcomings [41]: in the initial stage of the solution, pheromone
is lacking, and the solution speed is slow; in the later stage of the solution, under the influence of
pheromone, it is easy to fall into the local optimum. Therefore, in view of the shortcomings of the ACO,
this paper proposes a graph convolutional network improved ant colony optimization (GCNIACO).
First, the graph convolutional network is introduced to generate a better solution, and the better solution
is converted into the initial value of pheromone through the pheromone conversion strategy to improve
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the initial solution speed of the algorithm; the algorithm’s capacity to jump out of the local optimum is
then enhanced by dynamically adjusting the pheromone volatility factor and combining with the 3-opt
algorithm.

5.1. Graph convolutional network

At the initial moment in the ant colony optimization, all paths have the same pheromone concen-
tration, and the attraction to ants is also the same. As a result, the pheromone in the initial stage
has poor guidance for the ants’ choice of paths, and the convergence rate of the optimal solution is
slower. In addition, it may search for irrelevant paths that produce a large number of non-optimal path
components. The enhancement of pheromone on these paths interferes with the update of the overall
pheromone of the algorithm, which is not conducive to exploring a better path. Therefore, in order
to improve the search performance of the algorithm in the initial stage. The graph convolutional net-
work is introduced to generate the better solution, and the better solution is converted into the initial
value of the pheromone through the pheromone conversion strategy. Then, the difference in pheromone
concentration between the better path and the poorer path at the initial stage is increased.

Convolutional neural network (CNN) requires regular data domains, such as 2-dimensional or 3-
dimensional Euclidean grid images in computer vision (CV), 1-dimensional sequential text in natural
language processing, and so on [42]. However, a lot of data is usually not in the domain of regular data,
but in the domain of heterogeneous graphs. This requires the use of another common data structure,
that is, a graph composed of vertices and edges. But it is also difficult to directly define operations such
as convolution and pooling in the graph, which hinders the development of CNN, so these drives form
the graph convolutional network (GCN). In 2019, Chaitanya et al. [43] introduced a new learning-based
method to solve the traveling salesman problem, used a deep graph convolutional network to construct
an efficient traveling salesman problem graph representation, and then output the optimal path in a non-
autoregressive manner through a highly parallelized beam search. The main practice is: take a graph
as input, extract synthetic features from the nodes and edges of the graph by stacking several graph
convolutional layers, and train the graph convolution model to directly output the adjacency matrix
corresponding to the path; then use post-hoc beam search technology to convert the adjacency matrix
obtained from the model into a valid path. Among them, the adjacency matrix denotes the probability
of the edge appearing in the path; the parameters of the graph convolution model are trained end-to-end
by minimizing the cross-entropy loss through gradient descent.

In the construction of the graph convolutional layer, let xl
i and el

i j respectively denote the node
feature vector and edge feature vector at the graph convolutional layer l associated with node i and
edge i j then the node feature and edge feature of the next layer are defined as Eqs (5.1) and (5.2):

xl+1
i = xl

i + ReLU(BN(W l
1xl

i +
∑
j∼i

ηl
i j �W l

2xl
j)) with ηl

i j =
σ(el

i j)∑
j′∼i σ(el

i j′
) + ε

(5.1)

el+1
i = el

i + ReLU(BN(W l
3el

i j + W l
4xl

i + W l
5xl

j)) (5.2)

where W ∈ Rh×h is the parameter that needed to train by the graph convolution model; h is the hidden
dimension of each graph convolutional layer; σ is the sigmoid function; ε is a small value, which can
ensure that the denominator of ηl

i j is not 0; ReLU is rectified linear unit, which is used as an activation
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function in the graph convolutional network; BN stands for batch normalization. When l = 0, xl=0
i and

el=0
i j respectively represent the node feature and edge feature of the input layer, and their definitions are

as shown in Eqs (5.3) and (5.4) respectively:

xl=0
i = A1xi + b1 (5.3)

el=0
i j = A2di j + b2 ‖ A3δ

k-NN
i j (5.4)

δk-NN
i j =


1, if node i and node j are k nearest neighbors
2, if node i and node j are selfconnected
0, otherwise

(5.5)

where xi is the two-dimensional coordinate of the input graph, xi ∈ [0, 1]2; A1 ∈ R
h×2, A2 ∈ R

h
2×1,

A3 ∈ R
h
2×3, h is the hidden dimension of the graph convolutional layer, A1, A2, A3, b1, b2 are the initial

parameter values of the graph convolution model; ‖ is the concatenation operator. Equation (5.3)
embeds two-dimensional coordinate as h-dimensional feature vector; Eq (5.4) embeds the Euclidean
distance di j of the edge as h

2 -dimensional feature vector; the δk-NN
i j in Eq (5.5) is defined as the indicator

function of the edge in the TSP, and the learning process of the model is accelerated by inputting
k-nearest neighbor graph, usually k = 20.

The edge feature eL
i j of the last layer of the graph convolution model is used to calculate the prob-

ability pTS P
i j that the edge is connected in the TSP path. The pTS P

i j can be regarded as a probabilistic
heatmap of edge connections computed on an adjacency matrix, each pTS P

i j ∈ [0, 1]2 and is computed
with the multi-layer perceptron (MLP):

pTS P
i j = MLP(eL

i j) (5.6)

After the graph convolution model outputs an adjacency matrix predicting edge occurrence prob-
abilities, a probabilistic heatmap of edge connections is obtained. Using the beam search technique,
starting from the first node, the probabilistic heatmap is explored by extending the b most likely edge
connections between neighbor nodes. The first b local paths of each stage are then iteratively expanded
until all nodes in the graph are visited. At the same time, during the search process, the nodes that have
been visited before are shielded to ensure the validity of the path. The final predicted optimal path is
the path with the shortest length among the b complete paths after the end of the beam search.

When improving the initial pheromone of the ACO, if the optimal solution predicted and generated
by the graph convolutional network is directly converted into the initial pheromone, the information of
the graph convolutional network solution may not be fully utilized because the number of selections
is too small. Therefore, in order to fully and effectively utilize the information of graph convolutional
network solutions, according to the literature [44], this paper designs the following pheromone con-
version strategy. The main practice is: set the initial pheromone of the ant colony optimization as
τ = τc + τGCN . Among them, τc is the initial pheromone constant, and the value can be specifically
set based on the actual situation, but please try to ensure that there is a large difference in pheromone
concentration between the better path and the worse path after use, and this paper sets it as τc = 0.1.
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τGCN is generated by the conversion of the optimal solution of the graph convolutional network, which
can be calculated by the following formulas:

τGCN
i j =

ki j

q
(5.7)

τGCN =


τGCN

11 · · · τGCN
1n

...
...

τGCN
n1 · · · τGCN

nn

 (5.8)

where τGCN
i j is the pheromone concentration on the path between nodes i and j; q is the first q short

paths taken from the beam search of the graph convolutional network, according to the literature [44],
the value of q is q = 30; ki j is the number of times that every two city nodes (i, j) appear in q paths; n
is the number of city nodes. In order to reduce the interference of pheromone reinforcement on poor
paths, this paper sets a threshold for ki j. When the number of occurrences of the two city nodes (i, j)
in q paths is less than or equal to 10%q, ki j = 0, otherwise the value of ki j remains unchanged. The
specific formula is shown in Eq (5.9):

ki j =

ki j, if ki j > 10%q

0, if ki j ≤ 10%q
(5.9)

5.2. Dynamic pheromone volatility factor ρ

The pheromone volatility factor ρ represents the volatility degree of pheromone in each iteration,
which affects the global search ability and convergence speed of the ant colony optimization. When the
value of ρ is too large, the pheromone on each path volatilizes faster, and the ant colony may search the
path repeatedly, resulting in a decrease in the convergence speed; when the value of ρ is too small, the
volatility speed of pheromone on each path is slow, and the accumulation of pheromone concentration
on the path is too high, which may affect the randomness and global search ability of ant colony search,
resulting in the algorithm falls into local optimum. Therefore, this paper proposes an improved method
for dynamic pheromone volatility factor, as shown in Eq (5.10):

ρ =

log( 2×NC max
NC max+NC ), if log( 2×NC max

NC max+NC ) > ρmin

ρmin, otherwise
(5.10)

where NC max is the total number of iterations of the algorithm; NC is the current iteration number
of the algorithm; ρmin is the minimum value of ρ, which is set to prevent ρ from being too small and
reducing the algorithm convergence speed. And according to the literature [39], the best empirical
result range of ρ is 0.1 ≤ ρ ≤ 0.99, the paper sets the value of ρmin to ρmin = 0.1. The improved
pheromone volatility factor change curve was shown in Figure 1.

The main idea of dynamic pheromone volatility factor proposed in the paper is: it is hoped that the
pheromone volatility factor value will change with the number of iterations. In the initial stage of the
algorithm iteration, the pheromone volatility factor value is set larger, the accumulation of pheromone
concentration on the path is less, and the ants can search for more paths, so that the algorithm has a
strong global search ability. After the algorithm iterates a certain number of times, the numerical setting
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of the pheromone volatility factor gradually decreases, so that the accumulation of pheromone concen-
tration on the path gradually increases, which enhances the pulling and guiding effect of pheromone
on the ant colony. The ants gradually converge to the path with high pheromone concentration, which
speed up the algorithm convergence speed.

Figure 1. Dynamic pheromone volatility factor change curve.

5.3. 3-opt algorithm

When the ant colony optimization is searching for a feasible solution of the path, it may generate
a suboptimal path with crossover phenomenon similar to Figure 2(a). The more paths intersect, the
longer the path length, and the worse the quality of the obtained feasible solution. Therefore, this
article uses the 3-opt algorithm [45] to optimize the ant colony optimization to further shorten the
path length. That is, the de-crossing operation is performed on the part of the path that has a similar
crossover phenomenon in Figure 2(a), and it is optimized into the optimal path in Figure 2(b). The
specific operation steps are: starting from the first node t = 1, 5 points c(t), c(t + 1), c(t + 2), c(t + 3),
c(t + 4) are continuously selected each time; swap the positions of the three middle points in turn to
get six kinds of sequential arrangements, and the calculated lengths are: L1 = d[c(t), c(t + 1)] + d[c(t +

1), c(t + 2)] + d[c(t + 2), c(t + 3)] + d[c(t + 3), c(t + 4)]; L2 = d[c(t), c(t + 1)] + d[c(t + 1), c(t + 3)] +

d[c(t + 3), c(t + 2)] + d[c(t + 2), c(t + 4)]; L3 = d[c(t), c(t + 2)] + d[c(t + 2), c(t + 1)] + d[c(t + 1), c(t +

3)] + d[c(t + 3), c(t + 4)]; L4 = d[c(t), c(t + 2)] + d[c(t + 2), c(t + 3)] + d[c(t + 3), c(t + 1)] + d[c(t +

1), c(t + 4)]; L5 = d[c(t), c(t + 3)] + d[c(t + 3), c(t + 2)] + d[c(t + 2), c(t + 1)] + d[c(t + 1), c(t + 4)];
L6 = d[c(t), c(t + 3)] + d[c(t + 3), c(t + 1)] + d[c(t + 1), c(t + 2)] + d[c(t + 2), c(t + 4)]; then compare
the size of the length L1, L2, L3, L4, L5, L6, and replace the original arrangement of c(t) to c(t + 4) in the
path with the arrangement corresponding to the minimum length; iterate t = t + 1 in turn until t = n. In
the TSP, it is important to note that: c(n + 1) = c(1), c(n + 2) = c(2), c(n + 3) = c(3), c(n + 4) = c(4).
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Figure 2. 3-opt algorithm de-crossing example.

5.4. GCNIACO flow

The main idea of graph convolutional network improved ant colony optimization is: the better
solution generated by the graph convolutional network is converted into the initial pheromone of the
ACO through the pheromone conversion strategy, and the difference of initial pheromone concentration
on the best path and the suboptimal path is improved; then the pheromone volatility factor is improved
to be dynamically adaptive, and the 3-opt algorithm is used for the de-crossing operation, which further
optimizes the path length and enhances the algorithm’s ability to jump out of the local optimum. The
flowchart of graph convolutional network improved ant colony optimization was shown in Figure 3.

The implementation steps of the GCNIACO algorithm are as follows:

Step 1: initialize the coefficients related to the ant colony optimization and calculate the distance
matrix between nodes;

Step 2: initialize the graph convolutional network and generate the better solution; then convert the
better solution into the ant colony initial pheromone through the pheromone conversion strategy;

Step 3: randomly select the first city node to start for the ants; calculate the transition probability
for each ant between city nodes according to Eq (4.1); select the next city node to visit by roulette, and
record it in the path record table; repeat this process until all the ants have visited all city nodes;

Step 4: calculate the path length Lk that each ant passes through in the path record table;

Step 5: the 3-opt algorithm is introduced to perform the de-crossing operation on the best path in
the path record table; if the optimized path length L3-opt is less than the best path min(Lk), use L3-opt to
update min(Lk), and at the same time update the corresponding path node sequence in the path record
table; if L3-opt is larger than min(Lk), directly jump to Step 6;

Step 6: record the best solution in the current iteration number;

Step 7: according to Eqs (4.2)–(4.4), update the pheromone on the path, wherein the pheromone
volatility factor ρ is calculated according to Eq (5.10); then clear the path record table, and jump to
Step 3 to continue the iteration;

Step 8: when the algorithm reaches the specified maximum number of iterations NC max, stop the
iteration and output the best solution.
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Figure 3. Graph convolutional network improved ant colony optimization flowchart.
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6. Experimental simulation

6.1. Generalization comparison of GCN models

When the graph convolutional network solves the TSP and generates a better solution, since the
parameters of the graph convolutional network model are independent of the size of the instance city
node, the model trained on the smaller instance graph can be used to solve any large instance [43].
In order to explore the influence of generalization effect of the graph convolution model in the graph
convolutional network improved ant colony optimization on the holistic improvement of the algorithm,
this paper conducts experimental simulations on the scale of the TSP with the city node size of 20, 50,
and 100. Among them, the city coordinates of all traveling salesman problem instances are randomly
and uniformly sampled in the two-dimensional unit square. The dataset and model hyperparameters
of the graph convolutional network part in the GCNIACO algorithm are set by referring to [43]. The
training data set corresponding to each problem scale is composed of 1,000,000 pairs problem instances
and optimal path schemes, and validation data set is composed of 10,000 pairs problem instances
and optimal path schemes. The optimal path scheme here is obtained using Concorde [46]. Each
graph convolutional network model consists of 30 graph convolution layers and 3 layers of multi-layer
perceptron, and the hidden dimension of each layer is h = 300. The beam width in beam search is fixed
to b = 1280. During the training of the graph convolutional network, each training epoch randomly
selects 10,000 subsets from the training set and divides them into 500 mini-batches for training. The
Adam optimizer [47] with an initial learning rate of 0.001 is then used to minimize the cross-entropy
loss for each mini-batch. The trained graph convolutional network model is validated on the validation
set every five training epochs. If the validation loss does not reduce by at least 1% of the previous
validation loss, then dynamically reduce the learning rate by dividing the learning rate by 1.01, thereby
improving the learning ability of the model. Parameters of the ant colony optimization part in the
GCNIACO algorithm are set in reference [48], the details were shown in Table 3. Then the GCNIACO
algorithm uses different graph convolutional network model to solve the TSP 30 times for 20, 50 and
100 city nodes, and the results were demonstrated in Table 4.

Table 3. Related parameters setting table.

Parameter Value
Number of ants m m = n (n is the number of cities)
Pheromone factor α α = 1
Heuristic function factor β β = 5
Pheromone constant Q Q = 100
The maximum number of iterations NC max NC max = 200

It can be obtained from Table 4 that the graph convolutional network model has a certain generaliza-
tion ability, but there are also certain differences in the effect. On the traveling salesman problem with
20 nodes, the GCNIACO algorithm finds the same optimal solution for all three scale-trained graph
convolutional network models. But the model trained with 100 nodes achieves better maximum value
and average value than the other two models. On the traveling salesman problem with 50 nodes, the
model trained with the corresponding 50 nodes is better than the other two models. However, compared
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Table 4. 30 simulation results of GCNIACO algorithm using different graph convolutional
network model.

Model
TSP20 TSP50 TSP100

Min Max Mean Min Max Mean Min Max Mean
TSP20 model 4.0024 4.0248 4.0032 6.0597 6.2367 6.1680 7.9006 8.1312 8.0093
TSP50 model 4.0024 4.0248 4.0032 6.0438 6.2284 6.1375 7.7763 8.1877 8.0006
TSP100 model 4.0024 4.0024 4.0024 6.0835 6.234 6.1602 7.8627 8.0831 7.97495

with the solution effect of the model trained by 20 nodes, the model trained by 100 nodes is better. On
the traveling salesman problem with 100 nodes, although the model trained with 50 nodes can enable
the GCNIACO algorithm to find a better minimum value, the model trained with 100 nodes can still
maintain the advantage in the obtained maximum value and average value. Therefore, considering
various factors, this paper chooses to use the graph convolutional network model trained on 100 nodes
in the GCNIACO algorithm.

6.2. Validation of proposed improvement strategies

To verify the effectiveness of the improved strategies proposed in the study, the paper chooses to test
it on the traveling salesman problem example with city node size of 50 and 100, where all coordinates
are randomly and uniformly sampled in the two-dimensional unit square. Table 5 shows the relevant
experimental results. Among them, ACO is the basic ant colony optimization, GCNIACO-1 is the
improved algorithm for GCN optimization initialization, GCNIACO-2 is the improved algorithm with
GCN and dynamic pheromone volatile factor optimization, and GCNIACO is the improved algorithm
proposed in this paper. In order to ensure the validity and reliability of the results, each algorithm is
run independently for 30 times, and the parameter settings are basically the same as those in Section
6.1, in which the default parameter is set to ρ = 0.5.

Table 5. Comparison of the results of different integration strategies.

Instance Metric
Method

ACO GCNIACO-1 GCNIACO-2 GCNIACO

TSP 50
Min 6.1705 6.0983 6.0807 6.0835
Mean 6.2497 6.2093 6.2260 6.1602
SD 0.0432 0.0546 0.0556 0.0378

TSP 100
Min 8.1672 8.0656 8.0229 7.8627
Mean 8.2631 8.2081 8.2047 7.9750
SD 0.0715 0.0541 0.0606 0.0545

It can be seen from Table 5 that the addition of the three improved strategies makes the improved
ant colony optimization outperform the original algorithm in terms of best value and average value.
Although these three strategies work at different stages, there is no doubt that they all have a positive
impact on the results. Graph convolutional network can provide ”better” initial values for ACO’s
pheromone memory. The adaptive dynamic adjustment of pheromone volatility factor can improve the
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global search ability and convergence speed [49]. The 3-opt algorithm can eliminate the intersections
in the middle of the path and further optimize the path length.

6.3. Improvements on random TSP maps

By using GCNIACO and ACO to solve the TSP of the same city count, the improvement effect of
the improved algorithm is analyzed. The size of the city is set to 20, 50, 100, and 200 respectively, and
the specific city coordinates are randomly and uniformly sampled in the two-dimensional unit square.
The parameter settings in GCNIACO are the same as in Section 6.1. The parameter settings in ACO
are basically the same as those in GCNIACO, and the default parameter setting is ρ = 0.5. The results
of 30 simulations are demonstrated in Table 6:

Table 6. Simulation results of GCNIACO and ACO.

TSP
Data

TSP Optimal
Solution

Simulation Best Solution Simulation Worst
Solution Average Value Time (s) Deviation Rate %

ACO GCNIACO ACO GCNIACO ACO GCNIACO ACO GCNIACO ACO GCNIACO
TSP20 4.0024 4.0024 4.0024 4.1389 4.0024 4.0570 4.0024 2.3213 10.4390 0 0
TSP50 6.0438 6.1705 6.0835 6.3367 6.234 6.2497 6.1602 29.8602 43.1829 2.0964 0.6569
TSP100 7.6685 8.1672 7.8627 8.4472 8.0831 8.2631 7.9750 261.2949 275.8855 6.5032 2.5324
TSP200 10.9946 12.0719 11.7334 12.3888 12.1438 12.2386 11.9566 2004.3610 2267.1775 9.7984 6.7197

Where the TSP optimal solution is the optimal path scheme obtained by using the Concorde solver;
“Time” is the average running time of 30 simulations; the deviation rate indicates the degree of devia-
tion between the best value obtained by the algorithm simulation and the optimal solution of TSP. The
specific Eq of the deviation rate is shown in Eq (6.1):

deviation rate =
simulation best solution − TSP optimal solution

TSP optimal solution
× 100% (6.1)

It can be learned from Table 6 that when the common parameter setting values are the same, the
simulation best solution, worst solution and average value obtained by GCNIACO in solving traveling
salesman problem are a lot better than ACO. However, the proposed graph convolutional network
improved ant colony optimization also exhibits a no free lunch theorem effect [50], that is, when the
algorithm improves the solving performance of one aspect of the problem, the solving performance on
another hand is bound to decrease [51]. GCNIACO improves the ability to find the shortest path while
making the program run time longer.

For the 20 city-scale traveling salesman problem, both GCNIACO and ACO can find the same opti-
mal solution as the Concorde solver. But the worst solution and average value obtained by GCNIACO
simulation are 0.1365 and 0.0546 less than ACO respectively. For the traveling salesman problem of
50, 100, and 200 cities, although neither GCNIACO nor ACO finds the same or smaller path than
the optimal solution of TSP, GCNIACO still shows better performance than ACO. The best solution
and average value obtained by GCNIACO for TSP50 simulation are respectively 0.087 and 0.0895
smaller than ACO, and the deviation rate is also 1.4395% smaller. The best solution and average value
obtained by GCNIACO for TSP200 simulation are respectively 0.3385 and 0.282 smaller than ACO,
and the deviation rate is also 3.0787% smaller. For the traveling salesman problem of 100 cities, the
worst solution obtained by GCNIACO simulation is even 0.0841 less than the best solution of ACO
simulation, and the deviation rate is 3.9708% smaller. Therefore, GCNIACO does have better solution
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performance than ACO. In order to more intuitively reflect the solution advantages of GCNIACO, the
paper presents the optimization paths and optimization curves of two algorithms for solving TSP20,
TSP50, TSP100 and TSP200, as shown in Figures 4–15 respectively.

Figure 4. ACO’s optimal path to solve TSP20.

Figure 5. GCNIACO’s optimal path to solve TSP20.
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Figure 6. ACO’s best path to solve TSP50.

Figure 7. GCNIACO’s best path to solve TSP50.
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Figure 8. ACO’s best path to solve TSP100.

Figure 9. GCNIACO’s best path to solve TSP100.
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Figure 10. ACO’s best path to solve TSP200.

Figure 11. GCNIACO’s best path to solve TSP200.
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Figure 12. The optimization curve of TSP20.

Figure 13. The optimization curve of TSP50.
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Figure 14. The optimization curve of TSP100.

Figure 15. The optimization curve of TSP200.

The simulation results of GCNIACO, genetic algorithm (GA) and simulated annealing algorithm
(SA) on the random TSP maps are shown in Table 7. The parameters in GA are set according to the
literature [53]; the parameters in SA are set according to the literature [54]. Each algorithm is simulated
and run 30 times.
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Table 7. Simulation results of GCNIACO, GA and SA on random TSP maps.

TSP Data
GCNIACO GA SA
Min Mean Min Mean Min Mean

TSP20 4.0024 4.0024 4.0024 4.0024 4.0024 4.0137
TSP50 6.0835 6.1602 6.0895 6.1907 6.2888 6.9454
TSP100 7.8627 7.9750 7.8618 8.2427 9.7904 10.6192
TSP200 11.7334 11.9566 13.2943 14.2418 17.4146 19.4999

As can be seen from the above table, GCNIACO exhibits better performance than GA and SA on
all four random TSP maps. For the 20 city-scale traveling salesman problem, GCNIACO and GA
have similar solving performance, but outperform SA in terms of mean. For the traveling salesman
problem of 50 city-scale and 200 city-scale, GCNIACO outperforms GA and SA in terms of both min
and mean. For the 100 city-scale traveling salesman problem, the solution performance of GCNIACO
is better than SA. Although GCNIACO fails to find a best value smaller than GA in 30 simulation
experiments, it still outperforms GA in terms of mean.

6.4. Improvements on the classic TSP dataset

The coordinates of the city nodes used in the above experimental simulations are all generated by
random sampling. The following selects and uses five classic data sets (lin105, ch130, ch150, kroA200,
pr264) in the TSPLIB standard library [52] to conduct GCNIACO simulation tests. Then it is compared
and analyzed with the optimization results of ant colony optimization (ACO), genetic algorithm (GA)
and simulated annealing algorithm (SA). During simulation, the parameter settings in GCNIACO are
the same as in Section 6.1; the parameter settings in ACO are basically the same as those in GCNIACO,
and the default parameter is set to ρ = 0.5; the parameters in GA are set according to literature [53]; the
parameters in SA are set according to literature [54]. The results of 30 simulations are demonstrated
in Table 8:

Table 8. 30 simulation results of TSP classic data set.

TSP Dataset ACO GA SA GCNIACO
Min Mean Min Mean Min Mean Min Mean

lin105 14830.6866 15073.5580 14786.4110 15512.8010 18556.4131 21340.0438 14514.1671 14659.4311
ch130 6324.6628 6443.1325 6558.5385 6813.1315 8084.2883 9048.3802 6283.4869 6301.0280
ch150 6764.5732 6818.0849 7180.8975 7654.0091 9161.5215 10357.5391 6623.6822 6669.7449
kroA200 31292.036 31653.9286 36321.2295 38525.2332 49946.3911 55515.0597 30460.4066 30811.9496
pr264 52968.3627 53615.1862 61883.9618 65786.1819 143192.5697 178424.9334 52420.9296 53253.7852

According to Table 8, the graph convolutional network improved ant colony optimization proposed
in the thesis shows good solution performance on the five classic TSP datasets. In 30 simulation tests,
the best path shorter than ACO [48], GA [53] and SA [54] can be found. The average value of 30
simulation solutions is also better than the above algorithm, which verifies the improvement effect of
the algorithm.
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7. Statistical analysis

To confirm that the observed differences between the original and improved versions are actually
meaningful, this section uses two statistical analysis methods to evaluate the differences between the
GCNIACO, ACO, GA, and SA. Referring to literature [55] and literature [11], the paper first chooses to
use Friedman test among nonparametric tests to verify whether there is a significant difference between
the algorithms. The Friedman test is to rank each algorithm, and the algorithm with better performance
has a smaller ranking value, that is, the best performing algorithm is ranked 1, the second best is ranked
2, and so on. In the event of a tie, the average ranking is calculated [56]. Under the null hypothesis, this
hypothesis states that all algorithms behave similarly. When there is a significant difference between
the algorithms, the null hypothesis is rejected. The paper uses SPSS software to perform Friedman test
on Tables 6–8, and the rank average of each algorithm is shown in Table 9. Among them, the calculated
Friedman statistic for 3 degrees of freedom (according to the χ2 distribution) is 22.0112. And within
the 95% confidence interval, the critical value of the χ2 distribution is 7.81. 22.0112 is greater than
7.81, and the observed p-value is 6.5E-5 (< 0.05), from which it can be seen that GCNIACO is the best
algorithm with the smallest rank among the compared algorithms.

In addition, post hoc analysis using Holm test is also chosen to evaluate the significance of GC-
NIACO’s better statistical performance. GCNIACO is the control algorithm, and the null hypothesis
holds that these algorithms are equivalent. Tables 10 shows the unadjusted and adjusted p-values ob-
tained using the Holm test. Since SPSS software is not convenient for scientific notation here, it is
uniformly accurate to three decimal places, which does not affect the analysis of results. Analysis
of the data shows that all p-values are less than 0.05, so the null hypothesis is rejected and it can be
considered that GCNIACO outperforms ACO, GA and SA at the 95% confidence level.

Table 9. Friedman nonparametric test.

Algorithms Average Ranks
GCNIACO 1.06
ACO 2.44
GA 2.61
SA 3.89

Table 10. Holm test.

Algorithms Unadjusted p-value Adjusted p-value
ACO 0.022 0.022
GA 0.011 0.022
SA 0.000 0.000

8. Engineering case

The above content introduces the proposed graph convolutional network improved ant colony op-
timization, and verifies the effectiveness of the improved algorithm on some TSP datasets. In this
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section, the graph convolutional network improved ant colony optimization is applied to solve the ve-
hicle routing problem (VRP) in engineering applications. And the solution result will be compared
with the basic ant colony optimization to verify the practicality of the improved algorithm.

8.1. Vehicle routing problem

The vehicle routing problem (VRP) [57] was proposed by Dantzig and Ramser in 1959, and it is
still at the forefront of combinatorial optimization research. In order to facilitate the establishment
of the model, it is assumed that there is only one distribution center and the location coordinates are
known; all distribution vehicles start from the distribution center and return to the distribution center
in turn after delivery is completed. The rated load of the distribution vehicle is known, the demand
at the demand point is known, and each demand point has one and only one vehicle responsible for
distribution [58]. According to the above assumptions and reference [59], a model aiming at the lowest
distribution cost is established:
Minimize:

Z = c0m
′

+

L∑
i=0

L∑
j=0

m
′∑

k=1

cdi jxi jk + c1

m
′∑

k=1

(max(
L∑

i=1

(giyki − Q), 0)) (8.1)

Subject to

L∑
i=1

giyki ≤ Q, k ∈ [1,m
′

] (8.2)

m
′∑

k=1

yki = 1, i ∈ [0, L] (8.3)

L∑
i=0

m
′∑

k=1

xi jk = 1, j ∈ [0, L] (8.4)

L∑
j=0

m
′∑

k=1

xi jk = 1, i ∈ [0, L] (8.5)

L∑
j=0

m
′∑

k=1

x0 jk =

L∑
i=0

m
′∑

k=1

xi0k (8.6)

where Z represents the distribution cost; c0 is the unit cost of the vehicle; m
′

is the count of vehicles;
L is the count of demand points; c is the unit cost of the distance traveled by the vehicle; di j(i, j =

1, 2, ..., L) is the distance between the demand point i and the demand point j; c1 is the overload penalty
coefficient; gi is the demand of the demand point i; Q is the rated load of the vehicle; k(k = 1, 2, ...,m

′

)
is the vehicle number. The distribution center number is 0, the demand points number are 1, 2, ..., and
the variables xi jk and yki are respectively defined as:
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xi jk =

1, vehicle k travels from point i to point j
0, otherwise

(8.7)

yki =

1, the delivery task of demand point i is completed by vehicle k
0, otherwise

(8.8)

Equation (8.1) is the objective function of the model. Constraint (8.2) indicates that each vehicle
load does not exceed the rated load. Equations (8.3)–(8.5) indicate that only one vehicle is allowed to
make one delivery at each demand point. Equation (8.6) indicates that the vehicles all start from the
distribution center and finally return to the distribution center.

8.2. Solving steps

Step 1: initialize the coefficients related to the ant colony optimization and calculate the distance
matrix between nodes;

Step 2: initialize the graph convolutional network and generate the better solution that meets the ve-
hicle load requirements; then convert the better solution into the ant colony initial pheromone through
the pheromone conversion strategy;

Step 3: put m ants in the distribution center, each ant selects the next demand point according to Eq
(4.1), and records it in the path record table; then judge whether the vehicle reaches the rated load, if
so, return to the distribution center, and insert the serial number of the distribution center into the path
record table; repeat this process until all the ants have visited all demand points;

Step 4: calculate the distribution cost Zk corresponding to each ant in the path record table;
Step 5: the 3-opt algorithm is introduced to perform de-crossing operation on the best path in

the path record table, and at the same time, it is judged whether the de-crossing operation meets the
vehicle load requirements, if not, the de-crossing operation is cancelled; if the optimized distribution
cost Z3-opt is less than the best cost min(Zk), use Z3-opt to update min(Zk), and at the same time update
the corresponding path node sequence in the path record table, if Z3-opt is larger than min(Zk), directly
jump to Step 6;

Step 6: record the best solution in the current iteration number;
Step 7: according to Eqs (4.2)–(4.4), update the pheromone on the path, wherein the pheromone

volatility factor ρ is calculated according to Eq (5.10); then clear the path record table, and jump to
Step 3 to continue the iteration;

Step 8: when the algorithm reaches the specified maximum number of iterations NC max, stop the
iteration and output the best solution.

8.3. Simulation solution

The case data such as distribution center coordinates, demand point coordinates, and demand point
demand used in this paper are all from the R101 case in http://web.cba.neu.edu/ msolomon/r101.htm.
It is set that the distribution center needs to deliver to 100 demand points. The rated load of the
distribution vehicle is set to 500. In the simulation, let c0 = 0, c = 1, c1 = ∞, then the distribution
cost is only related to the distance traveled by the vehicle. The parameter settings of GCNIACO and
ACO are basically the same as those in 6.1, and the default parameter is set to ρ = 0.5. In order to
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ensure the validity and reliability of the results, each algorithm is independently run 30 times during
the simulation, and the solution results are shown in Table 11:

Table 11. VRP solution results.

Methods

ACO GCNIACO

Best 740.0967 725.9472
Mean 753.9658 743.6432
Worst 767.8407 755.6621
Count of Vehicles 3 3

Best
Running
Route

Vehicle 1
0-53-58-40-21-73-72-74-22-41-75-56-23
-67-39-25-55-4-54-80-68-77-3-79-33-81
-9-51-20-30-70-31-88-0

0-53-58-40-21-73-72-74-22-75-56-39-4-54-80
-68-77-3-79-33-81-9-51-20-30-70-31-88-7-48-
82-0

Vehicle 2
0-27-28-26-12-76-50-1-69-52-18-60-83-
84-5-99-96-94-95-97-92-59-93-85-91-
100-37-98-61-16-44-14-42-87-0

0-27-69-1-50-76-12-26-28-89-6-94-95-97-92-
59-96-99-93-85-91-100-37-98-61-16-86-38-44
-14-43-42-87-0

Vehicle 3
0-89-6-13-2-57-15-43-38-86-17-45-8-46
-47-36-49-64-11-19-7-82-48-62-10-90-
63-32-66-71-65-35-34-78-29-24-0

0-13-2-57-15-41-23-67-25-55-24-29-78-34-35
-71-65-66-32-90-63-10-62-19-11-64-49-36-47
-46-8-45-17-84-5-60-83-18-52-0

where 0 is the number of the distribution center, and 1, 2, ... are the number of demand points.
As can be seen from the above table, compared with ACO, GCNIACO can find the best value with

lower distribution cost when solving VRP, and also outperforms ACO in terms of average and worst
value. The best path diagrams and optimization curves in Figures 16–18 more intuitively demonstrate
the solution advantages of GCNIACO.

9. Conclusions

In this study, a graph convolutional network improved ant colony optimization is proposed. By
introducing graph convolutional network, dynamically adjusting pheromone volatile factor and intro-
ducing 3-opt algorithm, the deficiencies of ACO in solving the TSP are made up. The study com-
bines graph convolutional network to improve ant colony optimization, which provides an idea for the
combination of machine learning and swarm intelligence. At the same time, the generalized graph
convolutional network model is selected, and the corresponding graph convolutional network does not
need to be trained for each specific city node scale, which reduces operating costs and saves computing
resources to a certain extent. And it also makes the proposed algorithm have certain scalability. The
simulation test results of the graph convolutional network improved ant colony optimization on TSP
datasets and VRP engineering application example verify the excellent performance of the improved
algorithm in seeking the optimum solution. GCNIACO is a metaheuristic algorithm based on swarm
intelligence. It can be applied to optimization problems in various fields, such as biological sequence
alignment, digital microfluidic biochip contamination fault removal, molecular spectrum wavelength
selection, molecular docking, epistasis detection of genome-wide association, etc. Moreover, GCNI-
ACO, as an improved algorithm of basic ant colony optimization, may obtain relatively better results
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when solving optimization problems.

Figure 16. The running route of ACO to solve the VRP.

Figure 17. The running route of GCNIACO to solve the VRP.
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Figure 18. The optimization curve diagram of minimum distribution cost.

In the study, only the pheromone volatility factor in the ant colony optimization is adaptively im-
proved. Therefore, future work can also consider improving other parameters of the ant colony opti-
mization into an adaptive dynamic adjustment method. In addition to combining with graph convo-
lutional network, combining ant colony optimization with other recently proposed algorithms is also
one of the future study directions. Applying the improved algorithm to solve practical issues in real
life, such as logistics distribution center location problem, robot path planning problem, etc., is also a
direction worth considering for future study.
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