
http://www.aimspress.com/journal/mbe

MBE, 19(7): 7388–7409.
DOI: 10.3934/mbe.2022349
Received: 05 December 2021
Revised: 02 April 2022
Accepted: 08 April 2022
Published: 19 May 2022

Research article

Effective method for detecting error causes from incoherent biological
ontologies

Yu Zhang1,2,3, Haitao Wu1,2, Jinfeng Gao1,2, Yongtao Zhang4, Ruxian Yao1,2,*and Yuxiang
Zhu1,2

1 College of Information Engineering, Huanghuai University, Zhumadian 463000, China
2 Henan Key Laboratory of Smart Lighting, Zhumadian 463000, China
3 Henan Joint International Research Laboratory of Behavior Optimization Control for Smart Robots,

Zhumadian 463000, China
4 Department of Information and Electronic Engineering, Shangqiu Institute of Technology,

Shangqiu 476000, China

* Correspondence: Email: yaoruxian@126.com.

Abstract: Computing the minimal axiom sets (MinAs) for an unsatisfiable class is an important task
in incoherent ontology debugging. Ddebugging ontologies based on patterns (DOBP) is a pattern-
based debugging method that uses a set of heuristic strategies based on four patterns. Each pattern
is represented as a directed graph and the depth-first search strategy is used to find the axiom paths
relevant to the MinAs of the unsatisfiable class. However, DOBP is inefficient when a debugging large
incoherent ontology with a lot of unsatisfiable classes. To solve the problem, we first extract a module
responsible for the erroneous classes and then compute the MinAs based on the extracted module. The
basic idea of module extraction is that rather than computing MinAs based on the original ontology
O, they are computed based on a module M extracted from O. M provides a smaller search space
than O becauseM is considerably smaller than O. The experimental results on biological ontologies
show that the module extracted using the Module-DOBP method is smaller than the original ontology.
Lastly, our proposed approach optimized with the module extraction algorithm is more efficient than
the DOBP method both for large-scale ontologies and numerous unsatisfiable classes.

Keywords: minimal axioms sets; unsatisfiable class; incoherent ontology; DOBP; module-DOBP

1. Introduction

Description logics (DLs) [1] are a family of logic-based knowledge representation formalisms that
can be used to develop ontologies using the web ontology language (OWL) [2]. DL ontology typ-

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2022349

7389

ically consists of TBox axioms and ABox axioms. TBox axioms represent relationships between
classes or between properties. For example, the axiom ”mitochondrion ⊑ cytoplasm” states that
the class mitochondrion is the subclass of cytoplasm, while the axiom ”hasChild ⊑ hasSibling”
states that the property hasChild is a sub-property of hasSibling. ABox axioms represent relation-
ships between classes and individuals, and between properties and individuals. For example, Locate-
dIn(mitochondria,cytoplasm) states that mitochondria are located in the cytoplasm. This study fo-
cuses on the TBox part of ontologies. Given that the TBox reasoning is not influenced by ABox
reasoning [3], we assume that an ontology consists of only a TBox in the rest of the study. In the open-
ing environment, errors often occur in a biological ontology when the same ontology is simultaneously
edited by more than one participators, and the majority of them are unaware of the existences of one
another [4]. Errors mean that the definitions of some of the classes yield logical conflicts. We call the
classes as unsatisfiable classes and the ontology as incoherent ontology.

The following is a example of an incoherent gene ontology O1.
α1: mitochondrion ⊑ organelle (mitochondrion is an organelle)
α2: mitochondrion ⊑ cytoplasm (mitochondrion is a part of cytoplasm)
α3: cytoplasm ⊑ cell (cytoplasm is a part of a cell)
α4: mitochondrion ⊑ ¬ cell (mitochondrion is not a part of a cell)

Figure 1. Illustration show how thedefinition of mitochondrion yields a logical conflict.

Biological proteins play an important role in most cellular processes, such as gene regulation, re-
combination, repair, replication, and DNA modification [5]. Research on biological proteins has ef-
fectively contributed to interventions and cancer therapies [6, 7]. Given the increasing number of bio-
logical ontologies developed on the semantic web, manually finding the cause of errors has becomes a
significantly difficult task. Ontology debugging services can find the reason why a certain error occurs
by computing the minimal axiom sets (MinAs) related to the error. This helps developers and users of
biological ontology to understand the reason why an error follows from the ontology. Therefore, de-
bugging an incoherent ontology is performed to determine the reasons why the classes in the ontology
are unsatisfiable. Given the previously mentioned ontology O1, we can deduce that mitochondrion ⊑
cell (i.e., mitochondrion is a part of a cell) according to α2 and α3. However, mitochondrion is known
to not be a part of a cell according to α4. At this point, we can conclude that the definition of mito-
chondrion yields a logical conflict, as shown in Figure 1. Therefore, mitochondrion is an unsatisfiable
class and O1 is an incoherent ontology. The aim of ontology debugging is to find which axioms cause
the unsatisfiability of mitochondrion. The result is MinAs(O1, mitochondrion) = {α2, α3, α4}.

MinAs is a common debugging technique, also known as justifications and minimal unsatisfiability-

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

7390

preserving sub-TBoxes (MUPS). Justification is a minimal set of axioms of an incoherent ontology that
can explain an unsatisfiable class. The MUPS refers to the smallest subsets of axioms of an incoherent
ontology preserving unsatisfiability of an unsatisfiable class [8]. Two types of methods for computing
MinAs (or Justifications and MUPS) are the greasoner-independent-based glass-box methods and the
reasoner-dependent black-box methods. The former modifies the internal tableau-based algorithm of
the reasoner, thereby making these methods dependent but with a limited portability [9]. By contrast,
the latter adopts an ”expand-contract” strategy to check which subset of an ontology is a MinAs without
modifying the reasoner.

A significant number of studies have been devoted to the graph-based debugging methods. Refer-
ence [10] presents a consequence-based reasoning algorithm based on the notion of a decomposition,
i.e., a graph-like structure that can capture the essential features. In Reference [11], the authors con-
struct an explanation dependency graph from the classification result of a reasoner and then compute all
justifications thereafter based on the graph. In addition, Reference [12] presents a graph-based method
for debugging and revising incoherent DL-Lite ontologies. The authors first encoded DL-Lite ontology
into a directed graph and then calculated the minimal incoherence-preserving path-pairs based on the
directed graph.

In recent years, there have been significant research efforts devoted to studying ontology modular-
ization. Modularization is particularly beneficial for ontology reuse [13,14]. It is also used for the sub-
sumption reasoning tasks and incremental classification [15]. A selection function algorithm is given in
Reference [16] to compute all justifications. It was further optimized in [17] using the module extrac-
tion. The authors of Reference [18] focused on the EL+ ontologies by extracting the reachability-based
module. A goal-directed extraction method is given in Reference [19]; it was developed by backward
traversing a set of axioms responsible for the given entailment. A decomposition-based extraction
algorithm is proposed in Reference [20]. With their algorithm, the computation of MIS (Minimal
incoherent sub-ontology) can be separately performed in each extracted modules. Moreover, a new
strategy based on a local search technique is proposed in Reference [21]; it allows the user to compute
the approximating core before extracting the precise minimally unsatisfiable subformulas.

The authors of Reference [9] constructed unsatisfiable dependent paths to avoid unnecessary non-
deterministic expansion. The advantage is that all irrelevant axioms are not in the dependent paths and
these axioms are not selected to participate in the computation of MUPS. However, such a method is
only fit for an ALC ontology. Thereafter, the method was extended to the work in Reference [22].
The authors first extracted a clash module from the ontology and then identified the root unsatisfiable
concepts from the clash module. Thereafter, MUPS of each root unsatisfiable concept can be calculated
on the basis of the clash module. However, the real-world ontologies are often dynamic and modified
frequently. Thus, logical errors inevitably occur in the dynamic environments. To solve this problem,
a heuristic strategy was developed to reuse the previous debugging results for subsequent debugging to
avoid recomputing the MUPS [23].

Seven criteria are proposed in Reference [24] to systematically compare the existing ontology de-
bugging methods; additionally, a set of beneficial suggestions are provided for users to choose an
appropriate debugging approach according to their needs. Thereafter, the research was expanded in
Reference [25]. The authors evaluated the existing ontology debugging systems based on numerous
ontologies with various sizes and expressivities, providing several suggestions thereafter for users or
developers to choose an effective debugging algorithm or design an appropriate debugging system. In

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

7391

Reference [26], Ye et al. first created a recursive expansion procedure and then explored the critical ax-
ioms one by one. Furthermore, the authors proposed an incremental reasoning procedure to substitute
for a series of standard reasoning tests with respect to satisfiability. The authors of Reference [27] com-
puted all MUPSes based on the duality between the MUPS and minimal correctness-preserving subset
(MCPS) by applying parallel strategies. The MCPS represents the minimal diagnosis of a concept
required to debug unsatisfiable concepts in the ontology debugging domain.

Other researchers have focused on using the fine-grained approach to resolve unsatisfiable classes.
The authors of Reference [3] revised the tableaux algorithm to rewrite logical erroneous axioms and
determine the parts of the axioms responsible for errors. A fine-grained method was also developed by
modifying one axiom to zero or more axioms [28].

2. Preliminaries

This section elaborates the syntax and semantics of OWL DL ontologies and presents the formal
definitions of debugging incoherent ontologies.

2.1. Syntax and semantics of ontologies

DL provides a set of so-called constructors, which are used to form complex classes and properties.
Table 1 lists the logic constructors and their corresponding syntax and semantics.

Table 1. Syntax and semantics of OWL DL ontologies.

Constructors Syntax Semantics
top class ⊤ ∆I

bottom class ⊥ ∅

class name A AI

negation ¬B ∆I \ BI

conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

existential restriction ∃R.C {a ∈ ∆I|∃b.(a, b) ∈ rI ∧ b ∈ CI}
universal restriction ∀R.C {a ∈ ∆I|∀b.(a, b) ∈ rI → b ∈ CI}
at-least restriction ≥ nS .C {x ∈ ∆I|♯{y : (x, y) ∈ S I ∧ y ∈ CI ≥ n}
at-most restriction ≤ nS .C {x ∈ ∆I|♯{y : (x, y) ∈ S I ∧ y ∈ CI ≤ n}
property name R RI ⊆ ∆I × ∆I

inverse property R− {(x, y) ∈ ∆I × ∆I|(y, x) ∈ RI}
transitivity Trans(R) (x, y), (y, z) ∈ RI → (x, z) ∈ RI

property inclusion R ⊑ S RI ⊆ S I

class inclusion C ⊑ D CI ⊆ DI

class equivalence C ≡ D CI = DI

In Table 1, A and B are atom classes that correspond in first-order logic to unary predicates; C and D
are (possibly complex) class expressions that can be recursively constructed based on the atom classes
A and B using Boolean operators (⊓,⊔,¬), value restrictions (∃R.C,∀R.C) and number restrictions
(≥ nS .C,≤ nS .C) for n a non-negative integer.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

7392

Ontology comprises finite axioms with the form of the property transitivity Trans(r), the class in-
clusion C ⊑ D, and the property inclusion R ⊑ S . The equivalent axiom C ≡ D is transformed into
C ⊑ D and D ⊑ C.

Logic constructors in an ontology determine the expressivity of the ontology. Expressivity ALC
consists of the constructors ¬A (negation), C ⊓ D (conjunction), C ⊔ D (disjunction), ∃r.C (existential
restriction), and ∀r.c (value restriction). Expressivity S consists ofALC and transitivity. Other expres-
sivities are the combinations ofALC, S, and the following expressivity symbols: H (role hierarchies),
I (inverse roles), O (nominals), F (functional roles) and D (data type). The DL language considered
in our spansALCH through to SHOIF (D).

Baader et al. defined an interpretation I in [1] to represent the semantics of OWL DL ontologies. I
consists of a non-empty set ∆I (the domain of the interpretation) and an interpretation function, which
assigns to every class A a set AI ⊆ ∆I and to every property R a binary relation RI ⊆ ∆I × ∆I. For
example, we say that C is subsumed by D, and write C ⊑ D, if CI ⊆ DI for all interpretations I.

2.2. Debugging incoherent ontologies

The unsatisfiability of a class C indicates that the definition of C in the ontology O is incorrect. By
asking a reasoner to check whether or not C is unsatisfiable with regards to O (i.e., it can be expressed
as O |= C ⊑ ⊥), we can determine whether C is unsatisfiable [29].

Definition 1. (Unsatisfiable class) [30] A class C in an ontology O is unsatisfiable if and only if
for each interpretation I of O, CI = ∅.

Definition 2. (Incoherent ontology) [30] An ontology O is incoherent if and only if there exists at
least one unsatisfiable class in O.

Definition 3. (Inconsistent ontology) [30] An ontology O is inconsistent if and only if it has no
interpretation.

The incoherence can be considered as a kind of the inconsistency in the TBox, i.e., the terminology
part of an ontology. An incoherent ontology has an incoherent TBox. However, an ontology being
inconsistent does not necessarily imply that it is coherent [30].

Figure 2 shows four examples of incoherence and inconsistency. The detailed explanations are as
follows.

Figure 2(A) shows a coherent but inconsistent ontology because the two disjoint classes C1 and C2

share an individual a.
Figure 2(B) shows an incoherent but consistent ontology because the two disjoint classes C1 and C2

share a subclass C3.
Figure 2(C) shows an incoherent and inconsistent ontology because the two disjoint classes C1 and

C2 share a subclass C3, which has an individual a.
Figure 2(D) shows a coherent but inconsistent TBox because the two disjoint classes C1 and C2

share a subclass that is a nominal {a}.
Given that the TBox reasoning is not influenced by ABox reasoning [3], we assume that an ontology

consists of only a TBox in the rest of the study.
The unsatisfiability of a class can be determined using a DL reasoner, such as Pellet [31], HermiT

[32], or FaCT++ [33].
Consider the following inclusion axioms that hold in our example ontology O1:
α1 : B1 ⊑ A1 ⊓ ¬A1 (B1 is a part of the conjunction of A1 and the negation of A1)

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

7393

Figure 2. Examples of incoherence-and-inconsistency in [30].

α2 : B2 ⊑ ¬A1 (B2 is a part of the negation of A1)
α3 : C ⊑ B1 ⊓ B2 ⊓ A1 (C is a part of the conjunction of B1, B2 and A1)
α4 : D ⊓C ⊑ E ⊔ F (the conjunction of D and C is a part of the disjunction of E and F)
α5 : E ⊑ A1 ⊓ A2 (E is a part of the conjunction of A1 and A2)
α6 : D ⊑ C ⊔ E (D is a part of the disjunction of C and E)
Definition 4. (MinA) Let O be an incoherent ontology, and C an unsatisfiable class [34]. The set

Σ ⊆ O is a minimal axiom set (MinA) for O |= C ⊑ ⊥ if, and only if, for every Σ′ ⊂ Σ, Σ′ ⊭ C ⊑ ⊥.
The three axioms labelled with α1 to α3 entail B1 ⊑ ⊥ and C ⊑ ⊥. We can find one MinA for

B1 ⊑ ⊥: {α1}, and two MinAs for C ⊑ ⊥: {α1, α3} and {α2, α3}. That is, MinAs(O1, B1)={{α1}} and
MinAs(O1,C)={{α1, α3}, {α2, α3}}.

Algorithm 1: Calculating MinA.

Input: O, unsatisfiable class C
Output: MinA(O,C)

1 Σ := O
2 for each axiom α ∈ O do
3 if Σ\α |= C ⊑ ⊥ then
4 Σ := Σ\α
5 return Σ

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

7394

Algorithm 1 was introduced in [34] to calculate one MinA of the unsatisfiable C. First, we make a
copy of an ontology O as Σ (line 1). Second, for each axiom α ∈ O, if the given unsatisfiable class C is
unsatisfiable with regards to Σ\α, then we can conclude that α is not responsible for the unsatisfiability
of C. Thus, we remove α from Σ (lines 2–4). After all axioms in O are tested, we can obtain an MinA
of C. That is, MinA(O,C)=Σ.

However, Algorithm 1 can only calculate one MinA. Accordingly, we need to use the classic hitting
set tree (HST) method if we want to calculate all MinAs. This process is shown in Figure 3.

Figure 3. Process for calculating all MinAs(O1,C) using HST method.

In Figure 3, the first MinA is computed by Algorithm 1. That is, MinA1={B1 ⊑ A1 ⊓ ¬A1,C ⊑
B1 ⊓ B2 ⊓ A1}. Taking the root node, which is labelled with MinA1, the HST was extended to the left
hand side by removing B1 ⊑ A1⊓¬A1 from O and computing the second MinA for O\{B1 ⊑ A1⊓¬A1}.
In this case, MinA2={B2 ⊑ ¬A1,C ⊑ B1 ⊓ B2 ⊓ A1} was found. The left hand side successor node of
the root node was therefore labelled with MinA2 and its connecting edge labelled with B1 ⊑ A1 ⊓¬A1.
Similarly, the HST was extended to the left hand side by removing B1 ⊑ A1 ⊓ ¬A1 and B2 ⊑ ¬A1 from
O and computing the third MinA for O \ {B1 ⊑ A1 ⊓ ¬A1, B2 ⊑ ¬A1}. However, MinA3 = ∅.

The algorithm repeats this process by again removing an axiom, adding a node and executing Al-
gorithm 1 to compute a new MinA. When no more successor nodes can be generated, the HST is
complete. At this point, all MinAs occur as labels of nodes in the tree. That is, MinAs(O1,C)={
MinA1, MinA2 } ={{B2 ⊑ ¬A1,C ⊑ B1 ⊓ B2 ⊓ A1}, {B2 ⊑ ¬A1,C ⊑ B1 ⊓ B2 ⊓ A1}}.

3. Proposed modularization-based DOBP algorithm

3.1. Modularization algorithm

In general, a module M of an ontology O comprises meaningful fragments of O that have some
desirable properties [17]. For example, an incoherent moduleM for an incoherent ontology O and an
unsatisfiable class C is a subset of O that is guaranteed to preserve the unsatisfiability of O.

Let a signature S of a DL be the union of a set of atomic classes (A, B, ...) representing sets of
elements and a set of properties (R, S , ...) representing binary relations between elements. And let
Rol(S) be the set of properties (R, S , ...) for a signature S. For the computation of MinAs, we modify

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

7395

the definition of module given in [14] as follows.
Definition 5. (Incoherent module) Let C be an unsatisfiable class in an ontology O. An incoherent

moduleM for O and C is a subset of O such thatM |= C ⊑ ⊥ ⇔ O |= C ⊑ ⊥.
Definition 6. (Syntactic locality) Let S be a signature, R a role, and C a class. Let A⊥ < S be an

atomic class and let R⊥ < Rol(S) be a role. Two sets of classes, namely, C⊤
S

and C⊥
S

, are recursively
defined by the following rules:
C⊤
S

::= (¬C⊥)|(C⊤1 ⊓C⊤2),
C⊥
S

::= A⊥|(¬C⊤)|(C ⊓C⊥)|(∃R⊥.C)|(∃R.C⊥)|(⩾ nR⊥.C)|(⩾ nR.C⊥),
where C⊥ ∈ C⊥

S
, C⊤(i) ∈ C

⊤
S
, i = 1, 2.

An axiom is syntactically local with respect to S if it is of one of the following forms:
(1) R⊥ ⊑ R, (2) Trans(R⊥), (3) C⊥ ⊑ C, (4) C ⊑ C⊤.

An OWL DL ontology O is syntactically local with respect to S if all axioms in O are syntactically
local with respect to S.

Classes in C⊥
S

become equivalent to the bottom class ⊥ if A⊥ or R⊥ not in S is replaced with ⊥ or ∅.
Similarly, Classes in C⊤

S
become equivalent to the top class ⊤ under the conditions of this replacement.

After these replacements, syntactically local axioms become tautologies.
Proposition 1 (Testing locality) [35] Let S be a signature, C a class and α an axiom; then the

localities of C and α for S can be defined recursively as follows:

τ(C,S) ::= τ(⊤,S) = ⊤ (a)
τ(A,S) = ⊥ if A < S and otherwise = A (b)
τ({a},S) = a (c)
τ(C1 ⊓C2,S) = τ(C1,S) ⊓ τ(C2,S) (d)
τ(¬C1,S) = ¬τ(C1,S) (e)
τ(∃R.C1,S) = ⊥ if Sig(R) ⊈ S and otherwise = ∃R.τ(C1,S) (f)
τ(≥ nR.C1,S) = ⊥ if Sig(R) ⊈ S and otherwise = ≥ nR.τ(C1,S) (g)

τ(α,S) ::= τ(C1 ⊑ C2,S) = (τ(C1,S) ⊑ τ(C2,S)) (h)
τ(R1 ⊑ R2,S) = ⊥ ⊑ ⊥ if Sig(R1) ⊈ S, otherwise

=∃R1.⊤ ⊑ ⊥ if Sig(R2) ⊈ S, otherwise= (R1 ⊑ R2) (i)
τ(a : C,S) = a : τ(C,S) (j)
τ(R(a, b),S) ⊤ ⊑ ⊥ if R < S and otherwise = R(a, b) (k)
τ(Trans(R),S) = ⊥ ⊑ ⊥ if R < S and otherwise = Trans(R) (l)
τ(Funct(R),S) = ⊥ ⊑ ⊥ if Sig(R) < S and otherwise = Funct(R) (m)

τ(O,S) ::=
⋃
α∈O τ(α,S) (n)

The following example shown in Figure 4 from [35] will suffice to illustrate the point.
In Figure 4(1), let O = {Genetic Fibrosis ≡ Fibrosis ⊓ ∃has Origin.Genetic Origin} and

S1 = {Fibrosis,Genetic Origin}. Firstly, τ(Genetic Fibrosis,S1) = ⊥ because Genetic Fibrosis <
S1 according to the case (b) from Proposition 1. Therefore, the left hand side of the axiom
Genetic Fibrosis ≡ Fibrosis⊓∃has Origin.Genetic Origin is replaced by ⊥. That is, ⊥ ≡ Fibrosis⊓
∃has Origin.Genetic Origin. Secondly, τ(has Origin,S1) = ⊥ because S ig(has Origin) ⊈ S1 accord-
ing to the case (f) from Proposition 1. Therefore, the part ∃has Origin.Genetic Origin on the right-
hand side of the axiom is replaced by ⊥. That is, ⊥ ≡ Fibrosis ⊓ ⊥. We know that ⊥ ≡ Fibrosis ⊓ ⊥

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

7396

is a tautology. Hence O is local with respect to S1.
In Figure 4(2), let O = {Genetic Fibrosis ≡ Fibrosis ⊓ ∃has Origin.Genetic Origin} and S2 =

{Genetic Fibrosis, has Origin}. τ(Fibrosis,S2) = ⊥ because Fibrosis < S2 according to the case (b)
from Proposition 1. Therefore, the part Fibrosis on the right hand side of the axiom is replaced by
⊥. Moreover, τ(Genetic Origin,S2) = ⊥ because Genetic Origin < S2 according to the case (b) from
Proposition 1. Therefore, the part Genetic Origin is also replaced by ⊥. That is, Genetic Fibrosis ≡
⊥⊓ ∃has Origin.⊥ ⇔ Genetic Fibrosis ≡ ⊥. We know that Genetic Fibrosis ≡ ⊥ is not a tautology.
Hence O is not local with respect to S2.

Figure 4. Sketch of testing localities for given signatures.

We modify the algorithm presented in [14] to extract a module related to a signature, and implement
the following Algorithm 2 for extracting the module for an unsatisfiable class.

Algorithm 2: ExtractModule(O,C).

Input: O:an ontology;
C:an unsatisfiable class

Output: MC: C-module of O

1 MC ← ∅,O
′ ← O

2 while O′! = ∅ do
3 α← SelectAxiom(O′)
4 if LocalityTest(α,{C}∪Sig(MC)) then
5 O′ ← O′ \ {α} # α is processed
6 else
7 MC ←MC ∪ {α} # move α intoMC

8 O′ ← O \MC # reset O′ to the complement ofMC

9 end if
10 end while
11 returnMC

Given an ontology O and an unsatisfiable class C, Algorithm 2 retrieves a fragment MC ⊆ O as
follows. First,MC is initialized to ∅, and the ontology O is copied to O′ (line 1). Second, an axiom α
is randomly selected from O′ (line 3). If α is locality with respect to the union of C and the signature

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

7397

ofMC , then α is removed from O′ (lines 4–5). Otherwise, α is added toMC (line 7). Lastly,MC is
removed from O and the remaining subset is copied thereafter to O′ (line 8). These steps are repeated
until O′ = ∅.

For example, considering the following ontology O2 presented in Reference [14].

α1 Cystic-Fibrosis ≡ Fibrosis ⊓∃ located-In.Pancreas ⊓∃ has-Origin.Genetic-Origin
α2 Genetic-Fibrosis ≡ Fibrosis ⊓∃ has-Origin.Genetic-Origin
α3 Fibrosis ⊓∃ located-In.Pancreas ⊑ Genetic-Fibrosis
α4 Genetic-Fibrosis ⊑ Genetic-Disorder
α5 DEFBI-Gene ⊑ Immuno-Protein-Gene ⊓∃ associated-With.Cystic-Fibrosis

The trace of Algorithm 2 forO2 = {α1, α2, α3, α4, α5} and S={Cystic−Fibrosis,Genetic−Disorder}
is described in Table 2.

Table 2. Trace of Algorithm 2 for O2 and S.

♯ MC O′2 New elements in S ∪ Sig(MC) α loc.?
1 ∅ α1 − α5 Cystic-Fibrosis, Genetic-Disorder α1 No
2 α1 α2 − α5 Fibrosis, located-In, Pancreas, has-Origin, Genetic-Origin α2 No
3 α1, α2 α3 − α5 Genetic-Fibrosis α3 No
4 α1 − α3 α4, α5 — α4 No
5 α1 − α4 α5 — α5 Yes
6 α1 − α4 — — —

Theorem 1 guarantees the correctness of Algorithm 2.
Theorem 1 (Correctness of Algorithm 2). For any unsatisfiable class C in an ontology O, Algo-

rithm 2 returns a C-module of O.
Proof. (1) Algorithm 2 terminates for any input C in O.
In every iteration of the while loop, either the size of MC increases, or the size of MC remains

the same as the size of O′ decreases. This means that Algorithm 2 terminates in quadratic time in the
number of axioms in O, assuming a constant time locality test.

(2) The outputMC of Algorithm 2 is a locality-based C-module in O.
Given that α can appear in line 3 of the algorithm, α is local with respect to {C} ∪ S ig(MC) if

α is neither inMC nor in O’. Moreover, α remains in O\(MC∪O) if {C}∪S ig(MC) does not change. □

3.2. DOBP algorithm

In Reference [36], the authors proposed three heuristic strategies for the unsatisfiability of classes.
(1) Local unsatisfiability. The combination of direct restrictions and superclasses is unsatisfiable.
(2) Propagated unsatisfiability. The combination of direct restrictions and superclasses are unsatis-

fiable except that some classes used in them are unsatisfiable.
(3) Global unsatisfiability. The domain/range constraints, which along with other information can

be used to infer that the class is unsatisfiable.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

7398

On the basis of the above three strategies, Ji proposed a novel debugging algorithm in Reference [37]
presenting four types of incoherent patterns as follows.

(1) Isa-Disjoint pattern: X ⊑ Y, X ⊑ Z,Y ⊑ ¬Z
The pattern indicates that the superclasses Y and Z of X are disjointed.
(2) Exist-Bottom pattern: X ⊑ ∃r.Y,Y ⊑ ⊥
The pattern indicates that the filler Y of existential restriction is a bottom class, that is, the semantic

of Y is empty.
(3) Exist-All pattern: X ⊑ ∃r.Y, X ⊑ ∀r.Z,Y ⊑ ¬Z
(4) Exist-Domain pattern: X ⊑ ∃r.Y, X ⊑ ¬Z, domain(∃r.Y = Z)

Figure 5. Four types of incoherent patterns.

Figure 5 shows the incoherent patterns proposed in Reference [37]. Each incoherent pattern can
be represented as a directed graph, where the vertex indicates class and the arc from the vertex A to
the vertex B indicates a relation, corresponding to a logical axiom, between A and B. For example,
< X,∃r.Y > denotes the arc from X to ∃r.Y and it corresponds to the axiom X ⊑ ∃r.Y .

Patterns provide beneficial information to explain unsatisfiability according to the structure of an
ontology. Various patterns are also presented in Reference [38], which lists the following antipatterns.

(1) AntiPattern AndIsOr (AIO): C1 ⊑ ∃R.(C2 ⊓C3),Dis j(C2,C3).
(2) AntiPattern OnlynessIsLoneliness (OIL): C1 ⊑ ∀R.C2,C1 ⊑ ∀R.C3,Dis j(C2,C3)
(3) AntiPatterns UniversalExistence (UE): C1 ⊑ ∃R.C2,C1 ⊑ ∀R.C3,Dis j(C2,C3)
(4) AntiPattern UniversalExistenceWithInverseProperty (UEWIP): C2 ⊑ ∃R−.C1,C1 ⊑

∀R.C3,Dis j(C2,C3).
(5) AntiPattern EquivalenceIsDifference (EID) C1 ≡ C2,Dis j(C1,C2).

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

7399

Algorithm 3: DOBP(O,C).

Input: O:ontology; C:an unsatisfiable class
Output: MinAs of C

1 CS = ∅
2 if C ∈ CS then
3 return null
4 CS ← CS ∪ {C}
5 MinAs← DOBP IsaDisjoint(O,C)
6 MinAs←MinAs ∪ DOBP ExistBot(O,C)
7 MinAs←MinAs ∪ DOBP ExistAll(O,C)
8 MinAs←MinAs ∪ DOBP ExistDomain(O,C)
9 return MinAs

For each pattern, Algorithm 3 first finds the disjoint relations and searches a set of paths thereafter
in connection with the relations. For example, finding disjoint relations between A and B involves
iterating the ancestors of A and those of B. If one ancestor of A is disjoint with the other ancestor of B,
then A is also disjoint with B [37].

For example, considering the following O3:
C1 ⊑ ∃R1.(C2 ⊓ ∃R2.C3),
C3 ⊑ ∃R3.C4 ⊓ ∀R3.C5,
C5 ⊑ C6,
C4 ⊑ ¬C6.
In O3, C1 and C3 are unsatisfiable. Now, O3 is normalized as follows:
C1 ⊑ ∃R1.X,
X ⊑ ∃R2.C3,
X ⊑ C2,
C3 ⊑ ∃R3.C4,
C3 ⊑ ∀R3.C5,
C5 ⊑ C6,
C4 ⊑ ¬C6.
Here, X is a new added concept. Then, X is also unsatisfiable because X ⊑ ∃R2.C3 and C3 is

unsatisfiable
For C1 in O3, the Exist-Bottom pattern shown in Figure 5(b) is detected as C1 ⊑ ∃R1.X. To explain

why X is unsatisfiable, DOBP needs to be invoked again. Then the Exist-Bottom pattern is detected
again for X because X ⊑ ∃R2.C3.

For C3, the Exist-All pattern shown in Figure 5(c) is detected because ∃R3.C4 and ∀R3.C5 share
R3 and ⟨C4,¬C6⟩ is a disjoint relation. For this relation, we have {⟨C4,C4⟩, ⟨C5,C6⟩, ⟨C3,C3⟩}. After
expanding the pairs, we obtain {{C5,C6}}. Then we have {C3 ⊑ ∃R3.C4 ⊓ ∀R3.C5,C5 ⊑ C6,C4 ⊑
¬C6} that is the MinAs of C3.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

7400

3.3. Module-DOBP algorithm

The performance of the DOBP algorithm is significantly affected if the size of the ontology and
the number of unsatisfiable classes are large. However, the modularization method can extract a sub-
ontology as needed. From this perspective, we combine the modularization method with the DOBP
algorithm and propose the Module-DOBP algorithm (see Algorithm 4).

In lines 3 to 4, the algorithm extracts the module of the unsatisfiable class C by calling the Extract-
Module sub-routing (Algorithm 2), and adds the module to the results setM. For each unsatisfiable
class C in CS , the algorithm computes the MinAs related to the four patterns based on the extracted
moduleM and C in lines 7 to 10.

Algorithm 4: Module-DOBP(O).

Input: O:ontology
Output: MinAs

1 CS ← O,M = ∅
2 for C in CS
3 MC ←ExtractModule(O,C)
4 M =M∪MC

5 end for
6 for C in CS
7 MinAs← DOBP IsaDisjoint(M,C)
8 MinAs←MinAs ∪ DOBP ExistBot(M,C)
9 MinAs←MinAs ∪ DOBP ExistAll(M,C)
10 MinAs←MinAs ∪ DOBP ExistDomain(M,C)
11 end for
12 return MinAs

Theorem 2. Let M be the incoherent module of an incoherent ontology O. For any un-
satisfiable class C, let MinA(O,C) be MinA of O. Thereafter, MinA(M,C) exists such that
MinA(M,C)=MinA(O,C), where MinA(M,C) is the MinA ofM.

Proof. We prove on the basis of the expansion-contraction process of Algorithm 1.
Let O =M∪N , andM∩N = ∅. According to Definition 4, we haveM |= C ⊑ ⊥ ⇔ O |= C ⊑ ⊥.
1) Expansion process of Algorithm 1.
Let S O = ∅ and SM = ∅ be the expansion set of O and M. We obtain S O = {α1} after the first

axiom α1 is added to S O. We consider two cases:
(1) α1 ∈ N . ConsideringM∩N = ∅, we have α1 <M. Then, SM = ∅.
(2) α1 ∈ M. Incorporating α1 intoM we have SM = {α1}. After incorporating k axioms into O we

have S O = {α1, ..., αk} |= C ⊑ ⊥. Meanwhile, the set of axioms {α1, ..., αk} are also incorporated intoM,
and we have SM = {α1, ..., αk}. The expansion process ends and we haveM |= C ⊑ ⊥ ⇔ O |= C ⊑ ⊥,
SM ⊆ S O.

2) Contraction process of Algorithm 1.
Given SM ⊆ S O, we let S O = SM ∪ SN , SM ∩ SN = ∅. Given S O |= C ⊑ ⊥ ⇔ SM |= C ⊑ ⊥ we

have SN ⊭ C ⊑ ⊥. Let S O be the set after removing the axiom αx from S O. Two cases exist as follows.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

7401

(1) αx ∈ SM. Let SM be the axiom set after removing αx from SM. We consider the following two
cases.

(a) S O |= C ⊑ ⊥. It indicates that ax is not responsible for the unsatisfiability of C. Thus, SM |=
C ⊑ ⊥.

(b) S O ⊭ C ⊑ ⊥. It indicates that ax is responsible for the unsatisfiability of C. Thus, the unsat-
isfiable C becomes satisfiable. In this case, we must reinsert ax into S O and SM; thereafter, we have
S O = S O ∪ {ax} and S ′

M
= S ′

M
∪ {ax}.

(2) ax ∈ S N . Given that SM∪SN = ∅, we have ax < SM. In such a case, SM |= C ⊑ ⊥. Considering
S P ⊭ C ⊑ ⊥, we have SM |= C ⊑ ⊥.

After all axioms in O are tested by following the preceding steps, we have S O = SM.
On the basis of the preceding two processes, we have MinA(O,C)=S O and MinA(M,C)=SM.

Therefore, MinA(O,C)=MinA(M,C). □

Theorem 2 indicates that for any unsatisfiable class C, we can obtain the incoherent module MC

responsible for the unsatisfiability of C such that MinA(O,C)=MinA(M,C).
Theorem 3 (correctness of Algorithm 4). Let M be the incoherent module of an incoherent

ontology O. For any unsatisfiable class C, we have MinAs(M,C)=MinAs(O,C).
Proof. Let MinAs(O,C)=

⋃m
1 MinA(O,C)i, where m is the number of MinA(O,C).

For any MinA(O,C)i ∈ MinAs(O,C), according to Theorem 2, MinA(M,C)i exists such
that MinA(O,C)i=MinA(M,C)i. Therefore, we have MinAs(M,C)=

⋃m
1 MinA(M,C)i=

⋃m
1

MinA(O,C)i=MinAs(O,C). □

4. Experiment

Experimental evaluations were performed on a laptop with a 1.60 GHz Intel Core i5 CPU and 16
GB of main memory. We conducted all experiments using Pellet 2.3.1* as a reasoner for satisfiability
tests and OWL API 3.4.3 † for ontology loading and manipulation. The experimental corpus, source
codes and experimental results are available at http://www.zhyweb.cn/mradon/index.html.

4.1. Benchmark ontologies

The benchmark ontologies used in our experiments were taken from the Open Biological Ontol-
ogy library (see http://krr-nas.cs.ox.ac.uk/ontologies/lib/OBO/). These ontologies are well-known in
the life sciences because they are often used in real-world applications. We collected 15 biological
ontologies (see Table 2) as benchmarks for our experimental evaluations. The test ontologies are com-
plex because they use numerous OWL DL constructors and some of them include a large number of
axioms. To obtain the incoherent ontologies, we adopted the “incoherent-generating” method given
in Reference [12]. For example, if O = {A ⊑ B, A ⊑ C}, then O is evidently coherent. We applied
four classes A, B,CandD. Then we created a pair of complementary classes by randomly selecting two
classes. For example, A ⊑ ¬B, A ⊑ ¬C, A ⊑ C, B ⊑ C, B ⊑ D or C ⊑ D. There were a total of six
possibilities. More details can be found in Table 3.

*Pellet is available at https://github.com/stardog-union/pellet
†https://sourceforge.net/projects/owlapi/

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

7402

In Table 3, the first two columns indicate the IDs and names of the 15 ontologies. The third column
represents the expressivity. The expressivities of the test ontologies ranges from ALCH through to
SHOIF (D). The next four columns refer to number of classes (♯C), number of properties (♯R), the
number of axioms (♯onto.) and the number of unsatisfiable classes (♯u.c.), respectively.

Table 3. Characteristics of test ontologies used in experiments.

ID. Name Exp. ♯C ♯P ♯onto. ♯u.c.

O1 NIF Dysfunction SHOIF (D) 2749 60 3511 25
O2 amphibian anatomy SH 700 2 708 14
O3 cell ALCH 814 32 645 13
O4 cellular component ALCH 1111 32 761 34
O5 brenda ALCH 3138 3 3957 11
O6 Cellular09 SH 2370 4 4552 20
O7 Cellular12 SR 3121 7 5818 12
O8 cereal ALCH 869 2 1433 12
O9 cereal anatomy SR 1271 4 2281 16
O10 envo SH 1226 3 1445 18
O11 envo xp SH 1779 8 2218 30
O12 event SH 3829 4 7380 31
O13 fix ALCH 1163 2 1784 19
O14 fly SHI 6322 3 11014 12
O15 fly anatomy SRI 7798 21 19574 15

4.2. Experimental analysis

For every incoherent ontology, and for each unsatisfiable class in the signature, we extracted the
corresponding incoherent modules using Algorithm 2.

Table 4 presents the maximum, minimum and average sizes of the modules and the standard devi-
ation. Among the 15 ontologies, O15 had the largest maximum, minimum and average module sizes
because O15 had an extremely complex ontology structure with 7798 classes and 19574 axioms. How-
ever, MAX in O3 only contained 6 axioms because it has a markedly simple with 814 classes and 645
axioms.

Table 4. Maximum/minimum/average of modules for unsatisfiable classes.

ID. O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15

MAX 282 18 6 15 26 151 21 53 60 48 90 42 93 142 585
MIN 135 14 2 6 24 28 11 30 22 12 21 19 25 138 342
AVG 271.6 17.6 5.7 11.4 25.8 86.1 16.6 45.2 45.5 29.1 53.2 33.3 53.4 141.2 467.9
S T DEV 28.0 1.1 1.1 1.6 0.6 34.4 3.0 7.2 10.4 9.6 18.6 3.8 22.3 1.3 116.0

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

7403

(a) sizes of modules for unsatisfiable
classes in O1

(b) sizes of modules for unsatisfiable
classes in O2

(c) sizes of modules for unsatisfiable
classes in O3

(d) sizes of modules for unsatisfiable
classes in O4

(e) sizes of modules for unsatisfiable
classes in O5

(f) sizes of modules for unsatisfiable
classes in O6

(g) sizes of modules for unsatisfiable
classes in O7

(h) sizes of modules for unsatisfiable
classes in O8

(i) sizes of modules for unsatisfiable
classes in O9

(j) sizes of modules for unsatisfiable
classes in O10

(k) sizes of modules for unsatisfiable
classes in O11

(l) sizes of modules for unsatisfiable
classes in O12

(m) sizes of modules for unsatisfiable
classes in O13

(n) sizes of modules for unsatisfiable
classes in O14

(o) sizes of modules for unsatisfiable
classes in O15

Figure 6. Sizes of modules for the unsatisfiable classes in the 15 ontologies.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

7404

(a) the percentage of the module
vs. the non-module for O1

(b) the percentage of the module
vs. the non-module for O2

(c) the percentage of the module
vs. the non-module for O3

(d) the percentage of the module
vs. the non-module for O4

(e) the percentage of the module
vs. the non-module for O5

(f) the percentage of the module
vs. the non-module for O6

(g) the percentage of the module
vs. the non-module for O7

(h) the percentage of the module
vs. the non-module for O8

(i) the percentage of the module
vs. the non-module for O9

(j) the percentage of the module
vs. the non-module for O10

(k) the percentage of the module
vs. the non-module for O11

(l) the percentage of the module
vs. the non-module for O12

(m) the percentage of the mod-
ule vs. the non-module for O13

(n) the percentage of the module
vs. the non-module for O14

(o) the percentage of the module
vs. the non-module for O15

Figure 7. Percentages of incoherent modules vs. non-incoherent modules for the 15 ontolo-
gies.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

7405

Figure 6 shows the sizes of the modules for each unsatisfiable class in 15 ontologies; the Y-axis
represents the unsatisfiable class and the X-axis represents the size of the corresponding module.

Apart from PATO 0000930, all module sizes for the 24 unsatisfiable classes were found to be
equally likely in O1. The average size was close to the maximum. In O2, the modules were the
same size (18), except the two classes AAO 0000679 and AAO 0000199. All but one of the modules
had the same size, which also occurred in O3 and O5. In O4, the unsatisfiable class GO-0043623 had
the largest module, GO-0065003 had the smallest module and the size for 76% the modules was 12. A
total of 10 out of 11 unsatisfiable classes in O5 had the same sized module. The sizes of modules for
all unsatisfiable classes in O14 were relatively close to each other.

The percentages of extracted incoherent modules vs. non-incoherent modules for 15 ontologies are
summarized in Figure 7.

For all incoherent ontologies, we obtained extremely small modules. The largest module obtained
for O13 was only 15.7%. This result indicates that the dependencies between the different classes are
extremely strong, and that structures of the ontology are more complex than other ontologies.

The following observations were obtained on the basis of the above-mentioned 15 charts:
(1) The size of the module is smaller than that of the non-module. For example, the percentage of

the module in O7 was found to be 0.6%. This means that only 34 axioms out of the 5818 axioms are
responsible for the incoherence.

(2) The percentage of the module in O13 was found to be the highest among all ontologies, although
it was below 16%.

(3) The modules extracted using our Module-DOBP algorithm were found to be significantly
smaller than the sizes of the original ontologies. For example, the moduleM6 obtained was 6/1000 of
the size of O6.

Table 5 shows the comparison results for Module-DOBP and DOBP.M represents the size of the
extracted module (i.e., the number of axioms in the module). TM denotes the time required to extract
the module. TDOBP displays the time to compute MinAs based on the extracted modules. The Module-
DOBP column shows the total time to extract the module and compute the MinAs (i.e., TM + TDOBP).
The DOBP column show the time to compute the MinAs based on the original ontology.

For the majority of the ontologies (13/15) in Table 4, the time required to extract modules was below
5 seconds and all 15 ontologies required less than 10 seconds. O15 required the most time to extract
the modules because it had the axioms (19574).

We found that Module-DOBP performed better than DOBP for the majority of cases. Module-
DOBP is considerably efficient because it was designed to extract incoherent modules and compute
MinAs based on the module. Based on the results for O7,O12,O14 and O15, it turns out that module-
extracting optimization is necessary to make our Module-DOBP perform well on large ontologies. For
example, the size of O15 was 19574. The runtime of Module-DOBP was 12.819. However, the runtime
of DOBP was 140 times longer than that for Module-DOBP. DOBP performed inefficiently because
it worked on the entire ontology. Take O15 as an example. Module-DOBP took 12.819 seconds to
complete the computation. However, DOBP could not complete the task within 30 minutes. Module-
DOBP performed worse for O13 than DOBP. The reason is that in such a case, the additional time to
extract the module is relatively large compared with the total time.

The runtime performance of Module-DOBP was strongly affected by the time consumed by extract-
ing modules. When more time was needed, performance was substantially degraded.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

7406

Table 5. Comparison results for Module-DOBP and DOBP.

ID. ♯onto. ♯u.c. M TM TDOBP Module-DOBP DOBP ♯MinAs

O1 3511 25 327 3.995 2.151 6.146 20.579 25
O2 708 14 40 1.766 0.79 2.556 4.475 14
O3 645 13 45 2.302 0.607 2.909 1.595 13
O4 761 34 105 2.486 1.441 3.927 9.042 34
O5 3957 11 44 3.006 0.505 3.511 2.728 11
O6 4552 20 210 4.41 7.329 11.739 612.6 119
O7 5818 12 34 3.112 0.72 3.832 61.969 13
O8 1433 12 108 2.263 1.182 3.445 9.129 12
O9 2281 16 150 2.954 2.278 5.232 39.772 22
O10 1445 18 80 2.186 1.501 3.687 8.656 25
O11 2218 30 188 2.647 8.11 10.757 239.882 134
O12 7380 31 163 4.513 2.824 7.337 887.284 62
O13 1784 19 280 2.6 1.265 3.865 2.768 19
O14 11014 12 160 5.322 1.306 6.628 67.826 12
O15 19574 15 660 9.224 3.595 12.819 1803.287 15
1 ♯onto. denotes the number of axioms in an ontology.
2 ♯uc. denotes the number of unsatisfiable classes in an ontology.

5. Conclusions

In this paper, we proposed an optimization method for MinAs computation using the DOBP algo-
rithm. Unlike the DOBP algorithm, our proposed Module-DOBP method first extracts an incoherent-
module relevant to the unsatisfiability of the classes, and then implements the DOBP algorithm based
on the extracted module. An incoherent-moduleM for an incoherent ontology O and an unsatisfiable
class C is a subset of O that is guaranteed to preserve the unsatisfiability of O. The experimental eval-
uation showed that the Module-DOBP optimization approach performs better than the DOBP method
in most cases. Regarding future work, we will attempt to present other debugging algorithms using the
module-based approach.

Acknowledgments

We would like to thank the anonymous referees for their comments. The research presented in this
paper was partially supported by the Key Science and Technology Research of Henan Province, China
(Grant No. 222102210232, Grant No. 222102210279, Grant No. 212102210516)

Conflict of interest

We declare that we have no financial or personal relationships with other people or organizations
that could have inappropriately influenced our work; there is no professional or other personal interest
of any nature or kind in any product, service or company that could be construed as having influenced

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

7407

the position presented in, or the review of, the manuscript entitled, “Effective method for detecting
error causes from incoherent biological ontologies”.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. F. Patel-Schneider, The Description Logic
Handbook: Theory, Implementation, and Applications, Cambridge University Press, 2003.

2. I. Horrocks, P. F. Patel-Schneider, F. van Harmelen, From SHIQ and RDF to
OWL: The making of a web ontology language, J. Web Semantics, 1 (2003), 7–26.
https://doi.org/10.1016/j.websem.2003.07.001

3. J. S. C. Lam, D. Sleeman, J. Z. Pan, W. Vasconcelos, A fine-grained approach to resolving un-
satisfiable ontologies, J. Data Semantics X, 10 (2008), 62–95. https://doi.org/10.1007/978-3-540-
77688-8 3

4. L. Qiu, Y. Liu, Y. Song, B. Zhang, A conflict diagnosis approach of changing sequences in gene
ontology evolution, Int. J. Control Autom., 7 (2014), 269–284.

5. X. W. Zhao, X. T. Li, Z. Q. Ma, M. H. Yin, Identify DNA-binding proteins with
optimal Chou’s amino acid composition, Proteins Pept. Lett., 19 (2012), 398–405.
https://doi.org/10.2174/092986612799789404

6. J. Zhang, Y. Zhang, Z. Ma, In silico prediction of human secretory proteins in plasma based on
discrete firefly optimization and application to Cancer biomarkers identification, Front. Genet., 10
(2019), 542. https://doi.org/10.3389/fgene.2019.00542

7. J. Zhang, H. Chai, G. Yang, Z. Ma, Prediction of bioluminescent proteins by using
sequence-derived features and lineage-specific scheme, BMC Bioinf., 18 (2017), 1–13.
https://doi.org/10.1186/s12859-017-1709-6

8. S. Schlobach, Z. Huang, R. Cornet, F. Harmelen, Debugging incoherent terminologies, J. Autom.
Reasoning, 39 (2007), 317–349. https://doi.org/10.1007/s10817-007-9076-z

9. Y. Zhang, D. Ouyang, Y. Ye, Glass-box debugging algorithm based on unsatisfiable dependent
paths, IEEE Access, 5 (2017), 18725–18736. https://doi.org/10.1109/ACCESS.2017.2753381

10. F. Simančı́k, B. Motik, I. Horrocks, Consequence-based and fixed-parameter tractable reasoning
in description logics, Artif. Intell., 209 (2014), 29–77. https://doi.org/10.1016/j.artint.2014.01.002

11. Z. Zhou, G. Qi, B. Suntisrivaraporn, A new method of finding all justifications in OWL 2
EL, in 2013 IEEE/WIC/ACM International Conferences on Web Intelligence, (2013), 213–220.
https://doi.org/10.1109/WI-IAT.2013.31

12. X. Fu, G. Qi, Y. Zhang, Z. Zhou, Graph-based approaches to debugging and
revision of terminologies in DL-Lite, Knowl. Based Syst., 100 (2016), 1–12.
https://doi.org/10.1016/j.knosys.2016.01.039

13. B. C. Grau, I. Horrocks, Y. Kazakov, U. Sattler, A logical framework for modularity of ontologies,
in Proceedings of the 20th International Joint Conference on Artificial Intelligence, (2007), 298–
303.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

http://dx.doi.org/https://doi.org/10.1016/j.websem.2003.07.001
http://dx.doi.org/https://doi.org/10.1007/978-3-540-77688-8_3
http://dx.doi.org/https://doi.org/10.1007/978-3-540-77688-8_3
http://dx.doi.org/https://doi.org/10.2174/092986612799789404
http://dx.doi.org/https://doi.org/10.3389/fgene.2019.00542
http://dx.doi.org/https://doi.org/10.1186/s12859-017-1709-6
http://dx.doi.org/https://doi.org/10.1007/s10817-007-9076-z
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2017.2753381
http://dx.doi.org/https://doi.org/10.1016/j.artint.2014.01.002
http://dx.doi.org/https://doi.org/10.1109/WI-IAT.2013.31
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2016.01.039

7408

14. B. Grau, I. Horrocks, Y. Kazakov, U. Sattler, Just the right amount: extracting modules from
ontologies, in Proceedings of the 16th international conference on World Wide Web, (2007), 717–
726. https://doi.org/10.1145/1242572.1242669

15. B. Cuenca Grau, C. Halaschek-Wiener, Y. Kazakov, History matters: incremental ontology reason-
ing using modules, in Proceedings of the 6th International Semantic Web Conference, 2nd Asian
Semantic Web Conference, (2007), 183–196. https://doi.org/10.1007/978-3-540-76298-0 14

16. A. Kalyanpur, B. Parsia, M. Horridge, E. Sirin, Finding all justifications of OWL DL entailments,
in Proceedings of 6th International Semantic Web Conference, ISWC 2007 and 2nd Asian Semantic
Web Conference, (2007), 267–280. https://doi.org/10.1007/978-3-540-76298-0 20

17. M. Horridge, Justification Based Explanation in Ontologies, Ph.D thesis, University of Manchester
in Manchester, 2011.

18. B. Suntisrivaraporn, Module Extraction and Incremental Classification: A pragmatic approach for
EL+ ontologies, in Proceedings of the 5th European Semantic Web Conference, (2008), 230–244.
https://doi.org/10.1007/978-3-540-68234-9 19

19. J. Du, G. Qi, Q. Ji, Goal-directed module extraction for explaining OWL DL entail-
ments, in Proceedings of the 8th International Semantic Web Conference, (2009), 163–179.
https://doi.org/10.1007/978-3-642-04930-9 11

20. J. Du, G. Qi, Decomposition-Based Optimization for Debugging of Inconsistent OWL DL Ontolo-
gies, in Proceedings of the 4th International Conference on the Knowledge Science, Engineering
and Management, (2010), 88–100. https://doi.org/10.1007/978-3-642-15280-1 11

21. M. Gao, Y. Ye, D. Ouyang, B. Wang, Finding justifications by approximating core for large-scale
ontologies, in Proceedings of the 28th International Joint Conference on Artificial Intelligence
(IJCAI2019), (2019), 6432–6433.

22. Y. Zhang, R. Yao, D. Ouyang, J. Gao, F. Liu, Debugging incoherent ontology by extracting a clash
module and identifying root unsatisfiable concepts, Knowl. -Based Syst., 223 (2021), 107043.
https://doi.org/10.1016/j.knosys.2021.107043

23. Y. Zhang, D. Ouyang, Y. Ye, An optimization strategy for debugging incoher-
ent terminologies in dynamic environments, IEEE Access, 5 (2017), 24284–24300.
https://doi.org/10.1109/ACCESS.2017.2758521

24. Q. Ji, Z. Gao, Z. Huang, Study of ontology debugging approaches based on the criterion set
BLUEI2CI, in Proceedings of the 6th Chinese Semantic Web Symposium and 1st Chinese Web
Science Conference, (2013), 251–264. https://doi.org/10.1007/978-1-4614-6880-6 22

25. Q. Ji, Z. Gao, Z. Huang, M. Zhu, Measuring effectiveness of ontology debugging systems, Knowl.
-Based Syst., 71 (2014), 169–186. https://doi.org/10.1016/j.knosys.2014.07.023

26. Y. Ye, X. Cui, D. Ouyang, Extracting a justification for OWL ontologies by critical axioms, Front.
Comput. Sci., 14 (2020), 55–64. https://doi.org/10.1007/s11704-019-7267-5

27. J. Gao, D. Ouyang, Y. Ye, Exploring duality on ontology debugging, Appl. Intell., 50 (2020),
620–633. https://doi.org/10.1007/s10489-019-01528-y

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

http://dx.doi.org/https://doi.org/10.1145/1242572.1242669
http://dx.doi.org/https://doi.org/10.1007/978-3-540-76298-0_14
http://dx.doi.org/https://doi.org/10.1007/978-3-540-76298-0_20
http://dx.doi.org/https://doi.org/10.1007/978-3-540-68234-9_19
http://dx.doi.org/https://doi.org/10.1007/978-3-642-04930-9_11
http://dx.doi.org/https://doi.org/10.1007/978-3-642-15280-1_11
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2021.107043
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2017.2758521
http://dx.doi.org/https://doi.org/10.1007/978-1-4614-6880-6_22
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2014.07.023
http://dx.doi.org/https://doi.org/10.1007/s11704-019-7267-5
http://dx.doi.org/https://doi.org/10.1007/s10489-019-01528-y

7409

28. J. Du, G. Qi, X. Fu, A practical fine-grained approach to resolving incoherent OWL 2 DL termi-
nologies, in Proceedings of the 23rd ACM International Conference on Conference on Information
and Knowledge Management, (2014), 919–928. https://doi.org/10.1145/2661829.2662046

29. D. Fleischhacker, C. Meilicke, J. Völker, M. Niepert, Computing incoherence explanations for
learned ontologies, in Proceedings of the 7th International Conference on the Web Reasoning and
Rule Systems, (2013), 80–94. https://doi.org/10.1007/978-3-642-39666-3 7

30. G. Flouris, Z. Huang, J. Z. Pan, D. Plexousakis, H. Wache, Inconsistencies, negations and changes
in ontologies, in Proceedings of the Twenty-First National Conference on Artificial Intelligence
and the Eighteenth Innovative Applications of Artificial Intelligence Conference, (2006), 1295–
1300.

31. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, Y. Katz, Pellet: a practical owl-dl reasoner, J. Web
Semantics, 5 (2007), 51–53. https://doi.org/10.1016/j.websem.2007.03.004

32. R. Shearer, B. Motik, I. Horrocks, HermiT: a highly-efficient OWL reasoner, in Proceedings of
the Fifth OWLED Workshop on OWL: Experiences and Directions, collocated with the 7th Inter-
national Semantic Web Conference (ISWC-2008), (2008), 1–10.

33. D. Tsarkov, I. Horrocks, FaCT++ description logic reasoner: system description, in International
joint conference on automated reasoning, (2006), 292–297. https://doi.org/10.1007/11814771 26

34. F. Baader, B. Suntisrivaraporn, Debugging SNOMED CT using axiom pinpointing in the descrip-
tion logic EL, in Proceedings of the 3rd International Conference on Knowledge Representation
in Medicine, 410 (2008), 1–7.

35. B. C. Grau, I. Horrocks, Y. Kazakov, U. Sattler, Modular reuse of ontologies: theory and practice,
J. Artif. Intell. Res., 31 (2008), 273–318. https://doi.org/10.1613/jair.2375

36. H. Wang, M. Horridge, A. Rector, N. Drummond, J. Seidenberg, Debugging OWL-DL ontologies:
a heuristic approach, in Proceedings of the 4th International Semantic Web Conference, (2005),
745–757. https://doi.org/10.1007/11574620 53

37. Q. Ji, Z. Gao, Z. Huang, M. Zhu, An efficient approach to debugging ontologies based on patterns,
in Proceedings of the Semantic Web-Joint International Semantic Technology Conference, (2011),
425–433. https://doi.org/10.1007/978-3-642-29923-0 33

38. Ó. Corcho, C. Roussey, L. M. Vilches-Blázquez, I. Perez, Pattern-based OWL ontology debugging
guidelines, in Proceedings of the Workshop on Ontology Patterns (WOP 2009), (2009), 1–15.

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7388–7409.

http://dx.doi.org/https://doi.org/10.1145/2661829.2662046
http://dx.doi.org/https://doi.org/10.1007/978-3-642-39666-3_7
http://dx.doi.org/https://doi.org/10.1016/j.websem.2007.03.004
http://dx.doi.org/https://doi.org/10.1007/11814771_26
http://dx.doi.org/https://doi.org/10.1613/jair.2375
http://dx.doi.org/https://doi.org/10.1007/11574620_53
http://dx.doi.org/https://doi.org/10.1007/978-3-642-29923-0_33
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Syntax and semantics of ontologies
	Debugging incoherent ontologies

	Proposed modularization-based DOBP algorithm
	Modularization algorithm
	DOBP algorithm
	Module-DOBP algorithm

	Experiment
	Benchmark ontologies
	Experimental analysis

	Conclusions

