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Abstract: This paper focuses on a mathematical model for coffee berry disease infestation dynamics.
This model considers coffee berry and vector populations with the interaction of fungal pathogens. In
order to gain an insight into the global dynamics of coffee berry disease transmission and eradication
on any given coffee farm, the assumption of logistic growth with a carrying capacity reflects the fact
that the amount of coffee plants depends on the limited size of the coffee farm. First, we show
that all solutions of the chosen model are bounded and non-negative with positive initial data in a
feasible region. Subsequently, endemic and disease-free equilibrium points are calculated. The basic
reproduction number with respect to the coffee berry disease-free equilibrium point is derived using a
next generation matrix approach. Furthermore, the local stability of the equilibria is established based
on the Jacobian matrix and Routh Hurwitz criteria. The global stability of the equilibria is also proved
by using the Lyapunov function. Moreover, bifurcation analysis is proved by the center manifold
theory. The sensitivity indices for the basic reproduction number with respect to the main parameters
are determined. Finally, the numerical simulations show the agreement with the analytical results of
the model analysis.

Keywords: mathematical model; coffee berry; colletotrichum kahawae; bifurcation analysis;
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1. Introduction

Coffee is a plantation crop that is well adapted to different eco-physiological conditions of tropical
and subtropical highlands. It is the favourite beverage and second most traded commodity next to crude
oil in the world [1]. The coffee industry is estimated to be over $100 billion worldwide with an average
consumption of 500 billion cups per year. It is mostly consumed in the developed nations and produced
by tropical countries, often less developed, being a big source of their economy [1, 2]. However,
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coffee production has been challenged by diseases, weeds and pests. For instance, coffee berry disease
(CBD) caused by Colletotrichum kahawae is a major challenge to Arabica coffee production in African
countries [3]. It is a fungal plant pathogen [4, 5]. The symptoms of CBD include black depressed
wounds on coffee berries (see Figure 1) [6].

Figure 1. Coffee berries infected with coffee berry disease (CBD).

The first report of CBD (Colletotrichum kahawae) dates back to 1922 in western Kenya [7]. Soon
after, the fungus quickly spread throughout most of the African countries (see Figure 2) [8]. The
disease attacks flowers and fruits at all stages of growth, but it is more destructive to young berries
especially during the expanding period 4–l6 weeks after flowering [9]. This disease decreases both the
quality and yield of coffee berries. For instance, Ethiopia, Kenya and Cameroon annually lose up to
29.9, 75 and 60%, respectively. Losses may reach up to 100% [2, 10] in high rainfall, humidity and
altitude areas.

Figure 2. Spread of CBD across Africa.
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Because CBD can become very severe and there is a lack of effective control measures, there is
much concern that the fungus could spread to coffee-growing areas on other continents. Currently,
however, the disease is only prevalent in Africa at high altitudes with relatively high humidity [11].
There are various applications for CBD management such as chemical treatments, cultural practices,
the use of resistant varieties and biological control [12–18]. Several chemical products (fungicides)
have been evaluated and recommended for CBD control measures such as different copper fungicides,
organic fungicides and mixtures of the two. For instance, fungicide spray against CBD starting six
weeks after the main flowering for six rounds at a four-week interval during a crop season was
recommended in Ethiopia. Cultural practices include a variety of management tactics, such as mixed
cropping with shade plants, pruning infected branches, the destruction of infected material and the
removal of mummified berries to create environmental conditions that limit CBD development [14].
Chemical control seems the most effective method but if incorrectly used, it causes ecological risks.
On the contrary, the use of resistant varieties and cultural practices is cost-effective, biologically safe
and environmentally friendly.

Mathematics is becoming an important tool for studying the evolution of plant pests and diseases.
Some mathematical models have been formulated and analyzed to explain the dynamics of plant
disease transmission and assess their controls. For example, Fotsa et al. [19] introduced the
mathematical modelling and optimal control of Anthracnose disease. Anthracnose attacks a wide
range of commercial crops, including coffee, mango, banana, blueberry, cherry, and strawberry.
Cunniffe and Gilligan [20] investigated epidemiological models for plant pathogens. These models
ensured maximum transferability across the widest range of host-pathogen systems by using the
common currency of the field; they illustrated the results in a class of model that has been
experimentally tested for plant disease. Fotso et al. [21] introduced and analyzed a mathematical
model of coffee berry borer with optimal control strategies. Among coffee diseases, CBD, coffee wilt
disease, and coffee leaf rust are the most destructive diseases threatening coffee production in
developing countries like Ethiopia. However, according to the survey results, mostly CBD was more
widespread than the other coffee diseases [22]. In all the previous studies, the mathematical model for
CBD epidemics concerning fungal pathogen and vector population was not considered. In the present
work, we developed a nonlinear deterministic mathematical model for the dynamics of CBD
infestation on a coffee farm; and also we also applied their qualitative analysis.

2. Materials and methods

2.1. Biological background and pathosystem

The reproduction of the coffee tree involves flowers containing both females and males and their
pollination occurs mainly by wind and to a lesser extent by insects [23]. CBD is locally spread between
coffee trees and branches by wind and rain [11]. But, the common vectors of long- and medium-
distance CBD dispersal are insects, birds, and coffee harvesters [6]. Hence, we assumed those common
vectors that, after contacting a fungal pathogen from the environment or already CBD infected coffee
berries, then contact healthy coffee berries as responsible vectors for the spread of CBD. The fungal
pathogen in the environment may be transported to the coffee plant via infected vectors; once the
coffee berry becomes infected, the fungus increases within the infected coffee and destroys it. Twig
bark, flower cushions, and mummified berries are considered to be sources of primary inoculum [24].
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Most diseased berries drop prematurely, but those that stick to the branches are the main sources of
the secondary inoculum (new Colletotrichum kahawae) conidia that are dispersed to contaminate other
healthy berries.

The CBD is highly dependent upon climatic factors: humidity, rainfall, and temperature [25–27].
These climatic conditions conducive to Colletotrichum kahawae typically occur at high elevations
greater than 1600 m (i.e., the altitude at which coffee Arabica is grown); disease incidence is minimal
below 1000 m [24]. The optimal temperatures for conidium germination and mycelium growth are
in the range of 20 to 22◦C for CBD [28]. An increase of 0.61◦C in the global mean temperature has
been recorded since the beginning of the twentieth century and the predicted warming of 2–6◦C by
2100 have direly increased the need to understand the impacts of climate change [29]. Most insects
in temperate climates have optimum development at temperatures between 20 and 35◦C. The total
development time from egg to adult was 89.6 days at 20◦C, 63.10 days at 25◦C and 55.81 days at
30◦C, and no development at 35◦C [30]. Whereas at temperatures below 15◦C mating is limited,
and movement such as flying becomes stalled [31]. Most conidia of Colletotrichum kahawae can be
effectively dispersed by an optimum rainfall of 10 mm but heavy rainfall leads more to their leaching
from the coffee tree canopy to the soil [32, 33].

2.2. Mathematical model

Figure 3. Flow diagram of CBD transmission.

This study considers coffee berry and vector populations with the interaction of a fungal pathogen
(B). The coffee berry population is considered into two forms: the susceptible coffee berry (S c) and
infected coffee berry (Ic). Due to the limited size of a coffee plantation, we adopted a logistic growth
function for the biomass density of coffee berries. The coffee berry population grows logistically [34]
at a growth rate r and an environmental carrying capacity K. Susceptible coffee berries move to the
infected class following contacts with an infected vector at a per capita rate β2; its mortality rate is
θ. The infected coffee berry’s death rate is γ due to the disease. The coffee berry, once becoming

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7349–7373.



7353

infected, never recovers, and gives no or very low yield of coffee. The vector population is divided
into two form: the susceptible vector (S v) and infected vector (Iv). The infected vectors (insect, birds)
are assumed to transport the fungal pathogen to the coffee berry. The vectors can be infected from
the fungal pathogen in the environment at rate β1 or from the infected coffee berry at rate β3. The
susceptible vector is recruited at rate λ. The vectors’ death rate is represented by δ. The fungal
pathogens in the environment may be transported to the coffee plant via the infected vectors, once
the coffee berry becomes infected, the fungal increases within the infected coffee and destroy it. This
invariably adds to the fungal pathogens in the environment at rate η and the infected coffee berry fungal
pathogen contribution to the environment is (ηIc). The fungal pathogen’s decay rate is m. The flow
diagram of CBD transmission is illustrated in Figure 3. For further information, the parameters and
their biological meanings are given in Table 1.

The governing mathematical model is given by

dS c

dt
= rS c

(
1 −

S c + Ic

K

)
− β2S cIv − θS c,

dIc

dt
= β2S cIv − (γ + η)Ic,

dS v

dt
= λ − (β1B + β3Ic)S v − δS v,

dIv

dt
= (β1B + β3Ic)S v − δIv,

dB
dt
= ηIc − mB.

(2.1)

Together with initial condition:

S c(0) = S c0 > 0, Ic(0) = Ic0 ≥ 0, S v(0) = S v0 > 0, Iv(0) = Iv0 ≥ 0, B(0) = B0 ≥ 0. (2.2)

Table 1. Meaning of the parameters of model (2.1) with corresponding values.

Parameter Description Unit Value Source
β1 Contact rate of vector with pathogen environment day−1 0.000209818 Estimated
β2 Contact rate of coffee berries with infected vector day−1 0.000795455 Estimated
β3 Contact rate of vector with infected coffee berries day−1 0.000149091 Estimated
θ Mortality rate of healthy coffee berries day−1 0.01 [35]
γ Removal rate of infected coffee berries day−1 0.005 Estimated
r Growth rate of new coffee berries day−1 0.12 [36]
K Carrying capacity m−2 150 Estimated
η Induced rate of infected coffee berries ℧ 0.009 Estimated
λ Recruitment rate of vector day−1 0.488364 Estimated
m Decay rate of pathogen day−1 0.0900982 Estimated
δ Death rate of vector day−1 0.009 Estimated

Note that in the Table 1, the unit of η is to be Cells(ml−1)(Individual−1)(day−1)=℧.
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3. Results

3.1. Model analysis

3.1.1. Positivity and boundedness of solutions

In this section, we need to prove that the solutions of system (2.1) are nonnegative for all t ≥ 0. This
will be stated as follows.

Theorem 1. Every solution of system (2.1) with initial condition (2.2) will remain positive in R5
+ for

all t > 0.

Proof. From the system (2.1), we obtain

dS c

dt

∣∣∣∣∣
[S c=0]

≥ 0,
dIc

dt

∣∣∣∣∣
[Ic=0]

= β2S cIv ≥ 0,
dS v

dt

∣∣∣∣∣
[S v=0]

= λ > 0,

dIv

dt

∣∣∣∣∣
[Iv=0]

= (β1B + β3Ic)S v ≥ 0,
dB
dt

∣∣∣∣∣
[B=0]
= ηIc ≥ 0.

This implies that all the solutions with positive initial data remains nonnegative in R5
+ for all t ≥ 0.

This means, the region attracts all solutions of the governing system (2.1). □

Moreover, it is easy to verify that there exist an invariant region Ω where a solution set for the
system (2.1) is bounded.

Theorem 2. Every solution of system (2.1) initiating in R5
+ is uniformly bounded in the region Ω =

Ωc ×Ωv ×Ωp, where

Ωc =

{
(S c, Ic) ∈ R2

+ : Nc ≤
M(1 + r)

h

}
,Ωv =

{
(S v, Iv) ∈ R2

+ : Nv ≤
λ

δ

}
,

Ωp =

{
B ∈ R+ : 0 ≤ B ≤

M(1 + r)η
mh

}
,

with M = max {S c(0), K} , h = min {1, γ + η}.

Proof. Let Nc(t) = S c(t) + Ic(t) be the total population of coffee berry. Then differentiating Nc(t) with
respect to time t and adding the first two equations of system (2.1), we get

dNc

dt
≤ rS c − (γ + η)Ic = (1 + r)S c − S c − (γ + η)Ic. (3.1)

The last inequality in Eq (3.1) can be rewritten as

dNc

dt
+ hNc ≤ M(1 + r). (3.2)

Integrating Eq (3.2) by separation of variables and then as t→∞, the feasible region of the system (2.1)
for coffee population is given by

Ωc =

{
(S c, Ic) ∈ R2

+ : Nc ≤
M(1 + r)

h

}
.
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We also consider the total population of vector as Nv(t) = S v(t) + Iv(t). Then the derivative of Nv(t)
with respect to t is given by

dNv

dt
= λ − δNv. (3.3)

By solving Eq (3.3) and then as t → ∞, we get the feasible region of the system (2.1) for vector
population:

Ωv =

{
(S v, Iv) ∈ R2

+ : Nv ≤
λ

δ

}
. (3.4)

From the fifth equation of system (2.1) and by the comparison, we have

dB
dt
= ηIc − mB ≤ η(S c + Ic) − mB ≤

M(1 + r)η
h

− mB. (3.5)

Solving the last inequality of Eq (3.5) and t → ∞ results 0 ≤ B(t) ≤ M(1 + r)η/mh. Consequently, the
feasible region of the system (2.1) is given by Ω = Ωc ×Ωv ×Ωp is positively invariant. □

Hence, the solutions of the model are bounded. Therefore, the model is suitable to conduct the
study, and the analysis of the system dynamics can be considered in the region Ω.

3.1.2. Existence and uniqueness of solutions

In this section, we provide the following results which guarantee that the CBD model governed by
system (2.1) is epidemiologically and mathematically well posed.

Theorem 3. (Existence-uniqueness of solution). Let Θ be the domain:

|t − t0| ≤ a, ∥x − x0∥ ≤ b, x = (x1, x2, ..., xn), x0 = (x10, x20, ..., xn0) (3.6)

and suppose that f (t, x) satisfies the Lipschitz condition:

∥ f (t, x1) − f (t, x2)∥ ≤ κ ∥x1 − x2∥ , (3.7)

where (t, x1), (t, x2) ∈ Θ, and κ > 0. Then, there exist a constant ν > 0 such that there exists a unique
continuous vector solution x(t) of the system (2.1) in the interval |t − t0| ≤ ν. From Eq (3.7), f is
satisfied by requirement that ∂ fi/∂x j, i, j = 1, 2, ..., 5 be continuous and bounded in Θ.

If f (t, x) has continuous partial derivative ∂ fi/∂x j on a bounded closed convex domain R, then it
satisfies a Lipschitz condition in R ∈ (0,∞). Our concern is in the domain:

1 ≤ ϵ ≤ R. (3.8)

Let Θ denote the region defined in Eq (3.6) such that Eqs (3.7) and (3.8) hold. Then, there exist a
solution of system (2.1) which is bounded in Θ.

Proof. Suppose that the right side of system (2.1) is re-written as:

f1 = rS c

(
1 −

S c + Ic

K

)
− β2S cIv − θS c, (3.9)

f2 = β2S cIv − (γ + η)Ic, (3.10)
f3 = λ − (β1B + β3Ic)S v − δS v, (3.11)
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f4 = (β1B + β3Ic)S v − δIv, (3.12)
f5 = ηIc − mB. (3.13)

Since the functions in Eqs (3.9)–(3.13) are polynomial, then they are infinitely differentiable. Thus, for
the detailed proof, we can follow the proof of classical Cauchy-Lypschitz theorem [43]. Therefore, all
the partial derivatives exist and are finite, then there exists a solution for the model and hence, we can
say that there exist a unique solution of system (2.1) in the domain Θ. □

3.1.3. Disease-free equilibrium point (DFE)

At DFE, there is no infections (i.e., Ic = Iv = B = 0) in the populations. To find DFE, we equate the
right hand side of system (2.1) to zero and solving for the noninfected state variables we get S c = 0 or
S c = K − Kθ/r, S v = λ/δ. Thus, the equilibrium points of the system (2.1) are (0, 0, λ/δ, 0, 0) and
(K(r − θ)/r, 0, λ/δ, 0, 0). Hence, the DFE is given by

E0 =

(
K(r − θ)

r
, 0,
λ

δ
, 0, 0

)
. (3.14)

Remark 1. The disease-free equilibrium poin E0 in Eq (3.14) is biologically feasible when r > θ.

3.1.4. Basic reproduction number (R0)

The basic reproduction number is the number of secondary infections that one infectious individual
would create over the duration of the infectious period [37]. The expression of R0 for the system (2.1)
can be derived using the next generation matrix method [38]. The first step to find R0 is rewriting the
model equations starting with newly infective classes:

dIc

dt
= β2S cIv − (γ + η)Ic,

dIv

dt
= (β1B + β3Ic)S v − δIv,

dB
dt
= ηIc − mB.

(3.15)

The right hand side of system (3.15) is written as f − g, where

f =


β2S cIv

(β1B + β3Ic)S v
0

 , g =


(γ + η)Ic
δIv

−ηIc + mB

 . (3.16)

Then by linearization approach, the associated matrices of f and g at E0 are given by

F =


0

K(r − θ)β2

r
0

β3λ

δ
0

β1λ

δ
0 0 0

 , G =

γ + η 0 0

0 δ 0
−η 0 m

 .
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The basic reproduction number, R0 = ρ(FG−1) is the spectral radius of the product FG−1. Thus, it is
given by

R0 =

√
Kβ2λ

[
mβ3 + β1η

]
(r − θ)

rmδ2(γ + η)
. (3.17)

3.1.5. Local stability of disease-free equilibrium

In this section, we shall investigate the local stability of disease-free equilibrium point based on the
basic reproduction number, R0.

Theorem 4. If R0 < 1, then E0 of the system (2.1) is locally asymptotically stable in Ω.

Proof. The Jacobian matrix of the system (2.1) at E0 is given by

J(E0) =



θ − r −(r − θ) 0 −
β2K(r − θ)

r
0

0 −γ − η 0
β2K(r − θ)

r
0

0 −
β3λ

δ
−δ 0 −

β1λ

δ

0
β3λ

δ
0 −δ

β1λ

δ
0 η 0 0 −m


. (3.18)

From the Jacobian matrix (3.18), we obtain characteristic polynomial:

(δ + Λ)(r − θ + Λ)(Λ3 + A2Λ
2 + A1Λ + A0) = 0. (3.19)

From Eq (3.19), we obtain that Λ1 = −δ < 0, Λ2 = −(r − θ) < 0 (see Remark 1, r > θ) and

Λ3 + A2Λ
2 + A1Λ + A0 = 0, (3.20)

where

A2 = γ + η + m + δ, A1 = m(δ + γ + η) +
δ(γ + η)ηβ1

mβ3 + ηβ1
+
δ(γ + η)mβ3

mβ3 + ηβ1
(1 − R2

0),

A0 = δ(γ + η)m(1 − R2
0).

Using Routh-Hurwitz criteria [38], Eq (3.20) has eigenvalues which are negative real part whenever
A0 > 0, A1 > 0, A2 > 0, A1A2 − A0 > 0 and A0(A1A2 − A0) > 0. Therefore, E0 is locally asymptotically
stable for R0 < 1. □

3.1.6. Global stability of disease-free equilibrium

Theorem 5. If R0 < 1, then E0 of the system (2.1) is globally asymptotically stable in Ω.

Proof. To proof this theorem, we first define the linear Lyapunov function:

U = ϵ1Ic + ϵ2Iv + ϵ3B,

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7349–7373.



7358

where ϵ1, ϵ2 and ϵ3 are positive constants to be computed.
Then differentiating U with respect to t, we obtain

dU
dt
= (−ϵ1(γ + η) + ϵ2β3S 0

v + ϵ3η)Ic + (ϵ1β2S 0
c − ϵ3δ)Iv + (ϵ2β1S 0

v − ϵ3m)B, (3.21)

with S 0
c = K(r − θ)/r and S 0

v = λ/δ. The ϵ1, ϵ2, ϵ3 can be chosen such that

−ϵ1(γ + η) + ϵ2β3S 0
v + ϵ3η = 0,

ϵ1β2S 0
c − ϵ3δ = 0,

ϵ2β1S 0
v − ϵ3m = 0.

(3.22)

If we choose ϵ1 = 1, then ϵ2 = β2K(r − θ)/rδ and ϵ3 = β1β2K(r − θ)λ/rδ2m. Substituting ϵ1, ϵ2 and ϵ3
into Eq (3.21) leads to

dU
dt
= (−ϵ1(γ + η) + ϵ2

β3λ

δ
+ ϵ3η)Ic +

(
β2K(r − θ)

r
−
β2K(r − θ)

r

)
Iv

+

(
β1β2K(r − θ)λ

rδ2 −
mβ1β2K(r − θ)λ

rδ2m

)
B,

= (γ + η)
(
R2

0 − 1
)

Ic.

(3.23)

Since R0 < 1 and R0 ≥ 0 imply that R2
0 < 1, we have dU/dt ≤ 0.

Moreover, the largest compact invariant set in {(S c, Ic, S v, Iv, B) ∈ Ω : dU/dt = 0} is the singleton
{E0}. By LaSalle [39], it then implies that E0 is globally asymptotically stable in Ω. □

3.1.7. Endemic equilibrium point (EEP)

Endemic equilibrium point (E∗) exists when CBD persist in the populations. To obtain EEP, we set
each right hand equation in the system (2.1) equal to zero. That is,

rS ∗c

(
1 −

S ∗c + I∗c
K

)
− β2S ∗cI∗v − θS

∗
c =0,

β2S ∗cI∗v − (γ + η)I∗c =0,
λ − (β1B∗ + β3I∗c )S ∗v − δS

∗
v =0,

(β1B∗ + β3I∗c )S ∗v − δI
∗
v =0,

ηI∗c − mB∗ =0.

(3.24)

From the first equation of Eq (3.24) we find S ∗c = 0 or r(1 − (S ∗c + I∗c )/K) − β2I∗v − θ = 0.
Case i: S ∗c = 0, we obtain I∗c = δm/(β1η + mβ3), S ∗v = λ/2δ, I∗v = λ/2δ, B∗ = ηδ/(β1η + mβ3). This
endemic point is a point where the disease kills all coffee berries.
Case ii: r(1 − (S ∗c + I∗c )/K) − β2I∗v − θ = 0, then we get S ∗c, S ∗v, I

∗
v and B∗:

S ∗c =
δ(γ + η)(m + (β1η + mβ3)I∗c )

λβ2(β1η + mβ3)
, S ∗v =

λm
δ(m + (β1η + β3m)I∗c )

,

I∗v =
λ(β1η + mβ3)I∗c

δ(m + (β1η + mβ3)I∗c )
, B∗ =

ηI∗c
m
,

(3.25)

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7349–7373.
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where I∗c is the positive root of

f (I∗c ) = A(I∗c )2 + BI∗c +C = 0, (3.26)

with

A =
r3m2δ5(δ(γ + η) + β2λ)(γ + η)2R4

0

K2β2
2λ

2(r − θ)2
> 0,

B =
r2m2δ3(γ + η)
Kβ2λ(r − θ)

[
β2λ + 2δ(γ + η) +

δ(β2λ − rδ)(γ + η)R2
0

r − θ

]
R2

0,

C = rδ2m2(γ + η)
[
r − θ − rδR2

0

r − θ

]
.

The feasibility of the endemic equilibrium is determined by the next proposition.

Proposition 1. (Feasibility of the endemic equilibrium).
Let E∗ = (S ∗c, I

∗
c , S

∗
v, I
∗
v , B

∗) be as Eq (3.25).
(i) If B > 0 and C < 0 or B < 0 and C < 0, then there is a unique endemic equilibrium E∗.
(ii) If B < 0 or C > 0, then there exist two endemic equilibrium E∗ of the system.

Proof. The result follows Descartes’ rule of signs to f (I∗c ) given in Eq (3.26). □

3.1.8. Local stability of endemic equilibrium point

Theorem 6. If R0 > 1, Bi > 0, i = 1, 2, ..., 5, B1B2 − B3 > 0, B1(B2B3 + B5) − B2
3 − B2

1B4 > 0, (B2B3 −

B1(B2
2−2B4))B5−B2

4(−B1B2B3+B2
3+B2

1B4)−B2
5 > 0, B5(−B4(−B1B2B3+B2

3+B2
1B4)+ (B2B3−B1(B2

2−

2B4))B5 − B2
5) > 0, then E∗ of system (2.1) is locally asymptotically stable in Ω.

Proof. The Jacobian matrix of system (2.1) at E∗ is given by

J(E∗) =



r−r(I∗c + 2S ∗c)
K

− β2I∗v − θ −(r − θ) 0 −β2S ∗c 0

β2I∗v −γ − η 0 β2S ∗c 0
0 −β3S ∗v −β1B∗ − β3I∗c − δ 0 −β1S ∗v
0 β3S ∗v β1B∗ + β3I∗c −δ β1S ∗v
0 η 0 0 −m


(3.27)

The eigenvalues of matrix (3.27) are computed from

|J(E∗) − ΛI5| = 0 (3.28)

Let us consider the non-zero entities of matrix (3.28) as:

b11 = −θ − r(I∗c + 2S ∗c)/K − β2I∗v + r, b12 = −(r − θ), b21 = β2I∗v , b22 = −γ − η,

b32 = −β3S ∗v, b42 = β3S ∗v, b52 = η, b33 = −β1B∗ − β3I∗c − δ, b43 = β1B∗ + β3I∗c ,
b14 = −β2S ∗c, b24 = β2S ∗c, b44 = −δ, b35 = −β1S ∗v, b45 = β1S ∗v, b55 = −m.
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Then, the characteristic polynomial of Eq (3.28) is given by

Λ5 + B1Λ
4 + B2Λ

3 + B3Λ
2 + B4Λ + B5 = 0, (3.29)

where

B1 = −(b11 + b22 + b33 + b44 + b55),
B2 = b33b44 + b22(b33 + b44 + b55) + (b33 + b44)b55 + b11(b33 + b44 + b55) + b24b42(b11 − b14)
− b11((b44 + b55)b33 + b22 + b44b55),

B3 = b24b33b42 − b14b21b42 − b24b32(b43 − b24b45b52 − b22b44b55 − (b44 + b55)b22b33 + (b24b42 − b44)b55

+ b11b24b42 − (b44 + b55)b11b33 − b11b22 − b11b44b55,

B4 = b14b21(b33b42 − b32b43 − b45b52) + b24(b33b45 − b35b43)b52 + (b22b33b44 + b24b32b43 + b14b21b42)b55

+ b11b24(b32b43 + b45b52 − b33b42) + b11b33b44b55 + b11b22(b33 + b44) − b11b24b42b55,

B5 = b14b21((b33b45 − b35b43)b52 + (b32b43 − b42)b55 + b11b24((b35(b43 − b33b45)b52

+ (b33b42 − b32b43)b55) − b11b22b33b44.

Using the Routh Hurwitz criterion [39], the endemic equilibrium E∗ is locally asymptotically stable
for R0 > 1 if Bi > 0, i = 1, 2, ..., 5 and

B1B2 − B3 > 0, B1(B2B3 + B5) − B2
3 − B2

1B4 > 0,
(B2B3 − B1(B2

2 − 2B4))B5 − B2
4(−B1B2B3 + B2

3 + B2
1B4) − B2

5 > 0,
B5(−B4(−B1B2B3 + B2

3 + B2
1B4) + (B2B3 − B1(B2

2 − 2B4))B5 − B2
5) > 0.

Hence, all eigenvalues of Eq (3.29) evaluated at E∗ have negative real parts whenever R0 > 1 and the
equilibrium E∗ is locally asymptotically stable. □

3.1.9. Global stability of endemic equilibrium

Theorem 7. If R0 > 1, then E∗ of the model (2.1) is globally asymptotically stable in Ω.

Proof. Let us consider a Volterra-type Lyapunov function:

V = ζ1(S c − S ∗c ln S c)+ ζ2(S c − S ∗c ln S c)+ ζ3(S v − S ∗v ln S v)+ ζ4(Ic − I∗c ln Ic)+ ζ5(B− B∗ ln B), (3.30)

where ζ1, ζ2, ζ3, ζ4 and ζ5 are non-negative constants. Then by taking the derivative of V with respect
to t, we obtain

dV
dt
= ζ1

(
1 −

S ∗c
S c

)
dS c

dt
+ ζ2

(
1 −

I∗c
Ic

)
dIc

dt
+ ζ3

(
1 −

S ∗v
S v

)
dS v

dt
+ ζ4

(
1 −

I∗v
Iv

)
dIv

dt
+ ζ5

(
1 −

B∗

B

)
dB
dt
,

= ζ1S c

(
1 −

S ∗c
S c

) (
r −

rS c

K
−

rIc

K
− β2Iv − θ

)
+ ζ2

(
1 −

I∗c
Ic

)
(β2S cIv − (γ + η)Ic)

+ ζ3

(
1 −

S ∗v
S v

)
(λ − (β1B + β3Ic + δ)S v) + ζ4

(
1 −

I∗v
Iv

)
((β1B + β3Ic)S v − δIv) + ζ5

(
1 −

B∗

B

)
(ηIc − mB).

(3.31)
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Since E∗ is an equilibrium point, Eq (3.24) can be rewritten as:

r −
rS ∗c
K
−

rI∗c
K
− β2I∗v = θ,

β2S ∗cI∗v = (γ + η)I∗c ,
λ = (β1B∗ + β3I∗c + δ)S

∗
v,

(β1B∗ + β3I∗c )S ∗v = δI
∗
v ,

ηI∗c = mB∗.

(3.32)

Substituting the relations in Eq (3.32) into Eq (3.31), we obtain

dV
dt
= ζ1S c

(
S c − S ∗c

S c

) (
−

rS c

K
−

rIc

K
− β2Iv +

rS ∗c
K
+

rI∗c
K
+ β2I∗v

)
+ ζ2

(
1 −

I∗c
Ic

) (
β2S cIv − β2S ∗cI∗v

Ic

I∗c

)
+ ζ3

(
1 −

S ∗v
S v

) (
(β1B∗ + β3I∗c + δ)S

∗
v − (β1B + β3Ic + δ)S v

)
+ ζ4

(
1 −

I∗v
Iv

) (
(β1B + β3Ic)S v − (β1B∗ + β3I∗c )S ∗v

Iv

I∗v

)
+ ζ5

(
1 −

B∗

B

) (
ηIc − ηI∗c

B
B∗

)
.

(3.33)

Expanding and grouping Eq (3.33), we have

dV
dt
= − ζ1

r
K

(sc − S ∗c)2 +

[
ζ1

rS ∗c
K
− ζ2β2

S ∗cI∗v
I∗c
+ ζ3β3S ∗v + ζ5η

]
Ic +

[
ζ1β2S ∗c − ζ4(β1B∗ + β3I∗c )

S ∗v
I∗v

]
Iv

+

[
ζ3β1S ∗v − ζ5η

I∗c
B∗

]
B + ζ1

(
rI∗c
K
+ β2I∗v

)
S c − ζ1

rIcS c

K
− ζ1

rI∗c S ∗c
K
+ (−ζ1 + ζ2)β2S cIv

+ (−ζ1 + ζ2)β2S ∗cI∗v − ζ2
β2I∗c S cIv

Ic
+ (−ζ3 + ζ4)β1BS v + (−ζ3 + ζ4)β3IcS v + 2ζ3δS ∗v − ζ3δS v

− ζ3(β1B∗ + β3I∗c + δ)
(S ∗v)2

S v
+ (ζ3 + ζ4)(β1B∗ + β3I∗c )S ∗v − ζ4β1B∗ − ζ5

ηB∗Ic

B
+ ζ5ηI∗c .

(3.34)

Choose ζ1, ζ2, ζ3, ζ4 and ζ5 such that the expressions in the brackets in Eq (3.34) vanish. That is

ζ1
rS ∗c
K
− ζ2
β2S ∗cI∗v

I∗c
+ ζ3β3S ∗v + ζ5η =0,

ζ1β2S ∗c − ζ4(β1B∗ + β3I∗c )
S ∗v
I∗v
=0,

ζ3β1S ∗v − ζ5η
I∗c
B∗
=0.

(3.35)

Fixing ζ1 = δ, then Eq (3.35) leads to

ζ2 = ζ1, ζ3 = ζ1
ηI∗c S ∗c

(β1 + β3m)S ∗vB∗

(
β2I∗v
I∗c
−

r
K

)
, ζ4 = ζ1

β2S ∗c
δ
, ζ5 = ζ1

β1S ∗c
β1 + β3m

(
β2I∗v
I∗c
−

r
K

)
. (3.36)
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Replacing Eq (3.36) in Eq (3.34), we obtain

dV
dt
= − ζ1

r
K

(sc − S ∗c)2 + ζ1

(
rI∗c
K
+ β2I∗v

)
S c − ζ1

rIcS c

K
− ζ1

rI∗c S ∗c
K
− ζ1
β2I∗c S cIv

Ic

+ ζ1

(
−

ηI∗c S ∗c
(β1 + β3m)S ∗vB∗

(
β2I∗v
I∗c
−

r
K

)
+
β2S ∗c
δ

)
(β1B + β3Ic)S v + ζ1

2ηδS ∗vI∗c S ∗c
(β1 + β3m)S ∗vB∗

(
β2I∗v
I∗c
−

r
K

)
− ζ1

ηI∗c S ∗c
(β1 + β3m)S ∗vB∗

(
β2I∗v
I∗c
−

r
K

) (
δS v +

λS ∗v
S v

)
+ ζ1

(
ηI∗c S ∗c

(β1 + β3m)S ∗vB∗

(
β2I∗v
I∗c
−

r
K

)
+
β2S ∗c
δ

)
λ

− ζ1

(
ηI∗c S ∗c

(β1 + β3m)S ∗vB∗

(
β2I∗v
I∗c
−

r
K

)
+
β2S ∗c
δ

)
δS ∗v − ζ1

β1β2B∗S ∗c
δ

− ζ1
β1S ∗c
β1 + β3m

(
β2I∗v
I∗c
−

r
K

)
ηB∗Ic

B

+ ζ1
β1S ∗c
β1 + β3m

(
β2I∗v
I∗c
−

r
K

)
ηI∗c ,

(3.37)

or equivalently

dV
dt
= −ζ1

r
K

(sc − S ∗c)2 − ζ1
rIcS c

K
− ζ1

rI∗c S ∗c
K
− ζ1
β2I∗c S cIv

Ic
− ζ1
ηI∗c S ∗c(β1B + β3Ic)S v

(β1 + β3m)S ∗vB∗
− ζ1

β1rηI∗c S ∗c
K(β1 + β3m)

− ζ1
ηI∗c S ∗c

(β1 + β3m)S ∗vB∗

(
β2I∗v
I∗c
−

r
K

) (
δS v +

λS ∗v
S v

)
− ζ1

(
ηI∗c S ∗c

(β1 + β3m)S ∗vB∗

(
β2I∗v
I∗c
−

r
K

)
+
β2S ∗c
δ

)
δS ∗v

− ζ1
β1β2B∗S ∗c
δ

− ζ1
β1S ∗c
β1 + β3m

(
β2I∗v
I∗c
−

r
K

)
ηB∗Ic

B
− ζ1

2rηδS ∗vI∗c S ∗c
K(β1 + β3m)S ∗vB∗

− ζ1

(
rηI∗c S ∗c

K(β1 + β3m)S ∗vB∗

)
λ

+ ζ1
δ(rI∗c + Kβ2I∗v )S c + Kβ2S ∗c((β1B + β3Ic)S v + λ)

Kδ

+ ζ1
K(2δ + β1B∗)I∗v S ∗vS ∗c + (Kβ2λI∗v + rI∗c (β1B + β3Ic)S v)ηS ∗c

K(β1 + β3m)S ∗vB∗
.

(3.38)

From Eq (3.38), since
ηI∗c S ∗c

(β1 + β3m)S ∗vB∗

(
β2I∗v
I∗c
−

r
K

)
= ζ3 ≥ 0, we have

−ζ1
ηI∗c S ∗c

(β1 + β3m)S ∗vB∗

(
β2I∗v
I∗c
−

r
K

) (
δS v +

λS ∗v
S v

)
≤ 0.

With this in mind, and if we let

Z = − ζ1
r
K

(sc − S ∗c)2 − ζ1
rIcS c

K
− ζ1

rI∗c S ∗c
K
− ζ1
β2I∗c S cIv

Ic
− ζ1
ηI∗c S ∗c(β1B + β3Ic)S v

(β1 + β3m)S ∗vB∗
− ζ1

β1rηI∗c S ∗c
K(β1 + β3m)

− ζ1
ηI∗c S ∗c

(β1 + β3m)S ∗vB∗

(
β2I∗v
I∗c
−

r
K

) (
δS v +

λS ∗v
S v

)
− ζ1

(
ηI∗c S ∗c

(β1 + β3m)S ∗vB∗

(
β2I∗v
I∗c
−

r
K

)
+
β2S ∗c
δ

)
δS ∗v

− ζ1
β1β2B∗S ∗c
δ

− ζ1
β1S ∗c
β1 + β3m

(
β2I∗v
I∗c
−

r
K

)
ηB∗Ic

B
− ζ1

2rηδS ∗vI∗c S ∗c
K(β1 + β3m)S ∗vB∗

− ζ1

(
rηI∗c S ∗c

K(β1 + β3m)S ∗vB∗

)
λ ≤ 0,

W = ζ1
δ(rI∗c + Kβ2I∗v )S c + Kβ2S ∗c((β1B + β3Ic)S v + λ)

Kδ
+ ζ1

K(2δ + β1B∗)I∗v S ∗vS ∗c + (Kβ2λI∗v + rI∗c (β1B + β3Ic)S v)ηS ∗c
K(β1 + β3m)S ∗vB∗

≥ 0,
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then (dV/dt)(S c, Ic, S v, Iv, B) ≤ 0 if and only if S c = S ∗c, Ic = I∗c , S v = S ∗v, Iv = I∗v , B = B∗ and
Z + (−W) ≤ 0.

Therefore, the largest compact invariant set in {(S c, Ic, S v, Iv, B) ∈ Ω : dV/dt = 0} is the singleton
{E∗}. By LaSalle [39], it then implies that E∗ is globally asymptotically stable in Ω. □

3.1.10. Bifurcation analysis

To investigate the possibility of existence of the bifurcation analysis of the system (2.1) at R0 = 1, we
use the center manifold theory [40]. So using this approach, the following theorem can be established.

Theorem 8. If R0 < 1, then the system (2.1) exhibits forward bifurcation at R0 = 1.

Proof. Using center manifold theory [40], we carry out bifurcation analysis of system (2.1) at R0 = 1.
Let us consider the change of variables S c = x1, Ic = x2, S v = x3, Iv = x4, B = x5. Furthermore,
using the vector notation: X = (x1, x2, x3, x4, x5)T . Then the system (2.1) can be written in the form
dX/dt = (g1, g2, g3, g4, g5)T as:

dx1

dt
= rx1

(
1 −

x1 + x2

K

)
− β2x1x4 − θx1,

dx2

dt
= β2x1x4 − (γ + η)x2,

dx3

dt
= λ − (β1x5 + β3x2)x3 − δx3,

dx4

dt
= (β1x5 + β3x2)x3 − δx4,

dx5

dt
= ηx2 − mx5.

(3.39)

We consider β2 as bifurcation parameter so that R0 = 1 if

β2 = β
∗
2 =

r(γ + η)δ2m
Kλ(r − θ) (mβ3 + β1η)

. (3.40)

The Jacobian matrix of Eq (3.39) at disease-free equilibrium E0 is given by

J(E0) =



θ − r −(r − θ) 0 −
K(r − θ)β∗2

r
0

0 −γ − η 0
K(r − θ)β∗2

r
0

0 −
β3λ

δ
−δ 0 −

β1λ

δ

0
β3λ

δ
0 −δ

β1λ

δ
0 η 0 0 −m


. (3.41)

The right eigenvector, u = (u1, u2, u3, u4, u5)T is computed from J(E0)u = 0 so that

u1 = −
Kβ∗2

r

(
r − θ
γ + η

+ 1
)

u4, u2 =
K(r − θ)β∗2

r(γ + η)
u4, u3 = −u4, u5 =

ηK(r − θ)β∗2
r(γ + η)m

u4,
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where u4 = u4 > 0. Similarly, the left eigenvector, z = (z1, z2, z3, z4, z5) is computed from zJ(E0) = 0

so that z1 = z3 = 0, z2 =
δr

K(r − θ)β∗2
z4, z5 =

β1λ

δm
z4; z4 = z4 > 0. The nonzero second partial

derivatives of g1, g2, g3 and g4 are given as follows:

∂2g1

∂x1∂x1
=
∂2g1

∂x1∂x1
= −

2r
K
,
∂2g1

∂x1∂x2
=
∂2g1

∂x2∂x1
= −

r
K
,
∂2g1

∂x1∂x4
=
∂2g1

∂x4∂x1
= −β∗2,

∂2g2

∂x1∂x2
=
∂2g2

∂x2∂x1
= β∗2,

∂2g3

∂x2∂x3
=
∂2g3

∂x3∂x2
= −β3,

∂2g3

∂x3∂x5
=
∂2g3

∂x5∂x3
= −β1,

∂2g4

∂x2∂x3
=
∂2g4

∂x3∂x2
= β3,

∂2g4

∂x3∂x5
=
∂2g4

∂x5∂x3
= β1,

∂2g1

∂x4∂β
∗
2
=
∂2g1

∂β∗2∂x4
= −x∗1,

∂2g2

∂x4∂β
∗
2
=
∂2g2

∂β∗2∂x4
= x∗1.

All the others second partial derivatives of gi, i = 1, ..., 5 are zero. Based on center manifold
theorem [40], the coefficients a and b are given by

a =
5∑

i, j,k=1

zkuiu j
∂2gk

∂xi∂x j
(E0)

= −

[
2δ3r(γ + η)m

Kλ(r − θ)2(mβ3 + β1η)

(
r − θ
γ + η

+ 1
)
+

2δβ3

γ + η
+ 2ηK(r − θ)δ2

]
z4u2

4 < 0,

b =
5∑

i,k=1

zkui
∂2gk

∂xi∂β
∗
2
(E0) =

K(r − θ)(mβ3 + β1η)
r(γ + η)δm

z4u4 > 0.

Since a is negative and b is positive, then the system (2.1) exhibits forward bifurcation at R0 = 1 and
there exists at least one stable endemic equilibrium when R0 > 1 (See Figure 4). □
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Figure 4. Forward bifurcation diagram. Parameter values are taken from Table 1 (except
β2 = 0.5, γ = 0.99, η = 0.09, λ = 0.08, δ = 0.099, θ = 0.016, m = 0.900982).
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3.1.11. Sensitivity of the basic reproduction number

In this section, we compute the sensitivity index of basic reproduction number, R0, with respect to
the main parameters [41]. This help us to check and identify parameters which highly affect R0 on the
eradication or spread of CBD. For example, sensitivity index of R0 with respect to K is given by

∆
R0
K =

∂R0

∂K
×

K
R0
= 0.5.

In the same way, the sensitivity index of R0 are also computed and the corresponding sensitivity indeces
are given in Table 2.

Table 2. Sensitivity indices.

Parameter Sensitivity indices of R0 Parameter Sensitivity indices of R0

K +0.5 θ –0.0454545
β1 +0.0616258 λ +0.5
β2 +0.5 δ –1
β3 +0.438374 γ –0.178571
η –0.259803 m –0.0616258
r +0.0454545

3.1.12. Interpretation of the sensitivity indices

The parameters: K, β1, β2, β3, r and λ have positive sensitivity indices show that the more impact
on expanding the disease in the population if their values are increasing since R0 increases. Besides, the
parameters: θ, η, δ, γ and m have negative sensitivity indices show that less impact on expanding the
disease as their values increase. The bar diagram of the sensitivity indices of R0 in Table 2 is depicted
in Figure 5. Hence, the parameters: K, β2 and λ are the most in influential in expanding the disease.
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Figure 5. Normalized sensitivity indices of R0 with respect to parameters of the system (2.1).
Parameter values are taken from Table 1.
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Furthermore, in Figure 6, we have seen that the contour plot of basic reproduction number R0 with
respect to the parameters K, β2 and K, λ, respectively. It can be observed from Figure 6(a) that for
decreasing value of K and β2, R0 decreases. For increasing K and λ the basic reproduction number R0

increases, which has been shown in Figure 6(b).
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Figure 6. Contour plots of R0 versus (a) (K, β2)-plane and (b) (K, λ)-plane. Parameter values
are taken from Table 1.

3.2. Numerical simulations

In order to illustrate the analytical results, the numerical simulations of the system (2.1) were
performed. Some parameter values were assumed and some of them were obtained from literature. In
addition to parameter values in Table 1, we assumed the initial data:
S c(0) = 100, Ic(0) = 50, S v(0) = 50, Iv(0) = 10, B(0) = 2.

Figures 7(a) and 8(a) depict the global asymptotic behaviour of the infected coffee and infected
vector at the disease-free equilibrium E0 when R0 < 1 where the disease dies out regardless of large
initial values of the infectious population. On the other hand, Figures 7(b) and 8(b) show the global
asymptotic behaviour of the infected coffee and infected vector at the endemic equilibrium E∗ when
R0 > 1 where the disease persists regardless of the initial sizes of the infectious population.

From the Figure 9(a) susceptible coffee berries decreases while the infected coffee berries
increases with R0 > 1 due to there is very favorable condition for breeding of pathogen and vector that
transmit the disease. The susceptible vector population in the Figure 9(c) decreases while infected
vector population increases. The CBD pathogen population in the Figure 9(b) increases to a
maximum point and then proceed decrease with minimum at unfavorable climate.
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Figure 7. Numerical simulation of the convergence of the infected coffee berries to the
disease-free and endemic equilibrium points.
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Figure 8. Numerical simulation of the convergence of the infected vectors to the disease-free
and endemic equilibrium points.
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Figure 9. Numerical simulation of coffee berries, vector and pathogen population when
R0 = 2.83.
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In the Figure 10(a),(b), the effects of the modification factor for asymptomatic coefficient at
different values: K = 150 and β2 = 0.000795455 are displayed. The projection shows that the
cumulative number of individuals becoming infected coffee berries is high when K and β2 become
high and becoming decreasing with low values of K and β2, which minimize also the values of basic
reproduction number less one. As shown in Figure 10(c),(d), when the rates: K and β2 increase, the
number of individuals becoming infected vector is high and decreasing the value of decreases the
number of individuals becoming infected. As shown in Figure 11(a),(b), when the rates: K and β2

increase, the concentration of the pathogen becomes high, and decreasing the value of decreases the
pathogen.
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Figure 10. Projections of infected coffee and infected vector population with varying effect
of parameters at values of K = 100,K = 150,K = 200; β2 = 0.0002, β2 = 0.000795455, β2 =

0.000845.
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Figure 11. Projections of pathogen population with varying effect of parameters at values of
K = 100,K = 150,K = 200; β2 = 0.0002, β2 = 0.000795455, β2 = 0.000845.

4. Discussion and conclusions

In this paper, we formulated and analyzed a nonlinear deterministic mathematical model for CBD
transmission dynamics in a coffee farm. A compartmental mathematical model by including coffee
plants and vectors of disease with the interaction of fungal pathogen was investigated. We obtained the
feasible region where the model is epidemiologically and mathematically meaningful. The positivity,
existence and uniqueness of model solutions are also demonstrated. The equilibria (disease-free and
endemic equilibrium) of the model were computed. We calculated the basic reproduction number at
the disease-free equilibrium point by using the next-generation matrix method. The local stability of
disease-free and endemic equilibria is shown using the Routh-Hurwitz criteria. Besides, the global
stability of equilibria is proved by using the Lyapunov function. Moreover, bifurcation analysis is
proved by the Center Manifold theory. The sensitivity indices of basic reproduction number with
respect to the main parameters are computed. Further, sensitivity indices are graphically shown and the
most influential parameters in expanding the disease are identified. Despite coffee playing a dominant
role in the social, cultural, and national economy, the country’s coffee industry is potentially at risk due
to climate changes. We discussed the impact of Colletotrichum kahawae fungus and vectors of disease
in relation to climatic variables. More vectors and CBD pathogens are produced at the favourable
climate which indirectly increases the rate of infected coffee berries. Thus, the frequency and severity
of climate extremes are increasing and making adaptation an absolute imperative necessity through
using current information on climate variability to develop long-term plans for managing CBD. Since
CBD is highly dependent upon climatic factors, we are doing for the future with a paper applying the
climatic variability in this model. Numerical simulations of the model suggested we apply effective
control interventions on some parameters to control the disease. This will be done using chemical,
cultural, and biological control strategies. We conclude that according to our mathematical model we
have an endemic equilibrium point and the coffee disease remains endemic provided that the basic
reproduction number is greater than one. Thus, we are developing the model with optimal control for
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future work to eradicate the disease.
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