
http://www.aimspress.com/journal/mbe

MBE, 19(7): 7337–7348.
DOI: 10.3934/mbe.2022346
Received: 21 March 2022
Revised: 10 May 2022
Accepted: 16 May 2022
Published: 18 May 2022

Research article

Pareto optimal algorithms for minimizing total (weighted) completion time
and maximum cost on a single machine

Zhimeng Liu and Shuguang Li∗

College of Computer Science and Technology, Shandong Technology and Business University, Yantai
264005, China

* Correspondence: Email: sgliytu@hotmail.com; Tel: +8618753509226.

Abstract: This paper studies the Pareto scheduling problem of minimizing total weighted completion
time and maximum cost on a single machine. It is known that the problem is strongly NP-hard. Algo-
rithms with running time O(n3) are presented for the following cases: arbitrary processing times, equal
release dates and equal weights; equal processing times, arbitrary release dates and equal weights;
equal processing times, equal release dates and arbitrary weights.

Keywords: scheduling; Pareto optimization; single machine; total weighted completion time;
maximum cost

1. Introduction

In the last decades, multicriteria scheduling problems have attracted wide attention because they
are more meaningful from practical point of view [1]. It is clear that unless we are extremely lucky,
there will be no schedule that achieves the optimal values for all criteria simultaneously. Sometimes,
a so-called optimum with respect to one criterion could perform extremely bad with respect to other
criteria, which implies that we have to give in on the quality of at least one of the criteria. For example,
decision makers may need to consider several criteria simultaneously such as on time delivery (related
to maximum cost criterion) and work-in-process inventory (related to total weighted completion time
criterion). If everything is set on keeping work-in-process inventories low, then some products are
likely to be completed far beyond their due dates. On the other hand, if the goal is to keep the cus-
tomers satisfied by observing due dates, then the work-in-process inventories are likely to be large. In
recent years, multicriteria-based techniques and approaches have been increasingly applied in many
specialized fields, such as healthcare facility location [2], unpaced mixed-model assembly lines [3],
and the flexible manufacturing system using fuzzy logic [4], to name just a few.

The bicriteria scheduling problems we consider in this paper are special cases of the following

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2022346

7338

problem. There are a set of n jobs J = {J1, J2, . . . , Jn} and a single machine which can process at most
one job at a time. Each job J j has a processing time p j, a release date r j and a positive weight w j, and
is associated with a cost function f j(·). Assume that each f j(·) is regular, i.e., f j(·) is non-decreasing
in the job completion times. The jobs are to be processed on the machine without preemption. A
schedule specifies for each job when it is executed on the machine. Under a feasible schedule σ, the
start time and completion time of J j are denoted by S j(σ) and C j(σ), respectively, where S j(σ) ≥ r j

and C j(σ) = S j(σ) + p j. The scheduling cost of J j is given by f j(C j(σ)). Let
∑n

j=1 w jC j(σ) denote the
total weighted completion time of the jobs. Let fmax(σ) = max j f j(C j(σ)) denote the maximum cost of
σ. Two important special cases of fmax are the makespan Cmax(σ) = max j{C j(σ)}, and the maximum
lateness Lmax(σ) = max j{C j(σ) − d j}, where d j denotes the due date of J j which indicates a preferred
completion time of J j. We omit the argument σ if there is no confusion possible as to the schedule we
are referring to. The goal is to find Pareto optimal schedules which simultaneously optimize

∑n
j=1 w jC j

and fmax.
A feasible schedule σ is Pareto optimal with respect to

∑n
j=1 w jC j and fmax if there is no feasi-

ble schedule σ′ such that
∑n

j=1 w jC j(σ′) ≤
∑n

j=1 w jC j(σ) and fmax(σ′) ≤ fmax(σ), where at least one
of the inequalities is strict. The objective vector (

∑n
j=1 w jC j(σ), fmax(σ)) is called a Pareto optimal

point [1]. Following the notation schemes of [5, 6], the problem under consideration is denoted as
1|r j|(

∑n
j=1 w jC j, fmax).

Problem 1|r j|(
∑n

j=1 w jC j, fmax) is strongly NP-hard [1]. Its special cases, 1||(
∑n

j=1 w jC j, fmax) (all jobs
have the same release dates) and 1|r j|(

∑n
j=1 C j, fmax) (all jobs have the same weights) are also strongly

NP-hard [7], due to the strong NP-hardness result by Lenstra et al. [8] for problems 1|d̄ j|
∑n

j=1 w jC j

and 1|r j, d̄ j|
∑n

j=1 C j, where d̄ j denotes the deadline of job J j before which J j must be completed in any
feasible schedule.

Wassenhove and Gelders [9] presented an algorithm for 1||(
∑n

j=1 C j, Lmax) which finds each Pareto
optimal point in O(n log n) time. They first characterized the set of Pareto optimal points and then
gave the algorithm. John [10] extended the idea to obtain an algorithm for 1||(

∑n
j=1 C j, fmax) which

finds each Pareto optimal point in O(n2) time. He also reduced significantly the computational require-
ments for generating all Pareto optimal schedules by proving that a small perturbation of one Pareto
optimal schedule generates its adjacent Pareto optimal schedule. Hoogeveen and van de Velde [11]
proved that for 1||(

∑n
j=1 C j, fmax) there are at most n(n − 1)/2 + 1 Pareto optimal points. Hence, prob-

lems 1||(
∑n

j=1 C j, Lmax) and 1||(
∑n

j=1 C j, fmax) can be solved in O(n3 log n) and O(n4) time, respectively.
Hoogeveen and van de Velde [11] also obtained a O(n3 log

∑
j p j)-time algorithm for 1||(

∑n
j=1 C j, fmax).

Gao and Yuan [12] showed that the complexity analysis of this algorithm is invalid, and further gave a
new O(n3 log

∑
j p j)-time algorithm for 1||(

∑n
j=1 C j, fmax). In another paper, Gao and Yuan [13] studied

1|k j|(
∑n

j=1 C j, fmax) and presented two O(n4)-time algorithm for it, where k j indicates that the ordinal
number of J j in the schedule is no more than k j. He et al. [14] presented an O(n3 log n)-time algo-
rithm for 1|p j = p|(

∑n
j=1 w jC j, fmax). Steiner and Stephenson [7] studied 1||(

∑n
j=1 w jC j, Lmax). They

showed that the master sequence concept is also applicable to this problem and the master sequence
implies the existence of global dominance orders for it. They then incorporated the dominance results
into a new branch and bound algorithm for 1||(

∑n
j=1 w jC j, Lmax) which can enumerate all Pareto opti-

mal schedules for over 90% of the 1440 randomly generated problems with up to 50 jobs. Lazarev
et al. [15] presented an O(n3 log n)-time algorithm for 1|r j, p j = p|(Cmax, Lmax), the core idea of which
is to construct a schedule in the current iteration with Lmax value lower than in the previous iteration.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7337–7348.

7339

Hoogeveen [16] presented an O(n4)-time algorithm for the problem of minimizing two maximum cost
criteria, 1||(fmax, gmax), and an O(n8)-time algorithm for the problem of minimizing three maximum cost
criteria, 1||(fmax, gmax, hmax). They also showed that the algorithms can be used if precedence constraints
exist between the jobs or if all penalty functions are non-increasing in the job completion times.

In many manufacturing systems, the products may have similar designs or characteristics (corre-
sponding to similar job data, e.g., processing times, release dates, or weights). In standardized systems
in practice, the products consistently have exactly the same processing times (or equal release dates
or weights), e.g., transmission packets in data communication networks, Full Truck Loads (FTLs) in
transportation by truck, and Twenty-foot Equivalent Units (TEUs) in container shipments [17]. Mean-
while, individual products may be subject to different constraints. For example, they may have different
weights (importance) or may be required to meet unequal due dates or release dates requested by cus-
tomers.

Motivated from this, in this paper we study the following three special cases of
1|r j|(

∑n
j=1 w jC j, fmax): arbitrary processing times, equal release dates and equal weights, denoted

as 1||(
∑n

j=1 C j, fmax); equal processing times, arbitrary release dates and equal weights, denoted as
1|r j, p j = p|(

∑n
j=1 C j, fmax); equal processing times, equal release dates and arbitrary weights, de-

noted as 1|p j = p|(
∑n

j=1 w jC j, fmax). We present O(n3)-time algorithms for these three cases. The
results improve the previous algorithms in [9–15]. In particular, the O(n3)-time algorithm presented
for 1|r j, p j = p|(

∑n
j=1 C j, fmax) is the first polynomial time algorithm for it.

To prove the correctness of the obtained algorithms, we need the following approach:

Lemma 1.1. ([1]) Let y be the optimal value of problem α| f ≤ x̂|g, and let x be the optimal value of
problem α|g ≤ y| f . Then (x, y) is a Pareto optimal point for problem α||(f , g).

The paper is organized as follows. Sections 2–4 are devoted to problems 1||(
∑n

j=1 C j, fmax), 1|r j, p j =

p|(
∑n

j=1 C j, fmax) and 1|p j = p|(
∑n

j=1 w jC j, fmax), respectively. Finally, we conclude the paper in Section
5 with some discussion and directions for future work.

2. An O(n3)-time algorithm for 1||(
∑n

j=1 C j, fmax)

In this section we will present an O(n3)-time algorithm for 1||(
∑n

j=1 C j, fmax).
Let σ = (Jσ(1), Jσ(2), · · · , Jσ(n)) denote a schedule in which Jσ(i) is the job scheduled at the i-th

position in σ. Since
∑n

j=1 C j and fmax are both regular, we can consider only the schedules without idle
times. Therefore, we have:

Lemma 2.1. In a feasible schedule σ = (Jσ(1), Jσ(2), · · · , Jσ(n)), S σ(1) = 0, S σ(i) = S σ(i−1) + pσ(i−1),
i = 2, . . . , n.

The algorithm maintains implicitly a position index km
j for each job J j in the m-th iteration, m =

0, 1, The ordinal number of J j in the current tentative Pareto optimal schedule cannot be larger
than km

j . Initially, the position indices of all the jobs are equal to n, i.e., k0
j = n, j = 1, 2, . . . , n. During

the m-th iteration, all the position indices of the jobs can be maintained via a Candidate Set Family
Fm = {Jm

1 ,J
m
2 , . . . ,J

m
n }, where Jm

i is the set of jobs with position index i, i = 1, 2, . . . , n.
A family F of setsJ1,J2, . . . ,Jn is called a Candidate Set Family (CSF for short) if these (possibly

empty) sets are disjoint, their union is J , and any jobs in Ji (i = 1, 2, . . . , n) cannot be assigned to any
position whose ordinal number is greater than i.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7337–7348.

7340

A CSF can be regarded as a generalized partition of J , since empty sets are not allowed in an
ordinary partition of J .

The idea of CSF is motivated from [15]. The concept of position index is similar to that used in [13].
But in [13], the position indices of the jobs are a part of input. In the algorithms throughout this paper,
the position indices of the jobs are updated during the iterations.

We say that a feasible schedule satisfies a CSF F = {J1,J2, . . . ,Jn} if for i = 1, 2, . . . , n, the i-th
job in the schedule come from

⋃n
h=iJh. Certainly, we require that

∑i
h=1 |Jh| ≤ i, i = 1, 2, . . . , n.

Let Π (J) denote the set of all feasible schedules forJ . Let Π (J , F, y) ⊆ Π (J) denote the set of the
schedules which satisfy CSF F and have maximum cost less than y. We have Π

(
J , F0,+∞

)
= Π (J),

where F0 = {∅,∅, . . . ,J}.
Before solving 1||(

∑n
j=1 C j, fmax), let us formulate the following auxiliary problem.

Auxiliary Problem: Find a schedule σ in Π (J , F, y) with minimum total completion time, i.e.,
σ ∈ Π (J , F, y) which solves 1| fmax < y|

∑n
j=1 C j (with F). (The restriction F is useful in the algorithm,

but Lemmas 2.3 and 2.6 below ensure that in the analysis it can be safely ignored.)
The auxiliary problem can be solved in O(n2) time by suitably modifying Emmons’s algorithm [18],

or can be transformed into a problem with deadlines (and CSF F) in O(log
∑

j p j) time and then be
solved in O(n log n) time by modifying Smith’s rule [19]. However, combining the fact that there are at
most n(n−1)/2+1 Pareto optimal points, we can only obtain an O(n3 min{n, log

∑
j p j})-time algorithm

for 1||(
∑n

j=1 C j, fmax).
In fact, CSF is introduced mainly for improving the overall running time of the obtained algorithms.

Below, we first give an O(n3 log n)-time algorithm for the auxiliary problem, and then improve its time
complexity to O(n3). The improved algorithm will be used as a central subroutine in the O(n3)-time
algorithm for 1||(

∑n
j=1 C j, fmax).

Algorithm AUX1:

Step 1. Initially, set m = 0. Let Fm = {Jm
1 ,J

m
2 , . . . ,J

m
n }, where Jm

i = Ji and the jobs in Jm
i are

stored in a Max-heap ordered by processing times, i = 1, 2, . . . , n.

Step 2. Construct schedule σm: For i = n, n − 1, . . . , 1 (this backward ordering is
used crucially), assign the i-th position to the job with largest processing time in⋃n

h=iJ
m
h \{Jσm(n), Jσm(n−1), . . . , Jσm(i+1)} (ties broken arbitrarily).

Step 3. Set the start times of the jobs in σm: Let S σm(1) = 0, S σm(i) = S σm(i−1) + pσm(i−1), i = 2, . . . , n.

Step 4. Adjust Fm: For i = n, n − 1, . . . , 1, check the inequality fσm(i)(Cσm(i)) < y. If the inequality
does not hold, then find the largest index e such that fσm(i)(Cσm(e−1) + pσm(i)) < y. Delete Jσm(i)

from its original set in Fm and insert it in Jm
e . If e cannot be found, then return ∅.

Step 5. If no adjustment has been done for Fm after Step 4 (i.e., for all i the inequality is correct),
then return σm. Otherwise, check the condition

∑i
h=1

∣∣∣Jm
h

∣∣∣ ≤ i for i = 1, 2, . . . , n. If for any i
the condition does not hold, then return ∅. Otherwise, let Fm+1 = Fm (Fm has been adjusted
already) and then set m = m + 1. Go to the next iteration (Step 2).

In Step 2, Algorithm AUX1 uses the RLPTL (Restricted Largest Processing Time Last) rule: Al-
ways select the remaining eligible job with largest processing time and assign it to the currently last
position.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7337–7348.

7341

Max-heap is used in Step 1 of Algorithm AUX1. Similarly, Min-heap is used in Algorithm AUX3
(see Section 4). Recall that a heap data structure is an array object which can be viewed as a nearly
complete binary tree [20]. Max-heap (Min-heap) with τ values has the following properties: 1) the
maximum (minimum) of all values stored in the heap can be retrieved in constant time; 2) inserting
a value into the heap takes O(log τ) time; 3) deleting the maximum (minimum) value from the heap
takes O(log τ) time.

Step 1 can be implemented in O(n) time. Step 2 can be implemented in O(n log n) time in each
iteration. Steps 3 and 5 require O(n) time in each iteration.

In Step 4, each job deletion or insertion requires O(log n) time. Since there are n jobs and each
job goes through at most n − 1 sets (from Jn to J1), the total number of job deletion and insertion is
O(

∑
i

∣∣∣Jm
i

∣∣∣) = O(n2), and the total number of iterations is O(n2). Checking the inequalities for all jobs
in one iteration requires O(n) time. Hence, the complexity contribution of Step 4 for all iterations is
O(n3).

The overall running time of Algorithm AUX1 is O(n3 log n), which is determined by Step 2 for all
iterations.

Lemma 2.2. Let σm = (Jσm(1), Jσm(2), · · · , Jσm(n)) be the schedule obtained at iteration m (m = 0, 1, . . .)
of Algorithm AUX1 subject to Fm. Let σ = (Jσ(1), Jσ(2), · · · , Jσ(n)) be any feasible schedule subject to
Fm. Then the following properties hold:
1) S σm(i) ≤ S σ(i), i = 1, 2, . . . , n;
2) Cσm(i) ≤ Cσ(i), i = 1, 2, . . . , n.

Proof. It suffices to show a transformation of σ into σm. The transformation may decrease the job start
times at some positions, but will not increase the job start or completion time at any position.

Let us compare σm and σ backwardly (right-to-left) looking for a difference between the jobs.
Suppose that the first difference occurs at the k-th position, which is occupied by jobs Ji and J j in σm

and σ, respectively. By the RLPTL rule, we know that pi ≥ p j. Moreover, both Ji and J j come from⋃n
h=kJ

m
h \{Jσm(n), Jσm(n−1), . . . , Jσm(k+1)}. We can safely interchange Ji and J j in σ, obeying Fm, without

increasing the job start or completion time at any position.
Repetition of this argument shows that σ can be safely transformed into σm. It follows that proper-

ties (1) and (2) of the lemma hold.

Lemma 2.3 below is due to [15]. This lemma is crucial in the analysis of the presented algorithms.
We include its proof here for completeness.

Lemma 2.3. For m = 1, 2, . . ., Algorithm AUX1 ensures that Π (J , Fm, y) = Π
(
J , Fm−1, y

)
.

Proof. Obviously, we have Π (J , Fm, y) ⊆ Π
(
J , Fm−1, y

)
. Thus, it is sufficient to prove that

Π
(
J , Fm−1, y

)
⊆ Π (J , Fm, y).

Let σ ∈ Π
(
J , Fm−1, y

)
. Let Jm−1

i ∈ Fm−1 and Jm
i ∈ Fm with J j ∈

⋃n
h=i+1J

m−1
h but J j ∈ J

m
i . Then

we have: f j(Cσm−1(i+1)) ≥ y. By Lemma 2.2, we have: f j(Cσ(i+1)) ≥ f j(Cσm−1(i+1)) ≥ y, which means
that in σ job J j cannot be assigned to a position whose ordinal number is larger than i. Hence we get
σ ∈ Π (J , Fm, y).

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7337–7348.

7342

Combining Lemmas 2.2 and 2.3, we get the following theorem, which shows that Algorithm AUX1
solves the Auxiliary Problem.

Theorem 2.4. Let σlast be the schedule obtained at the last iteration of Algorithm AUX1. If σlast = ∅,
then Π (J , F, y) = ∅; Otherwise σlast is a schedule which has minimum total completion time among
all schedules in Π (J , F, y).

Next, we improve AUX1 to ensure that each iteration can be accomplished in O(n) time. Thus, the
overall running time is O(n3). The idea is motivated from [21].

Algorithm IMPROAUX1:

Step 1. Initially, set m = 0. Let Fm = {Jm
1 ,J

m
2 , . . . ,J

m
n }, where Jm

i = Ji, i = 1, 2, . . . , n.

Step 2. Construct schedule σm: For i = n, n − 1, . . . , 1, assign the i-th position to the job with largest
processing time in

⋃n
h=iJ

m
h \{Jσm(n), Jσm(n−1), . . . , Jσm(i+1)} (ties broken in favor of the job with

smallest cost when completed at time Cσm(i) =
∑

j p j −
∑l=n

l=i+1 pσm(l)).

Step 3. Set the start times of the jobs in σm: Let S σm(1) = 0, S σm(i) = S σm(i−1) + pσm(i−1), i = 2, . . . , n.

Step 4. Adjust Fm and σm: For i = n, n − 1, . . . , 1, check the inequality fσm(i)(Cσm(i)) < y. If all
inequalities hold, then return σm and the algorithm terminates. Otherwise, pick a job Jσm(i) such
that fσm(i)(Cσm(i)) ≥ y. Delete Jσm(i) from its original set in Fm and insert it in Jm

i−1. Then, adjust
σm as follows. Let E(i) = {l|1 ≤ l ≤ i − 1 ∧ fσm(l)(Cσm(i)) < y}. If E(i) = ∅, then return
∅. Otherwise, find the job with largest processing time in E(i), say Jσm(e) (ties broken in favor
of the job with smallest cost when completed at time Cσm(i)). Let Jσm(e) be scheduled at the
i-th position instead of Jσm(i). Move backward over consecutive positions, starting from i − 1
and ending by e, to find suitable positions for jobs Jσm(i), Jσm(i−1), . . . , Jσm(e+1). Let c denote the
current position. Let Jx denote the current job, initially Jσm(i). When c > e, if pσm(c) > px, or
pσm(c) = px and fσm(c)(Cσm(c)) ≤ fx(Cσm(c)), then Jσm(c) and Jx keep unchanged and we continue
with position c − 1 and job Jx. Otherwise, let Jx be scheduled at the c-position, and continue
with position c−1 and job Jσm(c) (i.e., update the current job Jx to be Jσm(c)). When c = e, simply
let Jx be scheduled at the c-position. Finally, let Fm+1 = Fm, σm+1 = σm (Fm and σm have been
adjusted already) and then set m = m + 1. Go to Step 3.

In Steps 2 and 4 of Algorithm IMPROAUX1, the jobs are chosen by the RLPTL-SC (RLPTL-
Smallest Cost) rule: Always select the remaining eligible job with largest processing time, ties broken
in favor of the job with smallest cost.

In IMPROAUX1, Step 2 is executed only once (for constructing σ0 in O(n2) time). For m > 0, σm

is obtained by adjusting σm−1. It is easy to check that IMPROAUX1 obeys the RLPTL rule and the
schedule obtained at its last iteration is the same as that obtained in AUX1. Step 4 of IMPROAUX1
requires O(n) time in one iteration for adjusting an inequality violation. Since the number of inequality
violations is O(n2), the overall running time of Algorithm IMPROAUX1 is O(n3).

There are two main differences between Algorithms AUX1 and IMPROAUX1: (1) In AUX1, in
each iteration, we obtain a CSF and then use it to construct a schedule, i.e., adjusting a CSF and
constructing a schedule are done separately. It takes O(n log n) time to construct a schedule (in Step
2). Since there are O(n2) iterations, AUX1 is implemented in O(n3 log n) time. In IMPROAUX1, we
obtain a schedule by adjusting the current CSF and the current schedule in Step 4. Adjusting the CSF

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7337–7348.

7343

is easy. We just move an inequality-violated job from its current set in the CSF into the preceding set.
Adjusting the current schedule can be done in O(n) time. Therefore, IMPROAUX1 is implemented in
O(n3) time. (2) If IMPROAUX1 returns a feasible schedule, then this schedule must be Pareto optimal
(by Lemma 2.5). However, if AUX1 returns a feasible schedule, we cannot ensure this schedule is
Pareto optimal. To ensure it is Pareto optimal, we have to take the job costs into account in Step 2
of AUX1. However, Step 2 of AUX1 will be implemented in O(n2) time, leading to an overall time
complexity of O(n4).

Note that Lemmas 2.2 and 2.3 and Theorem 2.4 still hold for Algorithm IMPROAUX1.

Lemma 2.5. If Algorithm IMPROAUX1 generates a schedule σ at the last iteration, then σ is a Pareto
optimal schedule for 1||(

∑n
j=1 C j, fmax).

Proof. The proof first appeared in [11]. We include it here for completeness.
By Lemma 1.1, it suffices to show that σ is optimal simultaneously for 1| fmax ≤ fmax(σ)|

∑n
j=1 C j

and 1|
∑n

j=1 C j ≤
∑n

j=1 C j(σ)| fmax.
Since fmax(σ) < y, by Theorem 2.4, it is evident that σ solves 1| fmax ≤ fmax(σ)|

∑n
j=1 C j optimally.

Assume that π is optimal for 1|
∑n

j=1 C j ≤
∑n

j=1 C j(σ)| fmax, not σ. It follows that
∑n

j=1 C j(π) ≤∑n
j=1 C j(σ), fmax(π) < fmax(σ) and thus π is also feasible for 1| fmax ≤ fmax(σ)|

∑n
j=1 C j. Therefore, we

get
∑n

j=1 C j(π) ≥
∑n

j=1 C j(σ). Actually, we get
∑n

j=1 C j(π) =
∑n

j=1 C j(σ).
Let us compare σ and π backwardly looking for a difference between the jobs. Suppose that the

first difference occurs at the k-th position, which is occupied by jobs Ji and J j in σ and π, respectively.
By the RLPTL-SC rule, we know that pi ≥ p j.

If pi > p j, then we interchange Ji and J j in π to get π′. Note that π′ is feasible for 1| fmax ≤

fmax(σ)|
∑n

j=1 C j and
∑n

j=1 C j(π′) <
∑n

j=1 C j(π) =
∑n

j=1 C j(σ), contradicting the fact that σ is optimal
for 1| fmax ≤ fmax(σ)|

∑n
j=1 C j.

Hence it must be true that pi = p j. Moreover, by the RLPTL-SC rule, fi(Ci(σ)) ≤ f j(C j(π)). Thus,
we can safely interchange Ji and J j in π without affecting the cost of the schedule. Repetition of
this argument shows that π can be safely transformed into σ, contradicting the assumption that σ is
not optimal for 1|

∑n
j=1 C j ≤

∑n
j=1 C j(σ)| fmax. Therefore, σ also solves 1|

∑n
j=1 C j ≤

∑n
j=1 C j(σ)| fmax

optimally.
Hence, σ is a Pareto optimal schedule for 1||(

∑n
j=1 C j, fmax).

Now, we are ready to describe the algorithm for constructing the Pareto set Ω(J) for
1||(

∑n
j=1 C j, fmax) which consists of all Pareto optimal points together with the corresponding sched-

ules.
Algorithm MAIN1:

Step 1. Initially, set s = 0, ys = +∞ and σs = ∅. Let F s = {J s
1 ,J

s
2 , . . . ,J

s
n}, where J s

n = J and
J s

i = ∅ for i = 1, 2, . . . , n − 1. Let Ω(J) = ∅.

Step 2. Run Algorithm IMPROAUX1 to get a schedule σs+1 with minimum total completion time
among all schedules in Π (J , F s, ys). (Step 2 of IMPROAUX1 will be executed only once, just
for σ1. The reason is that for s > 0 σs+1 is obtained by adjusting a series of schedules, starting
with σs.) Let upon the completion of Algorithm IMPROAUX1 F s+1 = {J s+1

1 ,J s+1
2 , . . . ,J s+1

n }

be obtained.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7337–7348.

7344

Step 3. If σs+1 , ∅, then include (
∑n

j=1 C j(σs+1), fmax(σs+1), σs+1) into Ω(J). Set ys+1 = fmax(σs+1).
Set s = s + 1. Go to the next iteration (Step 2).

Step 4. If σs+1 = ∅, then return Ω(J).

Lemma 2.6. For s = 0, 1, . . ., Algorithm MAIN1 ensures that Π (J , F s, ys) = Π
(
J , F0, ys

)
, where

F0 = {∅,∅, . . . ,J} and y0 = +∞.

Proof. At the first iteration of Algorithm MAIN1, σ1 and F1 were obtained. By Lemma 2.3, we have:
Π

(
J , F1, y0

)
= Π

(
J , F0, y0

)
. Since y1 = fmax(σ1) < y0, we have: Π

(
J , F1, y1

)
= Π

(
J , F0, y1

)
. By

Lemma 2.3, we get: Π
(
J , F2, y1

)
= Π

(
J , F1, y1

)
= Π

(
J , F0, y1

)
. Hence we get: Π

(
J , F2, y2

)
=

Π
(
J , F0, y2

)
. Repeating the argument for all iterations we obtain Π (J , F s, ys) = Π

(
J , F0, ys

)
, s =

0, 1,

We get the following theorem.

Theorem 2.7. Algorithm MAIN1 solves 1||(
∑n

j=1 C j, fmax) in O(n3) time.

3. An O(n3)-time algorithm for 1|r j, p j = p|(
∑n

j=1 C j, fmax)

In this section we will present an O(n3)-time algorithm for 1|r j, p j = p|(
∑n

j=1 C j, fmax).
Without causing confusion, in this section we re-use some notations and terminologies defined in

the preceding section, such as σ = (Jσ(1), Jσ(2), · · · , Jσ(n)), CSF F = {J1,J2, . . . ,Jn}, Π (J , F, y),
F0 = {∅,∅, . . . ,J}, to name a few.

Since
∑n

j=1 C j and fmax are both regular, we have:

Lemma 3.1. In a feasible schedule σ = (Jσ(1), Jσ(2), · · · , Jσ(n)), S σ(1) = rσ(1), S σ(i) = max{rσ(i), S σ(i−1) +

p}, i = 2, . . . , n.

Auxiliary Problem: Find a schedule σ in Π (J , F, y) with minimum total completion time, i.e.,
σ ∈ Π (J , F, y) which solves 1|r j, p j = p, fmax < y|

∑n
j=1 C j (with F).

The auxiliary problem can be solved in O(n3 log n) time by Algorithm AUX2.
Algorithm AUX2:

Modify Algorithm AUX1 by the RLRDL (Restricted Largest Release Date Last) rule: Replace
“processing time” by “release date” in Steps 1 and 2 of AUX1, and in Step 3 set the start times of the
jobs in σm by Lemma 3.1.

Below, we give an O(n3)-time algorithm for the auxiliary problem, which will lead to an O(n3)-time
algorithm for 1|r j, p j = p|(

∑n
j=1 C j, fmax). (Thus, we do not actually need Algorithm AUX2. We include

it only for making this section a clear correspondence to the preceding section. Similarly for Algorithm
AUX3 in the next section.)

Algorithm IMPROAUX2:

Step 1. Initially, set m = 0. Let Fm = {Jm
1 ,J

m
2 , . . . ,J

m
n }, where Jm

i = Ji, i = 1, 2, . . . , n.

Step 2. Construct schedule σm: For i = n, n − 1, . . . , 1, assign the i-th position to the job with largest
release date in

⋃n
h=iJ

m
h \{Jσm(n), Jσm(n−1), . . . , Jσm(i+1)} (ties broken arbitrarily).

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7337–7348.

7345

Step 3. Set the start times of the jobs in σm: Let S σ(1) = rσ(1), S σ(i) = max{rσ(i), S σ(i−1) + p}, i =

2, . . . , n.

Step 4. Adjust Fm and σm: For i = n, n − 1, . . . , 1, check the inequality fσm(i)(Cσm(i)) < y. If all
inequalities hold, then return σm and the algorithm terminates. Otherwise, pick a job Jσm(i) such
that fσm(i)(Cσm(i)) ≥ y. Delete Jσm(i) from its original set in Fm and insert it in Jm

i−1. Then, adjust
σm as follows. Let E(i) = {l|1 ≤ l ≤ i − 1 ∧ fσm(l)(Cσm(i)) < y}. If E(i) = ∅, then return ∅.
Otherwise, find the job with largest release date in E(i), say Jσm(e). Let Jσm(e) be scheduled at
the i-th position instead of Jσm(i). Move backward over consecutive positions, starting from i−1
and ending by e, to find suitable positions for jobs Jσm(i), Jσm(i−1), . . . , Jσm(e+1). Let c denote the
current position. Let Jx denote the current job, initially Jσm(i). When c > e, if rσm(c) ≥ rx, then
Jσm(c) and Jx keep unchanged and we continue with position c − 1 and job Jx. Otherwise, let Jx

be scheduled at the c-position, and continue with position c − 1 and job Jσm(c) (i.e., update the
current job Jx to be Jσm(c)). When c = e, simply let Jx be scheduled at the c-position. Finally,
let Fm+1 = Fm, σm+1 = σm (Fm and σm have been adjusted already) and then set m = m + 1. Go
to Step 3.

In Steps 2 and 4 of Algorithm IMPROAUX2, the jobs are chosen by the RLRDL rule. Step 2 is
executed only once (for constructing σ0 in O(n log n) time). For m > 0, σm is obtained by adjusting
σm−1. The overall running time of IMPROAUX2 is O(n3). Since we do not combine the Smallest Cost
rule to choose a job in case of ties, Lemma 2.5 does not hold for IMPROAUX2.

Note that Lemmas 2.2 and 2.3 and Theorem 2.4 still hold for Algorithm IMPROAUX2.
Now, we are ready to describe the algorithm for constructing the Pareto set Ω(J) for 1|r j, p j =

p|(
∑n

j=1 C j, fmax), which is subtly different from Algorithm MAIN1.
MAIN2:

Step 1. Initially, set s = 0, ys = +∞ and σs = ∅. Let F s = {J s
1 ,J

s
2 , . . . ,J

s
n}, where J s

n = J and
J s

i = ∅ for i = 1, 2, . . . , n − 1. Let Ω(J) = ∅, k = 0.

Step 2. Run Algorithm IMPROAUX2 to get a schedule σs+1 with minimum total completion time
among all schedules in Π (J , F s, ys). (Step 2 of IMPROAUX2 will be executed only once.) Let
upon the completion of Algorithm IMPROAUX2 F s+1 = {J s+1

1 ,J s+1
2 , . . . ,J s+1

n } be obtained.

Step 3. If σs+1 , ∅, then:
(i) Set ys+1 = fmax(σs+1).
(ii) If

∑n
j=1 C j(σs) <

∑n
j=1 C j(σs+1) and s > 0, then set k = k + 1 and πk = σs. Include

(
∑n

j=1 C j(πk), fmax(πk), πk) into Ω(J).
(iii) Set s = s + 1. Go to the next iteration (Step 2).

Step 4. If σs+1 = ∅, then set k = k + 1 and πk = σs. Include (
∑n

j=1 C j(πk), fmax(πk), πk) into Ω(J) and
return Ω(J).

Algorithms MAIN1 and MAIN2 invoke IMPROAUX1 and IMPROAUX2 respectively. By Lemma
2.5, each feasible schedule returned by IMPROAUX1 is a Pareto optimal schedule. Therefore, there
are exactly |Ω(J)|+1 iterations in Algorithm MAIN1, where |Ω(J)| is the cardinality of the Pareto set.
Algorithm MAIN1 finds only Pareto optimal schedules. On the other hand, since Lemma 2.5 does not

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7337–7348.

7346

hold for IMPROAUX2, Algorithm MAIN2 may perform more iterations than |Ω(J)|+ 1. (The number
of iterations in Algorithm MAIN2 is still bounded by n2.) The algorithm can find schedules which are
not Pareto optimal, but it never misses pareto optimal schedules.

Lemma 2.6 still holds for Algorithm MAIN2. We get the following theorem.

Theorem 3.2. Algorithm MAIN2 solves 1|r j, p j = p|(
∑n

j=1 C j, fmax) in O(n3) time.

4. An O(n3)-time algorithm for 1|p j = p|(
∑n

j=1 w jC j, fmax)

We now modify the algorithm developed in Section 2 to solve 1|p j = p|(
∑n

j=1 w jC j, fmax).
Auxiliary Problem: Find a schedule σ in Π (J , F, y) with minimum total weighted completion

time, i.e., σ ∈ Π (J , F, y) which solves 1|p j = p, fmax < y|(
∑n

j=1 w jC j, fmax) (with F).
The auxiliary problem can be solved in O(n3 log n) time by Algorithm AUX3, or in O(n3) time by

Algorithm IMPROAUX3.
Algorithm AUX3:

Modify Algorithm AUX1 as follows: Replace the RLPTL rule by the RSWL (Restricted Smallest
Weight Last) rule. That is, replace “Max-heap” by “Min-heap” in Step 1, and replace “processing
time” by “weight” in Steps 1 and 2.

Algorithm IMPROAUX3:

Modify Algorithm IMPROAUX1 by the RSWL-SC (RSWL-Smallest Cost) rule: Replace “process-
ing time” by “weight” in Steps 2 and 4 of IMPROAUX1. Moreover, in Step 4, replace “When c > e,
if pσm(c) > px, or pσm(c) = px and fσm(c)(Cσm(c)) ≤ fx(Cσm(c))” by “When c > e, if wσm(c) < wx, or
wσm(c) = wx and fσm(c)(Cσm(c)) ≤ fx(Cσm(c))”.

Note that Lemmas 2.2, 2.3, 2.5 and Theorem 2.4 still hold for Algorithm IMPROAUX3.
Now,we obtain the algorithm for 1|p j = p|(

∑n
j=1 w jC j, fmax).

MAIN3:

Modify Algorithm MAIN1 as follows. Replace “IMPROAUX1” by “IMPROAUX3” in Step 2.
we get:

Theorem 4.1. Algorithm MAIN3 solves 1|p j = p|(
∑n

j=1 w jC j, fmax) in O(n3) time.

5. Discussion

In this paper we investigated the Pareto optimization scheduling problem on a single machine to
minimize total weighted completion time and maximum cost simultaneously. We improved the earlier
results by presenting O(n3)-time algorithms for three important special cases of the problem. The al-
gorithms provide trade-off solutions (i.e., Pareto optimal schedules) which can balance the two criteria
to reach an acceptable compromise.

The algorithms are useful in situations when the processing times (or release dates, or weights) do
not too much differ from each other, or in situations when the majority of the jobs has equal processing
times (or release dates, or weights). Such a situation occurs also for problems with uncertain processing

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7337–7348.

7347

times (or release dates, or weights), e.g., when we only know that the processing times (or release dates,
or weights) take values from a small interval around a common value.

For future research, it is interesting to extend this work to other criteria such as two min-sum criteria,
or a combination of a min-sum and a maximum cost. Furthermore, the parallel machines or batch
scheduling Pareto optimization problems are also meaningful.

Acknowledgments

We thank the editor and reviewers for their helpful suggestions. This work is supported by Natural
Science Foundation of Shandong Province China (No. ZR2020MA030).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. H. Hoogeveen, Multicriteria scheduling, Eur. J. Oper. Res., 167 (2005), 592–623.
https://doi.org/10.1016/j.ejor.2004.07.011

2. D. Jones, S. Firouzy, A. Labib, A. V. Argyriou, Multiple criteria model for allocating
new medical robotic devices to treatment centres, Eur. J. Oper. Res., 297 (2022), 652–664.
https://doi.org/10.1016/j.ejor.2021.06.003

3. F. F. Ostermeier, On the trade-offs between scheduling objectives for un-
paced mixed-model assembly lines, Int. J. Prod. Res., 60 (2022), 866–893.
https://doi.org/10.1080/00207543.2020.1845914

4. P. M. Kumar, G. C. Babu, A. Selvaraj, M. Raza, A. K. Luhach, V. G. Daaz, Multi-criteria-based
approach for job scheduling in industry 4.0 in smart cities using fuzzy logic, Soft Comput., 25
(2021), 12059–12074.

5. V. T’Kindt, J. C. Billaut, Multicriteria scheduling: theory, models and algorithms, second edition,
Springer Verlag, Berlin, 2006.

6. P. Brucker, Scheduling algorithms, fifth edition, Springer, 2007.

7. G. Steiner, P. Stephenson, Pareto optima for total weighted completion time and max-
imum lateness on a single machine, Discrete Appl. Math., 155 (2007), 2341–2354.
https://doi.org/10.1016/j.dam.2007.06.012

8. J. K. Lenstra, A. R. Kan, P. Brucker, Complexity of machine scheduling problems, Ann. Discrete
Math., 1 (1977), 343–362. https://doi.org/10.1016/S0167-5060(08)70743-X

9. L. N. V. Wassenhove, F. Gelders, Solving a bicriterion scheduling problem, Eur. J. Oper. Res., 4
(1980), 42–48. https://doi.org/10.1016/0377-2217(80)90038-7

10. T. C. John, Tradeoff solutions in single machine production scheduling for minimizing flow time
and maximum penalty, Comput. Oper. Res., 16 (1989), 471–479. https://doi.org/10.1016/0305-
0548(89)90034-8

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7337–7348.

http://dx.doi.org/https://doi.org/10.1016/j.ejor.2004.07.011
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2021.06.003
http://dx.doi.org/https://doi.org/10.1080/00207543.2020.1845914
http://dx.doi.org/https://doi.org/10.1016/j.dam.2007.06.012
http://dx.doi.org/https://doi.org/10.1016/S0167-5060(08)70743-X
http://dx.doi.org/https://doi.org/10.1016/0377-2217(80)90038-7
http://dx.doi.org/https://doi.org/10.1016/0305-0548(89)90034-8
http://dx.doi.org/https://doi.org/10.1016/0305-0548(89)90034-8

7348

11. J. A. Hoogeveen, S. L. V. D. Velde, Minimizing total completion time and maximum
cost simultaneously is solvable in polynomial time, Oper. Res. Lett., 17 (1995), 205–208.
https://doi.org/10.1016/0167-6377(95)00023-D

12. Y. Gao, J. J. Yuan, A note on Pareto minimizing total completion time and maximum cost, Oper.
Res. Lett., 43 (2015), 80–82. https://doi.org/10.1080/01576895.2014.1000811

13. Y. Gao, J. J. Yuan, Pareto minimizing total completion time and maximum cost with positional
due indices, J. Oper. Res. Soc. China, 3 (2015), 381–387. https://doi.org/10.1007/s40305-015-
0083-1

14. C. He, H. Lin, X. M. Wang, Single machine bicriteria scheduling with equal-length jobs to
minimize total weighted completion time and maximum cost, 4OR-Q. J. Oper. Res., 12 (2014),
87–93.

15. A. A. Lazarev, D. I. Arkhipov, F. Werner, Scheduling jobs with equal processing times on a
single machine: minimizing maximum lateness and makespan, Optim. Lett., 11 (2016), 165–
177. https://doi.org/10.1007/s11590-016-1003-y

16. J. A. Hoogeveen, Single-machine scheduling to minimize a function of two or three maximum
cost criteria, J. Algorithms, 21 (1996), 415–433. https://doi.org/10.1006/jagm.1996.0051

17. S. A. Kravchenko, F. Werner, Parallel machine problems with equal processing times: A survey,
J. Scheduling, 14 (2011), 435–444. https://doi.org/10.1007/s10951-011-0231-3

18. H. Emmons, A note on a scheduling problem with dual criteria, Nav. Res. Log., 22 (1975),
615–616. https://doi.org/10.1002/nav.3800220317

19. W. E. Smith, Various optimizers for single-stage production, Nav. Res. Log., 3 (1956), 59–66.
https://doi.org/10.1002/nav.3800030106

20. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms, third edition,
MIT press, 2009.

21. F. Koehler, S. Khuller, Optimal batch schedules for parallel machines, in Proceedings of the 13th
International Conference on Algorithms and Data Structures, Springer-VerlagBerlin, Heidelberg,
2013.

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7337–7348.

http://dx.doi.org/https://doi.org/10.1016/0167-6377(95)00023-D
http://dx.doi.org/https://doi.org/10.1080/01576895.2014.1000811
http://dx.doi.org/https://doi.org/10.1007/s40305-015-0083-1
http://dx.doi.org/https://doi.org/10.1007/s40305-015-0083-1
http://dx.doi.org/https://doi.org/10.1007/s11590-016-1003-y
http://dx.doi.org/https://doi.org/10.1006/jagm.1996.0051
http://dx.doi.org/https://doi.org/10.1007/s10951-011-0231-3
http://dx.doi.org/https://doi.org/10.1002/nav.3800220317
http://dx.doi.org/https://doi.org/10.1002/nav.3800030106
http://creativecommons.org/licenses/by/4.0

	Introduction
	An O(n3)-time algorithm for 1||(j=1nCj,fmax)
	An O(n3)-time algorithm for 1|rj,pj=p|(j=1nCj,fmax)
	An O(n3)-time algorithm for 1|pj=p|(j=1nwjCj,fmax)
	Discussion

