
MBE, 19(7): 7284–7313.

DOI: 10.3934/mbe.2022344

Received: 31 March 2022

Revised: 30 April 2022

Accepted: 09 May 2022

Published: 18 May 2022

http://www.aimspress.com/journal/MBE

Research article

Parameter optimization of shared electric vehicle dispatching model

using discrete Harris hawks optimization

Yuheng Wang1, Yongquan Zhou1,2* and Qifang Luo1,2

1 College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China
2 Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China

* Correspondence: Email: yongquanzhou@126.com; Tel: +8613607882594; Fax: +867713265523.

Abstract: The vehicle routing problem (VRP) problem is a classic NP-hard problem. Usually, the

traditional optimization method cannot effectively solve the VRP problem. Metaheuristic optimization

algorithms have been successfully applied to solve many complex engineering optimization problems.

This paper proposes a discrete Harris Hawks optimization (DHHO) algorithm to solve the shared

electric vehicle scheduling (SEVS) problem considering the charging schedule. The SEVS model is a

variant of the VPR problem, and the influence of the transfer function on the model is analyzed. The

experimental test data are based on three randomly generated examples of different scales. The

experimental results verify the effectiveness of the proposed DHHO algorithm. Furthermore, the

statistical analysis results show that other transfer functions have apparent differences in the robustness

and solution accuracy of the algorithm.

Keywords: discrete Harris hawks optimization; shared electric vehicle dispatching scheduling;

transfer function; metaheuristic optimization

1. Introduction

With the advocacy of green travel, the development concept of low-carbon life, shared electric

vehicles have recently become our answer to increasing environmental pollution and the energy crisis.

The shared electric vehicle dispatching scheduling (SEVS) problem is a car rental model where

customers can rent a car for a relatively short time, usually an operator whose owner is responsible for

maintaining it [1]. Compared with traditional travel methods such as private cars, shared electric

7285

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

vehicles can effectively improve vehicle utilization, reduce urban traffic congestion, reduce user travel

costs, and effectively reduce urban carbon emissions. According to the different ways of providing car-

sharing services, it can be divided into three models based on two-way stations, one-way stations, and

free-floating [2]. Specifically, in the two-way mode, the user needs to go to a site designated by the

service provider to find an available car, the parking site is a parking lot defined by the service provider

or the local administration, and the user’s journey must start and end at the same site [3]. Therefore,

this operating model does not consider intermediate parking, which is a parking spot that customers

may plan based on their individual needs. The collection of parking lots is predefined. The one-way

mode is like the two-way mode, but in the one-way case, the stop at the end of the journey may be

different from the stop at the start of the journey [3]. The collection of parking sites is predefined. The

free-floating model is the last model to enter the market, where vehicles are free to park in public

spaces within the operating area (i.e., the area served by the car-sharing company), and users can start

and end services anywhere in the area [4]. This article mainly focuses on the one-way site pattern.

While shared EVs bring benefits to users, they also present many challenges for vehicle managers, two

of the most important being the need for charging infrastructure and the need to redistribute vehicles.

The metaheuristic optimization algorithm is a technology combining random and local search

method, according to the principle of the internal mechanism of the algorithm, the population-based

metaheuristic algorithm can be divided into three categories. The first type is the evolutionary

algorithm, which is subject to the natural selection of the biological world and the law of survival of

the fittest, using crossover, mutation, and selection operators to operate. The more famous ones are

Genetic Algorithm (GA), Differential Evolution Algorithm (DE), Evolutionary Strategy (ES),

Evolutionary Programming (EP), Cultural Algorithm (CA) [5–9], etc. The second category is

algorithms inspired by physicochemical phenomena, including simulating physics, chemical laws,

mathematical formulas, etc. The well-known algorithms are the Big Bang-Big Shrinking Algorithm

(BBBC), Gravity Search Algorithm (GSA), Command System Search (CSS), Magnetic Field

Optimization Algorithm (MOA), Center Force Optimization (CFO), Artificial Chemical Reaction

Optimization Algorithm (ACROA) [10–15], Black Hole Algorithm (BH), Small World Optimization

Algorithm (SWOA), Galaxy Search Algorithm (GBSA), Space Gravity Optimization (SGO), Henry Gas

Solubility Optimization, Arithmetic Optimization Algorithm (AOA), Runge Kutta method (RUN) [16–22]

etc. The third category is optimization algorithms inspired by the behavior of animals in nature. Such as

Particle Swarm Optimization Algorithm (PSO), Artificial Bee Colony Algorithm (ABC), Ant Colony

Optimization Algorithm (ACO), Firefly Optimization Algorithm (FA), Bat Algorithm (BA), Cuckoo

Search Algorithm (CS) [23–28], Artificial Algae Algorithm (AAA), Tree Species Algorithm (TSA), Grey

Wolf Optimization Algorithm (GWO), Social Spider Algorithm (SSA), Moth Flame Algorithm (MFA),

Whale Optimization Algorithm (WOA), Dolphin Echo Localization Algorithm (DEA) [29–35], Cat

Swarm Optimizer (CSO), Lion Swarm Optimization Algorithm (LOA), Fruit Fly Optimization Algorithm

(FOA), Chimpanzee Optimization Algorithm (CHOA), Chameleon Optimization Algorithm (CSA), Slime

Mould Algorithm (SMA), Hunger Games Search (HGS), Colony Predation Algorithm (CPA) [36–43], and

so on. The metaheuristic algorithm can better solve the complex optimization problems that cannot be

solved by traditional optimization algorithms and cannot be effectively solved and have better performance

than traditional methods in many practical application problems.

The Vehicle Routing Problem (VRP) was proposed by (Dantzig & Ramser, 1959) and is one of

the most attractive topics in operations research, communications, manufacturing, transportation,

distribution, and logistics [44]. VRP is an np-hard problem, and its real-life applications are on a much

7286

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

larger scale, so metaheuristics are often better suited for real-world applications. Many scholars have

applied meta-heuristic algorithms to the VRP problem. Du et al. proposed to use SA to solve the vehicle

routing problem in multiple depots for dangerous goods transportation [45]; García-Nájera et al. used

GA to study the multi-objective vehicle routing problem with backhaul [46]; Cao et al. open vehicle

routing problem based on DE research demand uncertainty [47]; Jabir et al. proposed the design and

development of a multi-vehicle green vehicle hybrid ant colony variable neighborhood search

algorithm [48]; Okulewicz et al. based on particle swarm optimization to solve the dynamic vehicle

routing problem of specific components [49]; Iqbal et al. employed an artificial bee colony algorithm

with a soft time window to solve the routing problem of multi-objective aircraft [50]; Teymourian

presented improved Intelligent water droplets and cuckoo search algorithms solve the capable vehicle

routing problem [51] et al.

The Harris Hawks optimization algorithm is a new metaheuristic algorithm [52], which has been

applied to some practical problems by many scholars. Fan et al. proposed an improved Harris Hawks

optimization training the neural network based on the learning of neighborhood centroid duality [53];

Zhang et al. employed a deep neural network and Harris hawks optimization algorithm to estimate the

friction angle of clays in evaluating slope stability of a generalized artificial intelligence model [54];

Mouassa et al. based on Harris Hawks optimization algorithm to solve scheduling of smart home

appliances for optimal energy management in smart grid [55]; Kumar et al. used extra tree classifier

and enhanced Harris Hawks optimization algorithm for software component reusability prediction [56];

Naik et al. confirmed that a leader Harris hawks optimization is able to solve 2-D Masi entropy-based

multilevel image thresholding [57]; Mossa et al. used Harris Hawks optimization algorithm and atom

search optimization algorithm to address parameter estimation of PEMFC model [58]; Houssein et al.

hybridized Harris Hawk optimization and support vector machines for drug design and discovery [59];

Setiawan et al. presented the use of Harris Hawks optimization for parameter optimization of support

vector regression [60]; Dehkordi et al. proposes a non-linear chaotic Harris Hawk optimizer to solve

the path planning problem of vehicle networks [61]. However, by reading the review [62], it is found

that HHO has little research on VRP. This paper studies the performance of HHO in VRP variant shared

electric vehicle scheduling problem considering the charging schedule (SEVS) [63]. As the SEVS

model is discrete, discrete methods can impact the performance of the algorithm on the model, so this

paper also analyses the impact of eight transfer functions on the performance of the model.

The rest of this paper is organized as follows: Section 2 introduces the SEVS mathematical model.

Section 3 presented the DHHO algorithm and applied it to solving the SEVS problem. Section 4 is the

analysis of the experimental results. Finally, Section 5 concludes future work.

2. Preliminaries

2.1. Mathematical model of SEVS

2.1.1. Problem description

Suppose a company provides shared car service in a certain area and has a dispatching center. The

vehicles providing services are homogeneous pure electric vehicles. During the period of low demand

every day (such as night), the platform sends employees to dispatch vehicles for two purposes. The

first is to rebalance the distribution of vehicles between stations. The second is to transport the vehicles

7287

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

with insufficient power to the station with a charging pile to charge the vehicles for continued service

the next day. The way of transportation is that employees start from the dispatching center, ride folding

bicycles to the station where vehicles need to be transferred out, drive a vehicle to a station where

vehicles need to be transferred out (folding bicycles are carried with the vehicle), and then ride bicycles

to the next station where vehicles need to be transferred out. In this way, we can complete the

transportation task assigned to the employee. The parameters and symbols used in the problem are

explained in Table 1.

Table 1. Parameter name and meaning explanation.

Symbol Interpretation Symbol Interpretation

� number of employees ���
The distance from the � station to the �

station

� Collection of vehicles ��

The difference between the actual number

of Parked vehicles at station � and the

number of vehicles in the ideal state

��
Collection of fully charged

vehicles
�� Remaining power of vehicle �

��
Collection of vehicles with

insufficient battery
�

The lowest value for a fully charged

vehicle

� Collection of sites �

The vehicle is transferred to a site without

a charging station, the maximum power

remaining

��
Saturated sites with charging

piles
���

Vehicle � parked at station � is 1,

otherwise it is 0

��
Unsaturated sites with charging

piles
��

The speed at which employees are riding

bicycles

��
Saturated sites without charging

piles
� Ride cost per unit distance

��
Unsaturated sites without

charging piles
��

The speed at which the employee drives

the vehicle

{0} Dispatch center � Driving cost per unit distance

�
The cruising range when the

vehicle is fully charged
�

Maximum total working hours per

employee

2.1.2. Feasibility analysis of vehicle dispatching among various types of stations

Considering the different types of stations and vehicles, some stations can only transfer specific

vehicles. For example, vehicles transferred to a saturated site � ∈ �� with charging piles can only be

vehicles that are parked at a certain station without charging piles and have insufficient power.

7288

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

Correspondingly, vehicles with sufficient power can be transferred from this type of site to unsaturated

sites and saturated sites without charging piles. Vehicles transferred to an unsaturated site � ∈ �� with

charging piles can only be vehicles parked at a saturated site with sufficient power and vehicles parked

at a site without charging piles with insufficient power, and vehicles should not be transferred from

this type of site. Vehicles transferred to a saturated site � ∈ �� without charging piles can only be

vehicles parked at a saturated site with charging piles and have sufficient power. Correspondingly,

vehicles with sufficient power can be transferred from this type of site to an unsaturated site, and

vehicles with insufficient power can be transferred from this type of site to a site with charging piles.

Vehicles transferred to an unsaturated site � ∈ �� without charging piles can only be vehicles parked

at a saturated site with sufficient power. Correspondingly, vehicles with insufficient power can be

transferred from this type of site to a site with charging piles. The types of vehicles that can be

transferred in and the types of vehicles that can be transferred and the source and destination of each

type of station are shown in Table 2.

Table 2. Transfer in and out vehicle information of various types of sites.

Site type
Feasible transfer into the vehicle Feasible transfer of the vehicle

Type Source site Type Destination site

S1 low battery S3, S4 Fully charged S2, S3, S4

S2 Fully charged S1, S3 - -

 low battery S3, S4

S3 Fully charged S1 Fully charged S2, S4

 low battery S1, S2

S4 Fully charged S1, S3 low battery S1, S2

Note:’-’ means no vehicle can be transfer out.

2.1.3. Model and interpretation

The 0-1 nonlinear programming model is a classic mathematical problem as follow:

���� = �
1, �� ⥂  �������� � ∈ � ����������� ���� ���� � �� ���� �

0, ��ℎ������
 (1)

The nodes include the dispatch center, the collection of vehicles, and the collection of stations.

The shared electric vehicle dispatching problem considering charging schedule can be described as the

following 0-1 nonlinear programming model,











 

       Kk Sj
kjj

Kk Ci
iki

Kk Si Cj
ijkij

Kk Ci Sj
ijkij xdxdxdxd 0000min  (2)

Subject to:

0
2 431 1

00   
             Kk Ci SSj

ijk
Kk Ci Sj

ijk
Kk Ci Sj

ijkij
Kk Sj

jk
Kk Ci

ki
Kk Si Sj

ijk
Kk Ci Cj

ijk xxxsxxxx

(3)

7289

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

 1,
1 4322 43

Sjnxsxs j
Kk Ci SSSh

ihkij
Kk Ci SSh

ijkih    
    

 (4)

 2,
2 431 31

Sjnxsxs j
Kk Ci SSh

ijkih
Kk Ci SSh

ijkih   
    

 (5)

 3,
2 211 421 1

Sjnxsxsxs j
Kk Ci SSh

ihkij
Kk Ci SSh

ihkij
Kk Ci Sh

ijkih    
      

 (6)

 4,
2 211 31

Sjnxsxs j
Kk Ci SSh

ihkij
Kk Ci SSh

ijkih    
    

 (7)

  
   


2 432 Ci SSj

ij
Kk Ci Sj

ijk sx (8)

 Kkx
Ci

ik 


,10 (9)

 

Cix
Kk Sj

jik  
 

,1
0

 (10)

  

Kkxxx
Ci

ik
Ci

ik
SCi SCj

ijk 







  

 

,012 00
0 0

 (11)

 Kkxx
Ci

ik
Sj

kj 


,00 (12)

   

  KkSCixx
SCj

jik
SCj

ijk  


,0,
00

 (13)

KkT
v

xdxdxd
v

xd
BSj

kjj
Ci

iki
Ci Sj

jikji
Ci Sj C

ijkij 









 

  

,
11

0000 (14)

 KkSSjCiLmxd iijkij  ,,, 21 (15)

   KkSSjCiLmxd iijkij  ,,, 431 (16)

        KkiSCjSCixijk  ,\0,0,1,0 (17)

In this model, the objective function (2) aims to minimize the combination of total driving cost

and total riding cost of employees. Constraint (3) removed the infeasible conversion. The seven parts,

in turn, correspond to the conversion between vehicle nodes, the conversion between site nodes, the

conversion from vehicle nodes to the dispatch center, the conversion from the dispatch center to the

site node, and the vehicle nodes to the conversion of the site node where it is located, the conversion

from a fully charged vehicle node to a saturated site node with charging piles, and the conversion from

7290

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

a vehicle station with insufficient power to a node without charging piles. Specifically, constraint (3)

is established, which is equivalent to that all seven parts are zero.

Constraints (4)–(7) realize the net number of vehicles transferred in/out of different types of sites.

Specifically, constraint (4) corresponds to a saturated site with charging piles, constraint (5)

corresponds to an unsaturated site with charging piles, constraint (6) corresponds to a saturated site

without charging piles, and constraint (7) corresponds to a saturated site without charging piles, among

them, �� satisfies the condition ∑ n��∈� = 0 . Constraint (8) Realize that vehicles with insufficient

power parked at sites without charging piles are transferred to sites with charging piles. Constraint (9)

means that each employee can be dispatched at most once. Constraint (10) guarantees that each vehicle

node can be visited at most once. Constraint (11) ensures that only employees starting from the dispatch

center can participate in the dispatch of vehicles, that is, eliminate the sub-loop between the vehicle

node and the site node. Constraint (12) guarantees that if an employee leaves the dispatch center, he

must return to the dispatch center. Constraint (13) ensures that employees have a balance between the

entry and exit of the vehicle node and the site node, that is, if and only when an employee enters a

certain node, he must leave the site. Constraint (14) ensures that the total working hours of each

employee do not exceed T. Constraint (15) realizes the vehicle's cruising range limit, that is, there is

sufficient power to reach the next stop. Constraint (16) realizes the restriction of the remaining power

after the vehicle is hoisted to a site without charging piles, that is, to ensure that the vehicle can work

normally the next day. Constraint (17) defines all decision variables.

2.2. Harris Hawks optimization (HHO)

HHO is a metaheuristic algorithm based on swarm intelligence, proposed by Heidari [52]. The

main inspiration for the algorithm comes from the predation behavior of Harris Hawk. The Harris

Hawk is a famous bird of prey in southern Arizona and other regions of the United States. They forage

through the coordination of group behaviors. The main strategy for capturing prey is "surprise pounce",

that is, the Harris hawk can hide near the prey many times, in a short time, and quickly, waiting for the

opportunity. Through teamwork, Harris Hawks can confuse their escaped prey and make them unable

to recover their defense capabilities, thereby efficiently capturing tired prey.

2.2.1. Exploration phase

During the exploration phase, Harris Hawks can track and detect prey through their powerful eyes,

but sometimes prey is not easy to spot. Therefore, the Harris Hawk determines the habitat position

based on the random prey position and the vector difference between the prey position and the center

position of the group. The opportunities for both strategies are equal.

X(t + 1) = �
X����(t)-r�|X����(t)-2r�X(t)| q ≥ 0.5

�X������(t)-X�(t)�-r��LB + r�(UB-LB)� q < 0.5
 (18)

where � is the current iteration. �(� + 1) represent the position of the agent in the next iteration.
�������(�) represent the position of the rabbit, �(�) is the current position vector of the agent.
�����(�) represent a randomly determined Harris hawk position. UB and LB represent the upper and

7291

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

lower bounds of the search space. R�, r�, r� and �� are random numbers inside [0, 1]. X�(t) is the
center position of the Harris hawks in the current population, calculated as follows,

X�(t) =
�

�
∑ X�(t)

�
��� (19)

where ��(�) indicates the location of each hawk in iteration � . � indicate the all number of

Harris Hawks.

2.2.2. Transition from exploration to exploitation

With the continuous movement of the prey, the prey will transition from an energetic state to a

tired state. Inspired by this, the Harris Hawk algorithm proposed a prey escape energy mechanism,

enabling the algorithm to transition from exploration to development. The energy mechanism of the

game is modelled as follows,











T

t
EE 12 0

 (20)

where � means the escaping energy of the prey. T indicates the maximum number of iterations. ��

is the initial state of prey escape energy. �� varies randomly between -1 and 1 in each iteration. when

the value of �� decreases from 0 to −1, the energy of the rabbit gradually decreases. When the value

of �� increases from 0 to 1, the energy of the rabbit is increasing. |�| ≥ 1 means that the Harris

hawk is still looking for prey in the area, and |�| < 1 means that the Harris hawk starts to use the

area to attack its prey. The time-dependent trajectory E of is presented in Figure 1.

Figure 1. Behavior of E during three runs and 500 iterations.

7292

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

2.2.3. Exploitation phase

In the development phase, Harris hawk will use a surprise strategy to attack its prey. When the

prey tries to escape, it may succeed or fail. Even so, Harris Hawk will still adopt other strategies to

capture prey. According to the energy of the prey |�| when it escapes and the chance of the prey

avoiding the attack, the Harris Hawk will have four attack strategies at this stage. Specifically,

Soft besiege: When � ≥ 0.5 and |�| ≥ 0.5, the prey still has enough energy and tries to escape
the pursuit of Harris Hawk through some random misleading jumps, but in the end, it cannot. During
these attempts, the Harris Hawk gradually surrounded it, making the rabbit more exhausted, and then
launched a surprise attack. The mathematical description is as follows,

       tXtJXEtXtX rabbit 1 (21)

      tXtXtX rabbit  (22)

where ΔX(t) is the difference between the rabbit’s position vector and the current position of the Harris
Hawk in iteration t. J = 2(1-r�) show the strength of the prey random jump, and �� is a random
number within (0, 1). The � value changes randomly during each iteration, which can simulate the
nature of rabbit movement.

Hard besiege: When r ≥ 0.5 and |E| < 0.5, it shows that the prey is tired and the energy to
escape is very low. Therefore, Harris Hawk finally executed the act of surprise pounce. The current
positions are updated using Eq (23):

     tXEtXtX rabbit 1 (23)

Soft besiege with progressive rapid dives: When r < 0.5 and |E| ≥ 0.5, the rabbit has enough

energy to escape, so the Harris Hawk needs a soft encirclement strategy before the raid. This process

is more complicated and smarter than before. To mathematically simulate the escaping patterns of the

prey, the concept of Levi flight (LF) was referenced in the HHO algorithm [64]. The mathematical

formula for this stage is modeled as follows,

     tXtJXEtXY rabbitrabbit  (24)

  DLFSYZ  (25)

  
 





 








1

2

11

2
2

1

2
sin1

,01.0




























 























 

v

xLF (26)

  
    
    









tXFZFifZ

tXFYFifY
tX 1 (27)

7293

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

where � is the dimension of problem and � is a random vector by size 1 × D. �� is the levy flight

function, which is calculated using Eq (26) [65].

Hard besiege with progressive rapid dives: When r < 0.5 and |�| < 0.5, the rabbit has not had
enough energy to escape due to long-term movement. The Harris hawk rounds up based on the position
of the prey and the center of the group to reduce the distance between the group and the prey. If the
raid fails (the fitness is not improved), perform a random walk, if the walk fails, return to the original
place. The formula is defined as follows,

 
    
    









tXFZFifZ

tXFYFifY
tX 1 (28)

      tXtJXEtXY mrabbitrabbit  (29)

  DLFSYZ  (30)

3. Our proposed algorithm

This section proposes our algorithm to solve the shared electric vehicle scheduling model

considering the charging schedule. We will introduce it in three parts. The first part is to encode the

problem to facilitate the model solution. On the other hand, there is also a corresponding decoding

method to explain the optimal solution. The second part describes the algorithm, including the transfer

function used and the specific algorithm steps. The third part is an explanation of how to deal with

model constraints.

3.1. Encoding and decoding

Coding is the first step to solving the problem, which is very important. It is known that there are
five employees. Each employee needs to ride a bicycle from the dispatch center to the station where
the car needs to be transferred first, then drive the car to the transfer station that meets the constraints,
and then ride a bicycle from the station to the next need call out the station of the vehicle, and so on,
until the deployment task assigned to the employee is completed, and then return to the dispatch center
by bicycle. Specifically, suppose we have 1 ��, 1 ��, 1 ��, and 1 ��, a total of four sites. Therefore,
we define the code to include two parts: location and path, as shown below,

Location: 1 0 1 0 | 1 0 0 1 | 0 0 0 0 | 1 1 1 1 | 0 1 0 1

Path: 1 3 0 0 | 4 1 0 0 | 0 0 0 0 | 3 1 4 2 | 4 2 0 0

where the location vector indicates whether the employee has been to the station or not. If the employee

has been there, it is represented by 1, otherwise, it is 0. Its size is S × K. The path vector is used to

assist the location vector to record the employee’s visit to the station footprint, its size is as large as

the position vector.

The decoding process is the inverse process of the encoding process. The code given above can

be decoded in this way. First, look at the location code. The first part means that the first employee

starts from the dispatch center and calls out the vehicle from station 1 (saturated station with charging

7294

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

piles), and then drives the vehicle to station 3 (saturated sites without charging piles), completes all

assigned dispatching tasks and return to the dispatch center. The path code reflects the order in which

employees visit the site. The second employee departs from the dispatch to station 4 (unsaturated

station without charging piles) and transfers the vehicle to station 1 (saturated station with charging

piles), completes the dispatched task, and rides back to the dispatched center. The third employee is

not assigned a scheduling task and does not need to work. The fourth employee starts from the dispatch

center to transfer the vehicle to the No. 3 station and then to the No. 4 station to transfer the vehicle to

the No. 2 station, complete the dispatched task and return to the dispatch center. The fifth employee

starts from the dispatch center to call out the vehicle at No. 4 station, then drives the car to No. 2 station

to transfer in the vehicle, completes all the dispatch tasks, and returns to the dispatch center. Since then,

the decoding has been completed.

3.2. DHHO algorithm

The basic HHO is a continuous optimization algorithm, and the coding method of the shared

electric vehicle scheduling model considering charging scheduling is binary coding. Therefore, the

original HHO cannot be directly applied to practical problems, which brings challenges to our research.

Consequently, it is necessary to find an efficient transfer function to convert the continuous

optimization algorithm into binary form. In [66], a binary version of the Harris Eagle optimization

algorithm is proposed, in which the specific description of the transfer function is shown in Table 3.

The transfer function image is shown in Figures 2–9. The pseudo-code definitions of the detailed steps

of the algorithm are shown in Algorithms 1–3. The detailed flow chart of the DHHO approach for

solving the SEVS model is shown in Figure 10.

 Figure 2. Transfer function T1. Figure 3. Transfer function T2.

7295

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

Figure 4. Transfer function T3. Figure 5. Transfer function T4.

 Figure 6. Transfer function T5. Figure 7. Transfer function T6.

Figure 8. Transfer function T7. Figure 9. Transfer function T8.

7296

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

Table 3. Transfer functions.

Name Transfer function Name Transfer function

T1(DHHO1)
binaryVector =

mod(floor(continuous Vector),2);
T5(DHHO5)

if rand < 0.5

binaryVector =

mod(ceil(continuousVector),2);

else

binaryVector =

mod(floor(continuousVector),2)

;

end

T2(DHHO2)

binaryVector =

mod(round(mod(continuousVector,2)),2)

;

T6(DHHO6)

if rand < 0.5

binaryVector =

mod(round(continuousVector),2

);

else

binaryVector =

mod(floor(continuousVector),2)

;

end

T3(DHHO3)
binaryVector =

mod(ceil(continuousVector),2);
T7(DHHO7)     5.01101

1



txe

xMSig

T4(DHHO4)

if rand < 0.5

binaryVector =

mod(ceil(continuousVector),2);

else

binaryVector =

mod(round(continuousVector),2)

end

T8(DHHO8)  
  
  1

1
tanh

12

12










tx

tx

e

e
x

Algorithm 1 Pseudo-code of DHHO algorithm

1. Inputs: �, ����, �,�, �, �

2. Outputs: Location, path vector and Minimum cost

3. Initialize: ��, � = 1,2,3,4, … ,�

4. While (stopping condition is not met) do

5. Binarization using ���(��)

6. Calculate the cost values of hawks with �������(��)

7. Set X���� as the location of best

8. for (each hawk (X�)) do

9. Update the initial energy E� and jump strength �

10. Update the E using Eq (20)

Continued on next page

7297

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

11. if (|E| ≥ 1) then

12. Update the location vector using Eq (18)

13. if (|E| < 1) then

14. if (r ≥ 0.5 and |E| ≥ 0.5) then

15. Update the location vector using Eq (21)

16. else if (r ≥ 0.5 and |E| < 0.5) then

17. Update the location vector using Eq (23)

18. else if (r < 0.5 and |E| ≥ 0.5) then

19. With progressive rapid dives update the location vector using Eq (27)

20. else if (r < 0.5 and|�| < 0.5) then

21. With progressive rapid dives update the location vector using Eq (28)

22. End if

23. End if

24. End for

25. End While

26. Return �����

Algorithm 2 Pseudo-code of TF�(��) algorithm

1. Inputs: ��

2. Outputs: �� after discrete

3. While (length of X�) do

4. Binarization using transfer function

5. End While

6. Return ��

Algorithm 3 Pseudo-code of Fitness(X�) algorithm

1. Inputs: X�, K, S�, S�, S�, S�, L, α, β, γ, δ, v�, v�, T,MM, SS
2. Outputs: X�, X������, COST�

3. If (the number of 1 is an odd number in ��)

4. Select one of them � randomly at ��

5. If (X� equals 1)

6. X� equals 0

7. Else
8. �� equals 1

9. End

10. End

11. For (length of �� as ii) do

12. For (length of �� as jj) do

Continued on next page

7298

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

13. If (X�
�� == 1&X�

��
== 1&ii ≠ jj) then

14. If (ii ≤ S�&jj > S�&jj ≤ S_station) then

15. For (number of car) do

16. If (SS(tt) ≤ S�&MM(tt) ≥ α&~flag(tt)) then

17. If (DIS(ii + 1, jj + 1) ≤ (MM(tt)-β) × L) then

18. Modify the station where the vehicle is located;

19. Modify site redundancy;

20. Mark that the vehicle has been dispatched;

21. Record transfer out and transfer in sites;

22. Calculate cycling distance and driving distance;

23. End if

24. End if

25. End for

26. End if

27. If (ii > S�&ii ≤ (S� + S�))

28. Nothing to do;

29. End if

30. If (ii > (S� + S�)&ii ≤ (S� + S� + S�))

31. If (��jj > S�&jj ≤ (S� + S�)�|�jj > (S� + S� + S�)�&jj ≤ S��������)

32. For (number of car) do

33. If (�SS(tt) > (S� + S�)&SS(tt) ≤ (S� + S� + S�)&MM(tt) ≥ α&~flag(tt)�)

34. If (DIS(ii + 1, jj + 1) ≤ (MM(tt)-β) × L) then

35. Modify the station where the vehicle is located;

36. Modify site redundancy;

37. Mark that the vehicle has been dispatched;

38. Record transfer out and transfer in sites;

39. Calculate cycling distance and driving distance;

40. End if

41. End if

42. End for

43. Else If (jj ≤ S�|�jj > S�&jj ≤ (S� + S�)�) then

44. For (number of car) do

45. If

(SS(tt) > (S� + S�)&SS(tt) ≤ (S� + S� + S�)&MM(tt) < α&~flag(tt)

46. If (DIS(ii + 1, jj + 1) ≤ MM(tt) × L) then

47. Modify the station where the vehicle is located;

48. Modify site redundancy;

49. Mark that the vehicle has been dispatched;

Continued on next page

7299

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

50. Record transfer out and transfer in sites;

51. Calculate cycling distance and driving distance;

52. End if

53. End if

54. End for

55. End if

56. End if

57. If

((ii > (S� + S� + S�)&ii ≤ S_station)& �jj ≤ S�|�jj > S�&jj ≤ (S� + S�)��)

58. For (number of car)

59. If

(SS(tt) > (S� + S� + S�)&SS(tt) ≤ S_station&MM(tt) < α&~flag(tt))

60. If (DIS(ii + 1, jj + 1) ≤ MM(tt) × L) then

61. Modify the station where the vehicle is located;

62. Modify site redundancy;

63. Mark that the vehicle has been dispatched;

64. Record transfer out and transfer in sites;

65. Calculate cycling distance and driving distance;

66. End if

67. End if

68. End for

69. End if

70. End if

71. End for

72. End for

73. Calculate time if timeout penalty;

74. Calculate �����;
75. Return X�,X������, COST�;

7300

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

Figure 10. The flow chart of DHHO.

3.3. Constrain handling

The constraint processing of the model is generally divided into three methods, namely: directly

processing the constraints, that is, adding constraints in the encoding process; checking the constraints

during the calculation process; and processing constraints through the penalty function [66].

According to the characteristics of the model, this paper adopts a mixed constraint processing method.

Constraints (4)–(8) and (14) adopt the penalty function method, constraints (9)–(13) are processed in

the encoding process, and constraints (15) and (16) are checked during the calculation process.

Start

Initialize parameter of model

t T

Initialize the harris hawks population

 Binarization using _ 8()TF X

Calculate the fitness of each search agent

i N

Update E the using Eq. (20)

1E Update E the using Eq. (20)

Update the location vector
using Eq. (21)

Update the location vector
using Eq. (23)

Update the location vector
using Eq. (27)

Update the location vector
using Eq. (28)

0.5 0.5r E ， 0.5 0.5r E ， 0.5 0.5r E ， 0.5 0.5r E ，

(_) ()f new X f X

Replace X with new_X

Output optimal solution

End

N

Y

t = t+1

N

Y

Y

N

Y

N

i = i+1

Y Y Y Y

N N N N

7301

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

3.4. DHHO algorithm complexity analysis

As can be seen from Algorithm 1, the complexity of the DHHO algorithm consists of three parts:
initialization of model and algorithm parameters, fitness calculation, and Harris Hawk population
update. The complexity of the initialization phase mainly depends on the number of Harris Hawk, so
the complexity is  N . From Algorithms 2 and 3, the complexity of fitness calculation and Harris

Hawk population update is Ο(T × N × D × D × C) + Ο(T × N × D × D), where � is the number of
cars, � is the vector dimension of Harris Hawk positions, and T is the maximum number of
iterations. Overall, the computational complexity of DHHO is Ο�N × (T × D × D × (C + 1) + 1)�.

4. Experimental results and discussion

4.1. Parameter setting

The experiments were used Matlab 2019b and were run on an Intel Core i5 machine, with a 1.80
GHz and 8 GB of RAM. In this work, the number of stations of the platform in the area usually belongs
to the interval [4, 12]. Randomly generate 15 groups of examples, with 5 cases in each of the small,
medium, and large groups. The main parameter settings of the experiment are shown in Table 4, and
the specific information of the number of stations of each type and the number of vehicles of each type
in each calculation example is shown in Table 5.

Table 4. Parameter setting.

Parameter Initial value

� 30

���� 500, 3000, 5000

� 150 km

�� 25 km/h

�� 15 km/h

� 1.5 $/km

� 0.5 $/km

� 5 h

� 5

� 0.7

� 0.7

�� [0.5, 1] randomly generated

�� small [-2, 2], medium [-4, 4], large [-8, 8] randomly generated

� [4, 12]

��� [1, 3] km

7302

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

Table 5. Specific information about the number of stations of each type and the number of

vehicles of each type.

Case scale Case
Number of vehicles Number of stations

|C1| |C2| |S1| |S2| |S3| |S4|

small

1 7 3 1 1 1 1

2 8 2 0 1 2 1

3 7 3 1 1 1 1

4 4 6 1 1 1 1

5 6 4 1 2 1 0

medium

6 26 14 2 3 1 2

7 27 13 2 1 1 4

8 28 12 2 1 3 2

9 26 14 3 2 1 2

10 19 21 3 2 1 2

large

11 65 55 4 1 2 5

12 80 40 3 4 3 2

13 71 49 2 3 2 5

14 76 44 3 3 4 2

15 82 38 2 5 3 2

4.2. Performance measures

To evaluate the performance of our proposed algorithm on the model, we use the best value, mean,

and standard deviation to analyze the results.

Best value: It is the best obtained values over several runs, its definitions as follows:

 NFFFB ,...,,minest 21 (31)

where N is the number of algorithm runs, and F� is the best value.

Mean value: It is an average of the best obtained values over several runs, it is calculated as:





N

i
iF

N
AVG

1

1
 (32)

Standard deviation: It is used to indicate the stability of the algorithm to produce the best value

over different runs:

 






N

i
i AVGF

N
STD

1

2

1

1
 (33)

7303

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

4.3. Small scale example experiments

In the experiments, we adopt eight transfer functions mentioned in the literature, the T1, T2, T3,

T4, T5, and T6 transfer functions are proposed by [67,68], and the T7 and T8 transfer functions are

proposed by [69]. We combined the transfer function with HHO and named DHHOT1, DHHOT2,

DHHOT3, DHHOT4, DHHOT5, DHHOT6, DHHOT7, and DHHOT8, respectively. The number of

small-scale data iterations is 500 times, and the experimental results are shown in Table 6. In Table 6,

the small-scale data is set to verify the algorithm’s effectiveness. As the experiment shows, each

calculation example can find the optimal value on the algorithm, and each algorithm has a good

performance on each calculation example, and the variance is 0.

Table 6. Experimental results of small-scale data with 500 iterations and a population size of 30.

Case Standard DHHO1 DHHO2 DHHO3 DHHO4 DHHO5 DHHO6 DHHO7 DHHO8

1

Best 25.22 25.22 25.22 25.22 25.22 25.22 25.22 25.22

Avg 25.22 25.22 25.22 25.22 25.22 25.22 25.22 25.22

Std 0 0 0 0 0 0 0 0

2

Best 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25

Avg 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25

Std 0 0 0 0 0 0 0 0

3

Best 15.38 15.38 15.38 15.38 15.38 15.38 15.38 15.38

Avg 15.38 15.38 15.38 15.38 15.38 15.38 15.38 15.38

Std 0 0 0 0 0 0 0 0

4

Best 12.51 12.51 12.51 12.51 12.51 12.51 12.51 12.51

Avg 12.51 12.51 12.51 12.51 12.51 12.51 12.51 12.51

Std 0 0 0 0 0 0 0 0

5

Best 12.53 12.53 12.53 12.53 12.53 12.53 12.53 12.53

Avg 12.53 12.53 12.53 12.53 12.53 12.53 12.53 12.53

Std 0 0 0 0 0 0 0 0

Note: Bold data is the best performing data.

4.4. Medium scale example experiments

In Table 7, for the medium-sized data set, each algorithm of Examples 8 and 10 calculated the

optimal value. The individual algorithms of Examples 6, 7, and 9 calculated the optimal value.

Algorithms DHHO4, DHHO5, DHHO6, and DHHO8 have calculated the optimal values in Example 6,

and the algorithm DHHO8 has the lowest mean and variance. Algorithms DHHO1, DHHO3, DHOO5,

DHHO6, and DHHO8 have calculated the optimal values in Example 7. The algorithm DHHO8 is also

the lowest in terms of mean and variance. Algorithms DHHO2, DHHO4, DHHO5, DHOO6, DHHO7,

and DHHO8 have calculated the optimal values in Example 9. The algorithm DHHO8 has the lowest

average value, and the variance is slightly higher than DHHO4. Overall, DHHO8 performed more

prominently.

7304

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

Table 7 Experimental results of medium-scale data with 3000 iterations and a population size of 30.

Case Standard DHHO1 DHHO2 DHHO3 DHHO4 DHHO5 DHHO6 DHHO7 DHHO8

6

Best 34.99 35.57 34.99 34.95 34.95 34.95 34.99 34.95

Avg 37.56 38.02 38.99 35.76 35.71 35.80 36.26 35.39

Std 2.20 1.83 2.65 0.75 0.60 1.10 1.12 0.43

7

Best 25.93 26.20 25.93 26.20 25.93 25.93 26.20 25.93

Avg 28.60 27.22 27.88 26.65 26.42 26.41 27.02 26.16

Std 1.95 1.03 1.61 0.61 0.53 0.45 0.88 0.10

8

Best 36.46 36.46 36.46 36.46 36.46 36.46 36.46 36.46

Avg 41.61 41.04 41.58 39.67 39.66 39.19 39.19 39.27

Std 2.93 2.62 3.45 1.55 1.74 1.83 1.75 1.68

9

Best 32.56 32.11 32.56 32.11 32.11 32.11 32.11 32.11

Avg 35.94 34.78 36.30 32.69 32.68 32.82 34.23 32.45

Std 2.26 1.71 3.82 0.31 0.55 0.96 4.36 0.33

10

Best 30.92 30.92 30.92 30.92 30.92 30.92 30.92 30.92

Avg 35.01 35.04 34.15 31.97 31.55 32.20 32.18 30.99

Std 2.60 2.27 2.68 1.82 0.75 1.25 1.09 0.15

Note: Bold data is the best performing data.

Figure 11. Best value for medium-scale studies. Figure 12. Mean value for medium-scale studies.

Figure 13. STD value for medium-scale studies.

7305

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

4.5. Large scale example experiments

In Table 8, for large-scale data sets, not every algorithm can find the optimal value for every

calculation example. Algorithms DHHO3, DHHO5, DHHO7, and DHHO8 can all find the optimal

value in Example 11, and the average value of algorithm DHHO5 is also the smallest. Algorithm

DHHO5 is the only algorithm that can calculate the optimal value in Example 12, and the average

value is slightly higher than that of Algorithm DHHO7. Among them, the average value calculated by

Algorithm DHHO7 in Example 12 is the smallest. Algorithm DHHO5 and algorithm DHHO7 found

the optimal value in example 13, and algorithm DHHO6 found the lowest average value in example

13. Algorithm DHHO5 performed well in Example 14. Not only the optimal value was obtained, but

the average value was also the lowest among the eight algorithms. The algorithm DHHO7 calculated

the optimal value in Example 15, and the algorithm DHHO5 achieved the lowest mean value and the

lowest variance. In general, the algorithm DHHO5 performs better.

Table 8. Experimental results of large-scale data with 5000 iterations and a population size of 30.

Case Standard DHHO1 DHHO2 DHHO3 DHHO4 DHHO5 DHHO6 DHHO7 DHHO8

11

Best 110.56 107.63 102.19 102.59 102.19 103.41 102.19 102.19

Avg 123.85 119.12 127.95 112.89 110.13 114.79 110.59 115.91

Std 10.20 8.95 31.39 6.94 7.17 9.49 7.07 9.80

12

Best 115.20 125.03 125.00 112.86 108.26 118.37 116.40 121.06

Avg 144.14 142.95 141.20 132.49 130.81 137.23 130.10 135.67

Std 14.60 11.69 11.76 11.24 10.97 12.22 9.59 9.07

13

Best 140.76 131.83 133.12 130.13 124.58 130.32 124.58 132.82

Avg 168.49 180.06 166.95 156.16 157.91 153.85 154.64 160.00

Std 25.53 31.00 25.36 14.42 18.05 16.30 14.66 15.49

14

Best 168.13 159.34 153.99 151.62 145.83 151.51 153.38 154.20

Avg 186.90 189.78 189.14 179.92 170.29 181.48 177.14 177.70

Std 13.34 17.76 20.63 19.76 16.64 23.76 17.33 17.58

15

Best 166.02 177.01 152.29 152.36 155.03 152.50 151.31 151.75

Avg 214.61 215.83 213.03 195.26 175.45 189.67 190.44 187.27

Std 25.01 27.87 33.75 34.97 19.90 20.62 33.68 23.04

Note: Bold data is the best performing data.

7306

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

Figure 14. Best value for large-scale studies. Figure 15. Mean value for large-scale studies.

Figure 16. STD value for large-scale studies.

4.6. Friedman test

The Friedman test is based on the ranking of the algorithms. We used this method to rank the

performance of the eight algorithms and finally calculated the average order. In Table 9, we can easily

see that DHHO8 achieved the average of the minimum values and ranked first. In Table 10, DHHO5

performs well on the large-scale dataset, outperforming other algorithms, achieving the minimum

mean, and ranking first.

Table 9. Ranking produced by Friedman test comparing DHHO1, DHHO2, DHHO3,

DHHO4, DHHO5, DHHO6, DHHO7, DHHO8 over medium data sets.

 DHHO1 DHHO2 DHHO3 DHHO4 DHHO5 DHHO6 DHHO7 DHHO8

Friedman’s

mean rank
7.20 6.60 7.20 3.60 2.60 3.20 4.20 1.40

Rank 7 6 7 4 2 3 5 1

Note: Bold indicates a difference.

7307

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

Table 10. Ranking produced by Friedman test comparing DHHO1, DHHO2, DHHO3,

DHHO4, DHHO5, DHHO6, DHHO7, DHHO8 over large data sets.

 DHHO1 DHHO2 DHHO3 DHHO4 DHHO5 DHHO6 DHHO7 DHHO8

Friedman’s

mean rank
7.00 7.40 6.60 3.60 1.80 3.60 2.20 3.80

Rank 6 7 5 3 1 3 2 4

Note: Bold indicates a difference.

4.7. Wilcoxon rank-sum test

To evaluate the performance of the algorithm, a Wilcoxon rank-sum test was performed to

obtain a statistical test. We use statistical methods to analyze whether the results of different discrete

Harris Eagle algorithms differ. The significance level for nonparametric tests was 5%. Table 9

presents a statistical analysis using the Wilcoxon rank-sum test to compare the results obtained for

each discrete version of the Harris Eagle algorithm. In general, p-values greater than 0.05 can be

considered as the alternative hypothesis is accepted; otherwise, the null hypothesis.

As shown in Table 11, DHHO8 performs better than other algorithms in the medium-scale

examples, Examples 6 and 10. In Example 7, except for DHHO6, DHHO8 outperforms other

algorithms. In Example 8, DHHO8 is better than DHHO1, DHHO2, and DHHO3. Excellent

performance in example 9, except for DHHO5 and DHHO6. As shown in Table 12, among the large-

scale examples, DHHO5 outperforms other algorithms in Example 11, except for DHHO6 and

DHHO7. In Example 12, the performance of DHHO5 is better than that of DHHO1, DHHO2,

DHHO3, and DHHO6. In Examples 13 and 14, the performance of the algorithm DHHO5 is better

than that of DHHO1, DHHO2, DHHO3, and DHHO8. Example 15 outperforms other algorithms

except for DHHO7. In general, DHHO5 is valid for other algorithms.

Table 11. P-values produced by Wilcoxon’s rank-sum test comparing DHHO8 VS DHHO1,

DHHO2, DHHO3, DHHO4, DHHO5, DHHO6, DHHO7 over medium data sets.

DHHO8

vs
DHHO1 DHHO2 DHHO3 DHHO4 DHHO5 DHHO6 DHHO7

6 1.12e-05 4.91e-08 5.49e-06 1.60e-03 1.97e-02 1.50e-03 3.17e-04

7 4.98e-07 6.39e-06 6.96e-05 5.42e-04 6.40e-03 6.82e-02 2.27e-06

8 5.11e-04 1.70e-03 1.12e-04 3.68e-01 3.60e-01 1.20e-01 4.14e-01

9 3.13e-05 1.43e-06 1.05e-04 9.00e-03 5.06e-02 6.26e-02 8.45e-04

10 5.00e-07 9.58e-07 6.15e-08 5.10e-03 2.41e-02 1.94e-04 5.21e-04

Note: Bold indicates a difference.

7308

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

Table 12. P-values produced by Wilcoxon’s rank-sum test comparing DHHO5 VS

DHHO1, DHHO2, DHHO3, DHHO4, DHHO6, DHHO7, DHHO8 over large data sets.

DHHO5

vs
DHHO1 DHHO2 DHHO3 DHHO4 DHHO6 DHHO7 DHHO8

11 1.30e-03 2.35e-06 4.54e-06 5.08e-04 9.62e-02 6.01e-01 1.55e-02

12 3.05e-04 1.30e-03 2.75e-02 3.94e-01 4.11e-02 9.35e-02 2.29e-01

13 1.30e-02 1.14e-02 4.53e-02 7.87e-01 2.39e-01 2.28e-01 1.79e-02

14 4.68e-05 1.79e-04 1.81e-05 8.83e-02 9.62e-02 6.17e-01 2.94e-02

15 8.29e-05 1.20e-03 1.29e-04 6.00e-03 8.40e-03 9.35e-02 3.37e-02

Note: Bold indicates a difference.

4.8. Results discussion

During the experiment, we use 8 transfer functions to convert the continuous HHO into the

discrete HHO, which is used to solve the shared electric vehicle dispatching model considering the

charging dispatch. We analyze the performance of eight transfer functions on three datasets of varying

sizes. On a small-scale data set, eight discrete HHOs can obtain the optimal solution, which proves the

effectiveness of the algorithm. On medium-sized datasets, some algorithms perform well, such as

DHHO8. Notably, in Examples 8 and 10, each algorithm can calculate the optimal value. The reason

for the analysis may be that the complexity of the randomly generated datasets in Examples 8 and 10

is not high, and it is relatively easy to get the optimal value. On large-scale datasets, the DHHO5

algorithm performs well, and four out of five examples calculate the optimal value. Consider that if

the number of iterations of the algorithm is reduced, then the performance of the DHHO5 algorithm

may be more obvious compared to other algorithms. It is clear from the experimental results that the

use of different transfer functions by the algorithm in datasets of different sizes impacts the model

performance. It may well be that other transfer functions lead to different population distributions, and

a good transfer function can lead to a more diverse population distribution.

5. Conclusions and future works

In this paper, a discrete DHHO algorithm is proposed to solve the shared vehicle scheduling

model considering the charging schedule, and the influence of the transfer function on the algorithm

is analyzed. The DHHO algorithm finds the optimal solution through coding and decoding and

discovers the scheduling scheme that minimizes the objective function, which is the cost of all

employees to complete the scheduling task. In the experiment, three data sets of different scales are

used for verification. In the small-scale data set, there is no significant difference in the experimental

results of the eight transfer functions. DHHO8 performs well in medium-sized datasets. DHHO5

outperforms the other seven transfer functions in large-scale datasets. Experiments show that the

transfer function has a certain influence on the algorithm in datasets of different scales. In future work,

we plan to modify the shared vehicle dispatching model considering charging scheduling into a multi-

objective model. Since the constraints (4)–(8) in the model are in an ideal situation, the quality of the

results depends on the speed of the randomly generated data set. This study adopts the penalty function

to deal with these constraints. In future research, the constraints (4)–(8) will also be considered as the

7309

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

objective function. At the same time, the two objectives of optimization, the minimum cost and the

balance of the vehicle at each station, will be optimized. This goal makes the model more general.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (U21A20464,

62066005), Project of the Guangxi Science and Technology (AD21196006).

Conflict of interest

The authors declare no conflict of interest.

References

1. R. Mounce, J. D. Nelson, On the potential for one-way electric vehicle car-sharing in future

mobility systems, Trans. Res. Part A: Policy Pract., 120 (2019), 17–30.

https://doi.org/10.1016/j.tra.2018.12.003

2. F. Ferrero, G. Perboli, M. Rosano, A. Vesco, Car-sharing services: an annotated review,

Sustainable Cities Soc., 37 (2018), 501–518. https://doi.org/10.1016/j.scs.2017.09.020

3. M. Nourinejad, M. J. Roorda, Carsharing operations policies: a comparison between one-way and

two-way systems, Transportation, 42 (2015), 497–518. https://doi.org/10.1007/s11116-015-9604-3

4. J. Firnkorn, M. Müller, What will be the environmental effects of new free-floating car-sharing

systems? The case of car2 go in Ulm, Ecol. Econ., 70 (2011), 1519–1528.

https://doi.org/10.1016/j.ecolecon.2011.03.014

5. J. H. Holland, Genetic algorithms, Sci. Am., 1992. https://doi.org/10.1038/scientificamerican0792-66

6. R. Storn, Differential evolution research–trends and open questions, in Advances in Differential

Evolution, 143 (2008),1–31. https://doi.org/10.1007/978-3-540-68830-3_1

7. I. Rechenberg, Evolutionary strategy, Comput. Intell.: Imitating Life, 1994.

8. G. B. Fogel, Evolutionary programming, in Handbook of Natural Computing, Springer, Berlin,

2011.

9. A. V. Sebald, L. J. Fogel, Evolutionary programming, Evol. Program., (1994), 1–386.

https://doi.org/10.1142/9789814534116

10. O. K. Erol, I. Eksin, A new optimization method: Big Bang–Big Crunch, Adv. Eng. Software., 37

(2006), 106–111. https://doi.org/10.1016/j.advengsoft.2005.04.005

11. E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a gravitational search algorithm, Inf. Sci.,

179 (2009), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

12. A. Kaveh, S. Talatahari, A novel heuristic optimization method: charged system search, Acta

Mech., 213 (2010):267–289. https://doi.org/10.1007/s00707-009-0270-4

13. M. H. Tayarani-N, M. R. Akbarzadeh-T, Magnetic Optimization Algorithms a new synthesis, in

2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational

Intelligence), (2008), 2659–2664. https://doi.org/10.1109/CEC.2008.4631155

14. R. A. Formato, Central force optimization: a new metaheuristic with applications in applied

electromagnetics, Prog. Electromagn. Res., 77 (2007), 425–491. https://doi.org/10.2528/PIE

R07082403

7310

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

15. B. Alatas, ACROA: artificial chemical reaction optimization algorithm for global optimization,

Expert Syst. Appl., 38 (2011), 13170–13180. https://doi.org/10.1016/j.eswa.2011.04.126

16. A. Hatamlou, Black hole: a new heuristic optimization approach for data clustering, Inf. Sci., 222

(2013), 175–184. https://doi.org/10.1016/j.ins.2012.08.023

17. H. Du, X. Wu, J. Zhuang, Small-world optimization algorithm for function optimization, in

Advances in Natural Computation, (2006), 264–273. https://doi.org/10.1007/11881223_33

18. H. Shah-Hosseini, Principal components analysis by the galaxy-based search algorithm: a novel

metaheuristic for continuous optimization, Int. J. Comput. Sci. Eng., 6 (2011), 132–140.

https://doi.org/10.1504/IJCSE.2011.041221

19. Y. T. Hsiao, C. L. Chuang, J. A. Jiang, C. C. Chien, A novel optimization algorithm: space

gravitational optimization, in 2005 IEEE International Conference on Systems, Man and

Cybernetics, 3 (2005), 2323–2328. https://doi.org/10.1109/ICSMC.2005.1571495

20. F. A. Hashim, E. H. Houssein, M. S. Mabrouk, W. Al-Atabany, S. Mirjalili, Henry gas solubility

optimization: a novel physics-based algorithm, Future Gener. Comput. Syst., 101 (2019), 646–

667. https://doi.org/10.1016/j.future.2019.07.015

21. L. Abualigah, A. Diabat, S. Mirjalili, M. A. Elaziz, A. H. Gandomi, The arithmetic optimization

algorithm, Comput. Methods Appl. Mech. Eng., 376 (2021), 113609.

https://doi.org/10.1016/j.cma.2020.113609

22. I. Ahmadianfar, A. A. Heidari, A. H. Gandomi, X. Chu, H. Chen, RUN beyond the metaphor: an

efficient optimization algorithm based on Runge Kutta method, Expert Syst. Appl., 181 (2021),

115079. https://doi.org/10.1016/j.eswa.2021.115079

23. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN’95-International

Conference on Neural Networks, 4 (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.48

8968

24. D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization:

artificial bee colony (ABC) algorithm, J. Global Optim., 39 (2007), 459–471.

https://doi.org/10.1007/s10898-007-9149-x

25. M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating agents,

IEEE Trans. Syst., Man, Cybern., Part B, 26 (1996), 29–41. https://doi.org/10.1109/3477.484436

26. X. S. Yang, Firefly algorithms for multimodal optimization, in Stochastic Algorithms:

Foundations and Applications, Springer, (2009), 169–178. https://doi.org/10.1007/978-3-642-

04944-6_14

27. X. S. Yang, A. H. Gandomi, Bat algorithm: a novel approach for global engineering optimization,

Eng. Comput., 29 (2012), 464–483. https://doi.org/10.1108/02644401211235834

28. E. Valian, E. Valian, A cuckoo search algorithm by Lévy flights for solving reliability

redundancy allocation problems, Eng. Optim., 45 (2013), 1273–1286. https://doi.org/10.10

80/0305215X.2012.729055

29. S. A. Uymaz, G. Tezel, E. Yel, Artificial algae algorithm (AAA) for nonlinear global optimization,

Appl. Soft Comput., 31 (2015), 153–171. https://doi.org/10.1016/j.asoc.2015.03.003

30. M. S. Kiran, TSA: Tree-seed algorithm for continuous optimization, Expert Syst. Appl., 42 (2015),

6686–6690. https://doi.org/10.1016/j.eswa.2015.04.055

31. S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61.

https://doi.org/10.1016/j.advengsoft.2013.12.007

7311

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

32. J. James, V. O. Li, A social spider algorithm for global optimization, Appl. Soft Comput., 30 (2015),

614–627. https://doi.org/10.1016/j.asoc.2015.02.014

33. S. Mirjalili, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm,

Knowl.-Based Syst., 89 (2015), 228–249. https://doi.org/10.1016/j.knosys.2015.07.006

34. S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51–67.

https://doi.org/10.1016/j.advengsoft.2016.01.008

35. A. Kaveh, N. Farhoudi, A new optimization method: dolphin echolocation, Adv. Eng. Software,

59 (2013), 53–70. https://doi.org/10.1016/j.advengsoft.2013.03.004

36. S. C. Chu, P. W. Tsai, J. S. Pan, Cat swarm optimization, in PRICAI 2006: Trends in Artificial

Intelligence, Springer, (2006), 854–858. https://doi.org/10.1007/978-3-540-36668-3_94

37. M. Yazdani, F. Jolai, Lion optimization algorithm (LOA): a nature-inspired metaheuristic

algorithm, J. Comput. Des. Eng., 3 (2016), 24–36. https://doi.org/10.1016/j.jcde.2015.06.003

38. X. Bo, W. J. Gao, Fruit fly optimization algorithm, in Innovative Computational Intelligence: A

Rough Guide to 134 Clever Algorithms, 2014.

39. M. Khishe, M. R. Mosavi, Chimp optimization algorithm, Expert Syst. Appl., 149 (2020), 113338.

https://doi.org/10.1016/j.eswa.2020.113338

40. M. S. Braik, Chameleon swarm algorithm: a bio-inspired optimizer for solving engineering design

problems, Expert Syst. Appl., 174 (2021), 114685. https://doi.org/10.1016/j.eswa.2021.114685

41. S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: a new method for

stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300–323.

https://doi.org/10.1016/j.future.2020.03.055

42. Y. Yang, H. Chen, A. A. Heidari, A. H. Gandomi, Hunger games search: visions, conception,

implementation, deep analysis, perspectives, and towards performance shifts, Expert Syst. Appl.,

177 (2021), 114864. https://doi.org/10.1016/j.eswa.2021.114864

43. J. Tu, H. Chen, M. Wang, A. H. Gandomi, The colony predation algorithm, J. Bionic Eng., 18

(2021), 674–710. https://doi.org/10.1007/s42235-021-0050-y

44. G. B. Dantzig, J. H. Ramser, The truck dispatching problem, Manage. Sci., 6 (1959), 80–91.

https://doi.org/10.1287/mnsc.6.1.80

45. J. Du, X. Li, L. Yu, R. Dan, J. Zhou, Multi-depot vehicle routing problem for hazardous materials

transportation: a fuzzy bilevel programming, Inf. Sci., 399 (2017), 201–218.

https://doi.org/10.1016/j.ins.2017.02.011

46. A. García-Nájera, J. A. Bullinaria, M. A. Gutiérrez-Andrade, An evolutionary approach for multi-

objective vehicle routing problems with backhauls, Comput. Ind. Eng., 81 (2015), 90–108.

https://doi.org/10.1016/j.cie.2014.12.029

47. E. Cao, M. Lai, H. Yang, Open vehicle routing problem with demand uncertainty and its robust

strategies, Expert Syst. Appl., 41 (2014), 3569–3575. https://doi.org/10.1016/j.eswa.2013.11.004

48. E. Jabir, V. V. Panicker, R. Sridharan, Design and development of a hybrid ant colony-variable

neighbourhood search algorithm for a multi-depot green vehicle routing problem, Trans. Res. Part

D: Transp. Environ., 57 (2017), 422–457. https://doi.org/10.1016/j.trd.2017.09.003

49. M. Okulewicz, J. Mańdziuk, The impact of particular components of the PSO based algorithm

solving the Dynamic Vehicle Routing Problem, Appl. Soft Comput., 58 (2017), 586–604.

https://doi.org/10.1016/j.asoc.2017.04.070

7312

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

50. S. Iqbal, M. Kaykobad, M. S. Rahman, Solving the multi-objective Vehicle Routing Problem with

Soft Time Windows with the help of bees, Swarm Evol. Comput., 24 (2015), 50–64.

https://doi.org/10.1016/j.swevo.2015.06.001

51. E. Teymourian, V. Kayvanfar, G. M. Komaki, M. Zandieh, Enhanced intelligent water drops and

cuckoo search algorithms for solving the capacitated vehicle routing problem, Inf. Sci., 334–335

(2016), 354–378. https://doi.org/10.1016/j.ins.2015.11.036

52. A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization:

algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872.

https://doi.org/10.1016/j.future.2019.02.028

53. C. Fan, Y. Zhou, Z. Tang, Neighborhood centroid opposite-based learning Harris Hawks

optimization for training neural networks, Evol. Intell., 14 (2021), 1847–1867.

https://doi.org/10.1007/s12065-020-00465-x

54. H. Zhang, H. Nguyen, X. N. Bui, B. Pradhan, P. G. Asteris, R. Costache, et al., A generalized

artificial intelligence model for estimating the friction angle of clays in evaluating slope stability

using a deep neural network and Harris Hawks optimization algorithm, Eng. Comput., 2021.

https://doi.org/10.1007/s00366-020-01272-9

55. S. Mouassa, T. Bouktir, F. Jurado, Scheduling of smart home appliances for optimal energy

management in smart grid using Harris-hawks optimization algorithm, Optim. Eng., 22 (2021),

1625–1652. https://doi.org/10.1007/s11081-020-09572-1

56. P. Kumar, S. N. Singh, S. Dawra, Software component reusability prediction using extra tree

classifier and enhanced Harris hawks optimization algorithm, Int. J. Syst. Assur. Eng. Manage.,

13 (2022), 892–903. https://doi.org/10.1007/s13198-021-01359-6

57. M. K. Naik, R. Panda, A. Wunnava, B. Jena, A. Abraham, A leader Harris hawks optimization for

2-D Masi entropy-based multilevel image thresholding, Multimedia Tools Appl., 80 (2021),

35543–35583. https://doi.org/10.1007/s11042-020-10467-7

58. M. A. Mossa, O. M. Kamel, H. M. Sultan, A. A. Z. Diab, Parameter estimation of PEMFC model

based on Harris Hawks’ optimization and atom search optimization algorithms, Neural Comput.

Appl., 33 (2021), 5555–5570. https://doi.org/10.1007/s00521-020-05333-4

59. E. H. Houssein, M. E. Hosney, D. Oliva, W.M. Mohamed, M. Hassaballah, A novel hybrid Harris

hawks optimization and support vector machines for drug design and discovery, Comput. Chem.

Eng., 133 (2020), 106656. https://doi.org/10.1016/j.compchemeng.2019.106656

60. I. N. Setiawan, R. Kurniawan, B. Yuniarto, R. E. Caraka, B. Pardamean, Parameter optimization

of support vector regression using Harris Hawks optimization, Procedia Comput. Sci., 179 (2021),

17–24. https://doi.org/10.1016/j.procs.2020.12.003

61. A. A. Dehkordi, A. S. Sadiq, S. Mirjalili, K. Z. Ghafoor, Nonlinear-based Chaotic Harris Hawks

Optimizer: algorithm and internet of vehicles application, Appl. Soft Comput., 109 (2021), 107574.

https://doi.org/10.1016/j.asoc.2021.107574

62. H. M. Alabool, D. Alarabiat, L. Abualigah, A. A. Heidari, Harris Hawks optimization: a

comprehensive review of recent variants and applications, Neural Comput. Appl., 33 (2021),

8939–8980. https://doi.org/10.1007/s00521-021-05720-5

63. R. Y. Zhang, Z. M. Wang, D. C. Wang, Modeling and optimization of transportation problem for

shared electric-cars with recharging scheduling, Syst. Eng.-Theory Pract., 41 (2021), 370–377.

64. H. Haklı, H. Uğuz, A novel particle swarm optimization algorithm with Levy flight, Appl. Soft

Comput., 23 (2014), 333–345. https://doi.org/10.1016/j.asoc.2014.06.034

7313

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7284-7313.

65. X. S. Yang, Nature-inspired Metaheuristic Algorithms, Luniver press, 2010.

66. N. Wang, W. J. Zhang, X. Liu, J. Zuo, Inter-Site-Vehicle artificial scheduling strategy design for

electric vehicle sharing, J. Tongji Univ. (Nat. Sci.), 46 (2018), 1064–1071.

https://doi.org/10.11908/j.issn.0253-374x.2018.08.009

67. A. Beşkirli, İ. Dağ, A new binary variant with transfer functions of Harris Hawks optimization for

binary wind turbine micrositing, Energy Rep., 6 (2020), 668–673.

https://doi.org/10.1016/j.egyr.2020.11.154

68. M. Beşkirli, İ. Koç, H. Haklı, H. Kodaz, A new optimization algorithm for solving wind turbine

placement problem: binary artificial algae algorithm, Renewable Energy, 121 (2018), 301–308.

https://doi.org/10.1016/j.renene.2017.12.087

69. R. M. Rizk-Allah, A. E. Hassanien, M. Elhoseny, M. Gunasekaran, A new binary salp swarm

algorithm: development and application for optimization tasks, Neural Comput. Appl., 31 (2019),

1641–1663. https://doi.org/10.1007/s00521-018-3613-z

©2022 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

