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Abstract: Bio-inspired computing has progressed so far to deal with real-time multi-objective 

optimization problems. The Transmission expansion planning of the modern electricity grid requires 

finding the best and optimal routes for electricity transmission from the generation point to the 

endpoint while satisfying all the power and load constraints. Further, the transmission expansion cost 

allocation becomes a critical and pragmatic issue in the deregulated electricity industry. The prime 

objective is to minimize the total investment and expansion costs while considering N-1 contingency. 

The most optimal transmission expansion planning problem's solution is calculated using the objective 

function and the constraints. This optimal solution provides the total number and best locations for the 

candidates. The presented paper details the mathematical modeling of the shuffled frog leap algorithm 

with various modifications applied to the method to refine the results and finally proposes an enhanced 

novel approach to solve the transmission expansion planning problem. The proposed algorithm 

produces the expansion plans based on target-based evolution. The presented algorithm is rigorously 

tested on the standard Garver dataset and IEEE 24 bus system. The empirical results of the proposed 

algorithm led to better expansion plans while effectively considering typical electrical constraints 

along with modern and realistic constraints. 

Keywords: meta heuristic approach, frog leap optimization, modified shuffled frog leap algorithm, 

enhanced modified shuffled frog leap algorithm 
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1. Introduction  

Evolutionary algorithms (EAs) are stochastic optimization techniques that imitate natural 

biological evolution, i.e., the social behavior of species [1]. Most research focuses on stochastic 

optimization, searching simultaneously on a set of points to reach a global optimum solution [2]. The 

objective function decides the search space. Meta-heuristic methods amalgamate the optimization and 

heuristic techniques [3]. With the introduction of high-speed parallel processing, the solution of large-

scale optimization algorithms has become very easy and time-saving for researchers. Various 

optimization problems have been solved by other meta-heuristic approaches, like the expert system [4], 

the object-oriented model, fuzzy set theory [5,6], the greedy randomized adaptive search procedure 

(GRASP), the strength Pareto evolutionary algorithm (SPEA) [7], other modern AI techniques like particle 

swarm optimization [8], AI-hybrid approaches [9], ant colony optimization [10], bacterial foraging 

technique [11], the game theory approach [12], and the shuffled frog leap algorithm [13]. 

One of the newly developed AI algorithms, the shuffled frog leap (SFL) algorithm [14–16], is a 

bio-inspired method used to optimize the function restricted by constraints [17]. It is effective but faces 

slow convergence, and sometimes it becomes trapped with the locally optimal points [18–20]. Eussuf 

and Lansey [14] proposed a shuffled frog leap algorithm (meta-heuristic approach) for solving water 

distribution network optimization tasks. Like most optimization algorithms [21,22], shuffled frog leap 

algorithm (SFLA) is also a cooperative search algorithm, which initializes with the population of 

solutions (frogs) and then allows the leaps within the memeplex for searching a place that has the 

maximum amount of food [15]. It could be used to solve nonlinear, non-differentiable, and multimodal 

complex optimization problems effectively [13].  

Since its inception, the transmission system expansion planning problem has been solved using 

several algorithms as single or multiple objective optimization problems based on the optimizing factor 

of cost. The main contribution of this paper can be summarized as follows: 

• We have provided a thorough empirical analysis of MSFLA; 

• we have designed a new enhanced version of MSFLA for the transmission system expansion 

planning task; 

• we have compared MSFLA and the proposed EMSFLA and have presented the empirical 

results of different scenarios, with evidence of the outperformance of EMSFLA over MSFLA. 

2. Frog leap algorithms 

2.1. Shuffled frog leap algorithm (SFLA) 

In the SFLA, the population is a set of solutions (frogs) partitioned into various subsets, known 

as memeplexes. Different memeplexes are assumed as other cultures of frogs. Inside every memeplex, 

a local search is performed for the local best solution. These memeplexes are further evolved in the 

process of memetic evolution. After a pre-defined number of different memetic evolutions, the 

memeplexes go to the operation of shuffling, and the process of memeplex-evolution and shuffling 

repeats until the convergence criteria are met, which is generally pre-defined [14,15]. In the SFLA, the 

ideas are interchanged among individuals in memeplexes during memetic evolution by performing a 

local search (Figure 1). Further, the ideas are interchanged among all individuals taking part in 

optimization through a shuffling strategy. This step leads toward a global optimum solution [14].  
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Figure 1. General flow of shuffled frog leap optimization. 

Initially, the population is to be generated arbitrarily [23,24] to keep the solutions mimicked as 

frogs, which are to be arranged according to their fitness values in a decreasing manner. Pf (Pf = initial 

population of frogs) is then partitioned into memeplexes wherein each memeplex has s frogs (s = 

number of frogs in each memeplex). The frogs are divided into memeplexes as per their locations. The 

best and worst solutions for each memeplex and the position of the global best frog of the entire 

population are identified. After that, the SFL is applied to improve each frog's fitness with the lowest 

(worst frog) in every iteration. 

The fitness function of the frog can be configured as the application domain. Each frog is 

considered to be a potential solution to the problem; therefore, the fitness value of a frog denotes the 

final solution to the problem. Like, in the presented case, the transmission expansion plan is each frog's 

solution, mentioning which lines are to be expanded after careful comparisons. 
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The changes in the memeplexes are incremental and depend on the step size (maximum change 

allowed in frog replacement). The improvement in the position during evolution is calculated as per [14]: 

𝐷𝑖  =  𝑟𝑎𝑛𝑑 ×  (𝐹𝑏  −  𝐹𝑤),                                         (1) 

𝑋𝑖 + 1 =  𝑋𝑖  + 𝐷𝑖 ,                                             (2) 

where, Fb = position of the frog with the best fitness in a memeplex, Fw = position of the frog with 

worst fitness in a memeplex, Xi = current location of the worst frog in each memeplex, Xi+1 = new 

location for the worst frog with improved fitness, Di = change in the location of worst solution (frog), 

rand = random number [0,1]. This will allow better control to generate the next move using the 

information available and controlling the specific frog accordingly. 

−𝐷𝑚𝑎𝑥 ≤  𝐷𝑖  ≤  𝐷𝑚𝑎𝑥,                                            (3) 

where 𝐷𝑚𝑎𝑥 is the maximum location leap allowed for a frog in one move (iteration). 

Check the new fitness obtained for the worst frog; if f(Fwn) > f(Fwo), then replaces the worst frog 

with the new frog; if not, the procedure is repeated by replacing Fb with Fg in Eq (1). Again, the new 

position is checked, and if still no replacement is possible, then generate a new frog randomly. 

The local search algorithm uses the following steps: 

Step 1: Initialize the memeplex count mc = 0. 

Step 2: Increment mc = mc + 1. 

Step 3: Initialize the memeplex evolution count me = 0. 

Step 4: Increment me = me + 1. 

Step 5: For each memeplex, find the positions of the best frog, worst frog, and global best. 

Step 6: Use Eqs (1) and (2) to modify the position of the worst frog. 

Step 7: Check the new fitness obtained for the worst frog. If  

f(Fwn) > f(Fwo), then replace the worst frog with the new frog, and go to step 11. 

Step 8: Replace Fb by Fg in Eq (1) and repeat the calculations. 

Step 9: Again, check the new fitness obtained for the worst frog. If f(Fwn) > f(Fwo), then replace 

the worst solution (frog) with the new solution (frog), and go to step 1. 

Step 10: If still no replacement is possible, generate a new frog randomly to remove the condition 

in which memeplex evolution gets trapped. 

Here, mc, the memeplex counter, counts the memeplex, i.e., it is included to perform a local search 

in all the memeplexes. The memeplex evolution count is the number of local search iterations to be 

completed in each memeplex. 

2.2. Modified shuffled frog leap algorithm (MSFLA) 

The major difficulty encountered in the shuffled frog leap algorithm is the convergence rate. The 

problem is associated with the lack of adaptive acceleration in Eq (1), i.e., the position updating term. 

The criterion that shows improvement in the new frog position concerning the old position is the 

objective of the problem [16]. Hence, the gaps in the values of the objective function for consecutive 

iterations can be used for representing the improvement in frog position. Thus, Eq (1) can be modified 

as follows [16]: 

𝐷𝑖  =  𝑟𝑎𝑛𝑑 ∗ 𝐶 ∗ (𝐹𝑏  −  𝐹𝑤) (𝑓(𝐹𝑏 )  −  𝑓(𝐹𝑤) ), (4) 
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𝑋𝑖  + 1 =  𝑋𝑖  + 𝐷𝑖  ,                                         (5) 

where, 𝑓(𝐹𝑏 )  is the fitness-value of the best frog, 𝑓(𝐹𝑤) is the fitness-value of the worst frog, C is 

the constant [0, Cmax], and Cmax is the case dependent. 

The algorithm for local search in MSFLA is the same as that of SFLA. It replaces Eq (1) with 

Eq (4) in local search. In Eq (4), C (>1) is the constant value to control the evolution procedure. The 

value of C defines the acceptance criteria of the search space by allowing the longer leaps (position 

changes) of frogs (solutions). The appropriate value of C is important for natural evolution and better 

positioning for random frogs for the next iteration. In contrast, an incorrect value may lead the 

procedure to an incorrect solution, early convergence and unnecessary algorithm processing. The value 

of C can be set large for the initial steps of evolution to allow fast positioning and elaboration of the 

search space. The value can be minimized in later stages to reach the best solution while avoiding local 

minima [25].  

In Eq (4) the modification term is called the “adaptive coefficient”, which controls the adaptive 

movement. Depending on the value of the objective function, the adaptive coefficient term defines the 

movement size, which changes according to the relative position from the optimum point. The 

inclusion of this term in the position-changing step makes the step size more adaptive to the problem 

statement than linear. Further, this improves the convergence rate of the algorithm. This modified 

version of SFLA is termed modified SFLA (MSFLA), which possesses the qualities of fast 

convergence and adaptive movements [26]. 

2.3. Proposed method: Enhanced shuffled frog leap algorithm (EMSFLA)  

The drawback of MSFLA is the intermediate elimination of potentially effective frogs (solutions) 

from the search space. It leads to repetitive and useless computations to establish the memeplexes at 

their mature stage. One solution to avoid this situation is to allow some unique replacements of frogs 

to avoid the local minima. This means that the best frog in each memeplex is guided towards the global 

best and explores the hidden area of the search space when moving toward the global best solution. 

The proposed method in this paper is based on the movement of the best frog towards the global best, 

which has not yet been deployed in either SFLA or MSFLA. This method extends the hybrid method 

proposed by Farahani et al. [27]. It is done by introducing the equation shown below in the MSFLA 

equations. 

𝐷𝑗  =  𝑟𝑎𝑛𝑑 ∗ 𝐶 ∗ (𝐹𝑔  −  𝐹𝑏) (𝑓(𝐹𝑔 )  −  𝑓(𝐹𝑏) ) , (6) 

𝑋𝑗+1 + 1 = 𝑋𝑗  + 𝐷𝑗 ,                                             (7) 

where, 𝑋𝑗 is the current location of the best frog in each memeplex, 𝐷𝑗 is the change in the location 

of the worst solution (frog), 𝑋𝑗+1 is a new location for the best frog with improved fitness, and 𝑓(𝐹𝑔 )  

is the fitness-value of the best frog. 

This enhances the convergence rate by exploring hidden search space and is called the enhanced 

shuffled frog leap algorithm (EMSFLA). MSFLA is the fastest of most evolutionary algorithms, as it 

takes the least time to reach the optimal solution, which helps to find out the global best more quickly. 

EMSFLA takes approximately the same time to get the convergence criterion with fewer variables than 

MSFLA. If the number of variables is the same, the number of iterations is also reduced to reach 

convergence.  
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The simulation results indicated that the quality of local searches inside the memeplexes plays a 

vital role in reaching the global optimum. The results also revealed that after reaching the maturity 

stage, the worst frogs behave in the reverse direction, i.e., away from the local best frog. Therefore, 

the proper estimation of the maturity stage is required to avoid unnecessary computation. The proposed 

EMSFLA is programmed and used for all scenarios to prove the abovementioned idea to check the 

validity. The proposed method possesses all the advantages of MSFLA, better diversification ability 

and better dealing with local optima. The comparative results are presented in Table 1. 

Table 1. Expansion plans under different scenarios. 

Candidate 

Lines 

Scenario 1 
Scenario 2 Scenario 3 Scenario 4 

P-1 P-2 

2–3 2 2 1 1 - 

2–6 - 1 1 4 4 

3–5 2 2 1 2 1 

4–6 3 2 2 4 2 

Total Cost 170 170 130 300 200 

3. Transmission network expansion problem formulation 

The generation of electricity through any mode requires vast infrastructure which cannot be shifted 

geographically. Also, once the generation station and respective transmission system [28,29] are set 

with heavy investment, it is not advisable to change it, as it will add more cost per unit of electricity 

to the customer. Therefore, careful strategic planning is required to choose the location for generating 

electricity and its transmission plan, along with the availability of resources, due to the ever-growing 

population and changing government schemes. Therefore, transmission expansion planning needs 

careful, comprehensive and futuristic observation of all factors. It is a critical and complex decision-

making procedure to quantify the resources and time required for each expansion plan. 

Transmission expansion planning attempts to consider the best possible ways to optimize the 

electricity grid's time, cost and sustainability, while it serves the purposes of today and can expand 

further if needed. It is generally solved by applying multi-factor optimization methods while satisfying 

the load-flow equations. These factors can be geographical, economic, technical or environmental. 

Therefore, transmission expansion planning is a critical decision-making problem, which requires 

careful consideration of all constraints before suggesting the proposed expansion plans. Also, in the 

case of multiple expansion plans, all the viable plans need to be prioritized either based on profitability 

or sustainability. 

The transmission expansion planning of the modern electricity grid requires finding the best and 

optimal routes for electricity transmission from the generation point to the end while satisfying all the 

power and load constraints. The major problem in transmission expansion planning is to keep it cost-

effective while fulfilling all the technical and economic conditions. The most common solution to this 

problem is applying a multi-factor optimization algorithm that can produce all the feasible expansion 

plans and prioritize them as per the prime objective while avoiding all locally optimal points.  

The objectives of the TSEPP are to minimize the total investment and expansion costs while 

considering N-1 contingency. It is formulated as follows: 
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𝑀𝑖𝑛 𝐶 =  ∑ 𝐶𝑘𝑘  ∗ 𝐷𝑘 ∗  𝐿𝑘  ∗  𝑛𝑖,𝑗 ,                                   (8) 

where: C is the total cost incurred in transmission expansion under a particular scenario, 𝐿𝑘 is the 

length of the transmission line of the candidate, k is the set of candidates, 𝐷𝑘  is the type of 

transmission, 𝐶𝑘(𝐷𝑘) is the investment cost for line k of type Dk, 𝑛𝑖,𝑗 , is the number of lines to be 

increased in the corridor ij, such that the total number of lines between corridor ij is subtracted by the 

existing number of lines in the same corridor. 

The power flow constraints are as follows: 

𝑃𝐿 =  𝑏 ∗ 𝐴𝑋𝑃,                                             (9) 

where PL = branch flow vector, b = (bkk), equal to susceptance of line k, having non-diagonal elements 

as zero, A = branch bus incidence matrix, X = admittance matrix with R = 0, P = bus active power 

injection: 

𝐴𝑃𝑙  +  𝑃𝑔 – 𝑃𝑑   =  0,                                        (10) 

where 𝑃𝑑   is the demand at the bus, 𝑃𝑔  is the generation at a bus, 

|𝑃𝑙|  ≤  (𝑛𝑖,𝑗
0  +  𝑛𝑖,𝑗) 𝑆𝑚𝑎𝑥,                                     (11) 

where 𝑛𝑖,𝑗
0

  is the already existing branches, 𝑆 is the power flow calculated on the basis of load flow, 

and 𝑆𝑚𝑎𝑥 is the maximum possible power flow in the branch. 

|𝑃𝐿
𝐶0|  ≤  (𝑛𝑖,𝑗

0  +  𝑛𝑖,𝑗)𝑚 𝑆𝑚𝑎𝑥,                                     (12) 

∑ 𝐵𝑖,𝑗
𝑚𝑁

𝑗 (𝜃𝑖
𝑚 − 𝜃𝑗

𝑚) ∑ =  𝑃𝐺𝑖

𝑚 −  𝑃𝐷𝑖

𝑁
𝑗=1 ,                                    (13) 

∑ 𝐵𝑖,𝑗
𝑁
𝑗 (𝜃𝑖 − 𝜃𝑗) ∑ =  𝑃𝐺𝑖

−  𝑃𝐷𝑖

𝑁
𝑗=1 ,                                    (14) 

where 𝐵𝑖,𝑗  is the susceptance of branch ij (𝐵𝑖,𝑗) , 𝜃𝑖  is the voltage phase angle of bus i, 𝜃𝑗  is the 

voltage phase angle of bus j, m is the contingency parameters. 

0 ≤  𝑃 ≤  𝑃𝑚𝑎𝑥 ,                                             (15) 

0 ≤  𝑛𝑖,𝑗 + 𝑛𝑖,𝑗
0  ≤  𝐾,                                          (16) 

𝐾 = 𝑛𝑖,𝑗 + 𝑛𝑖,𝑗
0 ,                                                (17) 

where K is the line between buses i and j.  

Eq (10) represents Kirchhoff's law constraint, i.e., power flowing to a node is equal to the power 

flowing out of a node. Eqs (11) and (12) illustrate the thermal rules that should not exceed their 

capacity during normal and contingency conditions. Eqs (13) and (14) represents the constraints under 

contingency, while Eq (15) denotes the output of generators, and Eq (16) denotes the limit on the 

number of lines.  
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4. Solution algorithm  

Transmission expansion planning is an optimization problem in which the expansion lines are to 

be proposed after careful examination of various factors like cost, time, and other socio-economic 

factors. Frog leap optimization is a potential bio-inspired technique that can provide the optimum 

solution to transmission expansion planning. The application of SFLA to transmission expansion 

planning introduces a more detailed load-flow analysis while avoiding the local optima and 

considering all the possible plans with N-1 contingency. 

The solution starts with the generation of the population. First, the base frog is generated, defining 

the existing system. Then, the candidates are added randomly (in base frog) in each corridor to the 

maximum number of possible candidates in a corridor. For any practical TSEPP, the planner must first 

select the candidates. If the number of candidates is significant, as in any actual system, the search 

space is large, and therefore the number of iterations increases, as does the solution time.  

The frogs are initially generated at random, where each represents the network topology (existing 

as added lines) to resolve this issue in the proposed algorithm. So, the population of frogs is described 

as, X =  [X1, X2, … , X𝑛]. 

Here, n is the total frogs in a population, and each frog is characterized by m variables (candidate 

transmission lines in different corridors for the problem considered in this paper), like X𝑖  =
 (X𝑖1, X𝑖2, … , X𝑖𝑚).  

The next step in population generation is considering only the most effective candidates. This 

process reduces the search space and ensures that the result reaches the optimal global solution. The 

candidate evaluation function is defined as (18) to select the most effective lines in the frog: 

𝐶𝐸𝐹𝑖  =  𝑆𝑚𝑎𝑥,𝑖  −  𝑆𝑖 .                                          (18) 

It is calculated by the difference between the branch's maximum and actual power flow. The 

candidates with a higher value of CEFi show the overloading limit left, i.e., free capacity. During the 

population formation process, the condition of islanding should not appear in any frog.  

The optimal solution provides the total number and best locations for the candidates. EMSFLA is 

applied to TSEPP to verify the feasibility of the proposed method, and the simulation results are shown 

in Table 1. The same problem is solved using MSFLA, and the comparative results are shown in 

subsequent sections. 

5. Results and discussion 

The garver [19] 6-bus system (a well-explored standard dataset) is used to validate the proposed 

TSEPP algorithm, i.e., EMSFLA. The complete data for the buses, existing network, and new 

candidates can be obtained from [30]. This paper considers the standard Graver system under future 

load and generating conditions. Various scenarios were considered for testing the proposed algorithm. 

A maximum number of four candidates in any corridor is allowed. The total cost for expanding a 

system is length-dependent for simplicity, i.e., one monetary unit per kilometer of line length. It helps 

in comparing results with other research already done with different algorithms. The modified Garver 

system is shown in Figure 2. 
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Figure 2. Garver 6-bus test system [30]. 

A new bus is added to the existing system, resulting in an islanding condition. Further, the already 

existing generation was unable to meet the demand; hence, an expansion plan is to be generated for 

maintaining the system's reliability, stability, and security. 

The parameters considered for MSFLA/EMSFLA (Case I) are as follows: 

a) Number of frogs = 32. 

b) Number of memeplexes = 4. 

c) Memeplex evolution count = 5. 

d) Generation count = 30. 

The parameters considered for MSFLA/EMSFLA (Case II) are 

a) Number of frogs = 16. 

b) Number of memeplexes = 4. 

c) Memeplex evolution count = 5. 

d) Generation count = 12. 

Different scenarios are considered in the system, and expansion plans are shown in Figures 3–6, 

respectively. The total cost incurred in expansion is also shown in Table 1. For Scenario 1, two plans 

are suggested by the proposed algorithm as mentioned in Table 1 by P-1 and P-2. 

 

Figure 3. Expansion plan for Scenario 1 (P-1). 
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Figure 4. Expansion plan for Scenario 2. 

 

Figure 5. Expansion plan for Scenario 3. 

 

Figure 6. Expansion plan for Scenario 4. 

Different scenarios used here are considering both contingency and rescheduling of generators, 

only rescheduling, only contingency, and none, respectively. To validate the results, the same variables 
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were used, and MSFLA solved the same population of frogs and generation count (Case I). The 

comparison of the two algorithms (MSFLA and EMSFLA) is shown in Figures 7 and 8 for Scenario 3.  

 

Figure 7. Comparison of convergence spaces. 

 

Figure 8. Comparison of convergence times. 

The convergences of both algorithms concerning the number of iterations are shown in Figure 7. 

EMSFLA outperformed in this analysis, as it reaches the optimal state faster than MSFLA. This was 

possible in EMSFLA due to the better strategy for choosing better frogs (solutions) towards the global 

best. This analysis has been done with several variations, and we have found that EMSFLA always 

obtains the global optimum quicker than MSFLA. When time is used as the comparative measure for 

both algorithms, MSFLA is quick in intermediate processing (memeplex evolution). This is evident 

due to the processing of Eqs (6) and (7) in the case of EMSFLA. These equations were introduced for 

faster convergence as compared to MSFLA. However, the choice of algorithm depends on the problem. 

In the case of transmission expansion planning, uncertainties are of more concern than the time taken 

to solve them; therefore, EMSFLA is suitable for such problems in which long-time decisions are 
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required with more accuracy. However, it is not recommended for such situations, which require a 

certain quality of results within the stipulated time frame.  

The movement of best frogs of both the algorithms towards the global best is analyzed in Figure 8 

concerning the memeplexes evolution. EMSFLA was also found to be a more feasible approach than 

MSFLA, as the solutions are generated and explored in the inclined direction of the global best. This 

was tested with 20 different scenarios, and in each variation, the EMSFLA strategic movement of best 

frogs towards the global best frog (solution) is more refined as compared to MSFLA. 

Analysis using the second case (Case II), by changing the MSFLA/EMSFLA to the minimum, i.e., 

number of frogs from 32 to 16 and generation count from 30 to 12, is important to see the efficiency 

of the proposed algorithm to compare it with MSFLA. The EMSFLA has also shown the predicted 

performance growth, as shown in Figure 9. 

Also, in the case of Figure 9, although the EMSFLA takes more time for intermediate processing, 

it converges in the minimum number of iterations. Similarly, other scenarios were compared, and 

EMSFLA outperformed in all the cases regarding the convergence in fewer iterations. However, the 

time taken by both algorithms goes hand-in-hand. 

 

Figure 9. Convergence times for EMSFLA and MSFLA (Case II). 

The presented meta-heuristic approach is also applied to the IEEE 24-bus reliability test system. 

The reliability test system data is used for the analysis, and the results are shown in Table 2. This 

simulation is run under normal conditions and N-1 contingency conditions. 

Table 2. Time and iterations for IEEE 24 bus system. 

Scenario Time (sec) Iterations 

MSFLA EMSFLA MSFLA EMSFLA 

Normal 

Condition 

2.2 1.96 11 8 

N-1 Condition 8.9 9.1 46 27 

The convergence characteristics of EMSFLA are verified to be better than MSFLA. Further, as 

the system is more extensive, the time taken by EMSFLA to reach the global best is better than MSFLA. 
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This fact indicates that the proposed algorithm is far better than the existing ones in reaching the global 

optimum. Figures 10 and 11 show a comparison concerning time and convergence. Figure 12 shows 

the convergence of the best frog under the normal and N-1 conditions, respectively. In both cases, the 

movement is more inclined towards the global best solution. 

 

Figure 10. Convergence time. 

 

Figure 11. Convergence rate. 

 

Figure 12. Convergence rate under N-1 contingency condition. 
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6. Conclusions 

This paper presents a new approach, EMSFLA (enhanced modified shuffled frog leap algorithm), 

for more refinement of the movement of the frogs (solutions) towards the food (global best solution). 

The presented approach is applied to optimize the transmission expansion planning problem. The 

advantage of the proposed method is its ability to avoid local minima and to converge in a smaller number 

of iterations. EMSFLA took special considerations for population formation and evolution to incline the 

intermediate results towards the global best solution. The local search mechanism is redefined to quickly 

take the memeplexes into their mature stage. The total processing time in using EMSFLA is not improved 

compared to MSFLA (the least time-taking algorithm so far). However, EMSFLA somehow managed to 

get the results in almost the same time as MSFLA with some refinement in variable values. This also 

makes EMSFLA the least time-taking algorithm compared to other optimization methods. The results of 

EMSFLA facilitated the identification of the optimal number of transmission lines to be added to satisfy 

future load and generating conditions. The proposed algorithm may be refined and fine-tuned for any 

optimization problem due to the generalized modular programming paradigm. Future research will be 

conducted on designing a hybrid system with ANNs [31,32] and the proposed method. 
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