
MBE, 19(7):7178–7200.  

DOI: 10.3934/mbe.2022339 

Received: 20 March 2022 

Revised: 01 May 2022 

Accepted: 09 May 2022 

Published: 16 May 2022 

http://www.aimspress.com/journal/MBE 

 

Research article 

Immune cell infiltration and immunotherapy in hepatocellular carcinoma  

Yu Jiang, Lijuan Lin, Huiming Lv, He Zhang, Lili Jiang, Fenfen Ma, Qiuyue Wang, Xue Ma and 

Shengjin Yu* 

Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 

118000, China 

* Correspondence: Email: yubing557@163.com. 

Abstract: Hepatocellular carcinoma is a highly malignant tumor and patients yield limited benefits 

from the existing treatments. The application of immune checkpoint inhibitors is promising but the 

results described in the literature are not favorable. It is therefore urgent to systematically analyze the 

immune microenvironment of HCC and screen the population best suited for the application of 

immune checkpoint inhibitors to provide a basis for clinical treatment. In this study, we collected The 

Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC)-related data sets to evaluate the 

immune microenvironment and immune cell infiltration (ICI) in HCC. Three independent ICI subtypes 

showing significant differences in survival were identified. Further, TCGA-LIHC immunophenoscore 

(IPS) was used to identify the differentially expressed genes between high- and low-IPS in HCC, so 

as to identify the immune gene subtypes in HCC tumors. The ICI score model for HCC was constructed, 

whereby we divided HCC samples into high- and low-score groups based on the median ICI score. 

The differences between these groups in genomic mutation load and immunotherapy benefit in HCC 

were examined in detail to provide theoretical support for accurate immunotherapy strategy in HCC. 

Finally, four genes were screened, which could accurately predict the subtype based on the tumor 

immune infiltration score. The findings may provide a basis and simplify the process for screening 

clinical drugs suitable for relevant subgroups. 

Keywords: immune cell infiltration; immune microenvironment; immunotherapy; hepatocellular 

carcinoma; molecular subtype; prognosis 
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1. Introduction  

Liver cancer is a highly malignant tumor and the main cause of cancer-related mortality 

worldwide [1,2]. Hepatocellular carcinoma (HCC) is the most common type of liver cancer. For HCC 

in the early stages, surgery or ablation can yield good therapeutic effects but statistically, the recurrence 

rate within 5 years is as high as 70%. Moreover, most HCC cases are first diagnosed in advanced stages 

and the opportunity for operating is lost. The treatment strategy for advanced HCC is lacking. The 

recommended first-line treatment is sorafenib [3,4] but its survival benefit for advanced HCC cases is 

limited [5,6]; primary or secondary drug resistance may also occur. In order to overcome this difficulty 

in treatment, immune checkpoint inhibitors are promising new avenues. Currently, anti-PD-1 treatment 

is recommended as class 2Afirst-line treatment for HCC, however, the results of clinical trials show 

that the objective remission rate (ORR) for first-line use of anti-programmed cell death protein 1 (anti-

PD-1) antibody in patients with advanced tumors is only 20% [7–9], that is, anti-PD-1 monotherapy is 

ineffective in nearly 80% of HCC patients. Unfortunately, the reason for HCC resistance to anti-PD-1 

treatment remains elusive. 

The tumor immune microenvironment (TME) composed of the tumor, immune, and stromal cells 

is related to the clinical outcomes of immunotherapy [10,11]. In tumors, the immune 

microenvironment has a complex relationship with the occurrence and development of cancer and is 

regulated by tumor-infiltrating immune cells (TIICs) [12,13]. Accumulating evidence suggests that 

TIICs play an important role as prognostic markers and potential therapeutic targets [14]. TIICs have 

been widely used for the prediction of clinical outcomes in cancer treatment [15,16]. Immune 

checkpoint inhibitors mainly act on immune cells in the tumor microenvironment and promote tumor 

progression in several ways [17–19]; abnormal signaling activation in the tumor can re-design the 

tumor microenvironment, thereby losing its original inhibitory effect on the tumor and promoting 

tumor progression. For example, previous studies have shown that β-catenin activation plays an 

important role in immune escape and anti-PD-1 treatment resistance in HCC [20]; these results have 

been confirmed in mouse models [21]. However, these findings may only reflect one aspect of the 

abnormal immune microenvironment of HCC. Thus far, a systematic analysis of the immune 

microenvironment of HCC is lacking. The screening strategy for HCC patients who are suitable for 

undergoing immunotherapy and can benefit from it is unclear. Therefore, it is urgent to systematically 

analyze the immune microenvironment of HCC and screen the population suitable for undergoing 

treatment using immune checkpoint inhibitors, so as to provide a basis for their clinical application. 

In this study, we collected TCGA-LIHC-related data sets and evaluated immune 

microenvironment and immune cell infiltration in HCC using CIBERSORT and ESTIMATE 

algorithms. Three independent immune cell infiltration (ICI) subtypes with significant survival 

differences were identified. Further analysis suggested that there were significant differences in the 

expressions of different immune cell subsets among these immune subtypes. Moreover, the level of 

PD1/PD-L1 expression and the characteristics of ICI were different among the subtypes, however, 

interactions among immune cells were found. The differentially expressed genes between high- and 

low- immunogenicity score (IPS) groups in HCC were identified, along with the immune gene 

subtypes for HCC. Based on the key genes among the immune gene subtypes of HCC, the ICI scoring 

model was constructed. It showed good performance for prognostic prediction in TCGA-LIHC data 

set. According to the median ICI score, HCC samples were divided into high- and low-score groups 

to examine the differences between different groups in terms of tumor genome mutation burden and 

immunotherapy benefits in HCC. This would help in making accurate immunotherapeutic decisions 

for HCC patients. In order to further simplify its clinical application, an accurate judgment based on 
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the subtype of tumor immune infiltration score and identification of high-quality biomarkers are 

effective. The selected genes were cross-verified by a binary decision tree, and finally, four genes were 

selected. These genes were clinical markers of HCC. The findings are expected to provide a basis for 

screening subgroups most suited for clinical medication. 

2. Materials and methods 

2.1. Acquisition of expression profile data and clinical information 

The expression profile data of LIHC patients and their clinical follow-up information were 

downloaded from TCGA database (https://portal.gdc.cancer.gov/). The RNA-sequencing (RNA-Seq) 

data of TCGA-LIHC were processed in the following manner: 1) samples without clinical follow-up 

information were removed; 2) samples with an unknown time to live (TTL), those less than 30 days, 

or no information on survival status was removed; 3) probes were converted to Gene Symbol; 4) if a 

probe corresponded to multiple genes, it was removed, and 5) if there were multiple Gene Symbol 

expression profiles, the median value was taken. An overview of the steps followed for data 

processing is depicted in the analysis flow chart (Figure 1). A total of 342 tumor samples were 

identified from the pre-processed TCGA-LIHC data. The clinical statistical information on the 

samples is presented in Table 1. 

 

Figure 1. Analysis flowchart. 
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Table 1. Clinical information statistics for TCGA-LIHC dataset. 

  TCGA-LIHC 

Survival   

OS status_0 220 

 status_1 122 

Grade   

 G1 53 

 G2 162 

 G3 110 

 G4 12 

 G_un 5 

Age   

 Age > 60 177 

 Age ≤ 60 165 

Gender   

 Female 108 

 Male 234 

stage   

 stage_I 162 

 stage_II 78 

 stage_III 75 

 stage_IV 3 

 stage_un 21 

Mstage   

 M0 244 

 M1 3 

 MX 95 

 M_un 0 

Nstage   

 N0 238 

 N1 3 

 N2 0 

 NX 100 

 N_un 1 

Tstage   

 T1 169 

 T2 85 

 T3 72 

 T4 13 

 T_un 3 

PT (Pharmaceutical therapy)   

 YES 29 

Continued on next page 
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  TCGA-LIHC 

 NO 109 

 UN 204 

RT (Radiation therapy)   

 YES 9 

 NO 128 

 UN 205 

2.2. Tumor IPS database 

Tumor IPS was obtained from The Cancer Immunome Database (TCIA) (https://tcia.at/patients). 

IPS is defined based on tumor immune infiltration features and bridges ICI with immunogen subtypes. 

“Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and 

Predictors of Response to Checkpoint Blockade” (https://doi.org/10.1016/j.celrep.2016.12.019). 

2.3. Consistent clustering of tumor ICI 

Using the CIBERSORT package in R, infiltration levels of 22 different immune cells in LIHC (B 

cells naive, B cells memory, Plasma cells, T cells CD8, T cells CD4 naive, T cells CD4 memory resting, 

T cells CD4 memory activated, T cells follicular helper, T cells regulatory, T cells gamma delta, Natural 

killer (NK) cells resting, NK cells activated, Monocytes, Macrophages M0, Macrophages M1, 

Macrophages M2, Dendritic cells resting, Dendritic cells activated, Mast cells resting, Mast cells 

activated, Eosinophils, and Neutrophils) were quantified. The degree of immune infiltration and the 

score of stroma purity in each LIHC sample were evaluated using the ESTIMATE package in R. 

Subsequently, unsupervised clustering was performed by the Pam method, which was based on Euclid 

and Ward's linkage. Herein, the Consensus Cluster Plus package in R was used and 1000 iterations 

were performed to ensure the stability of the classification. 

2.4. Tumor IPS-associated DEGs (IPS-DEGs) 

The optimal density gradient threshold of tumor IPS associated with survival was calculated using 

the Survminer package in R, whereby tumor samples were divided into two groups, high and low 

scores. Subsequently, using the limma package in R software, gene differential expression analysis 

between the high- and low- IPS groups of TCGA-LIHC tumor samples was performed. The screening 

thresholds used for the analysis were as follows: adjusted. p < 0.05 and |log2(Fold Change)| > 1; among 

them, genes that were positively correlated with the consistent classification results were referred to 

as immune gene subtype-related feature A, while the remaining comprised feature B. 

2.5. Gene feature dimension reduction and construction of the ICI scoring model 

To quantify ICI in tumors based on gene expression, a tumor ICI scoring model was constructed 

using immune gene subtype-associated feature A and B gene sets. Following was the process: 1) sizes 

of feature A and B gene sets were reduced using the Boruta algorithm thereby decreasing noise or/and 

the number of redundant genes. 2) Two total scores, namely ICI score A (for ICI signature gene A) and 

https://tcia.at/patients
https://doi.org/10.1016/j.celrep.2016.12.019
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ICI score B (for ICI signature gene B) were calculated using principal component analysis (PCA) with 

the following equation： 

 −= )(1)(1_I BPCAPCscoresCI
 

2.6. Acquisition of tumor somatic cell mutation data 

The corresponding mutation data of TCGA-COAD and TCGA-READ patients were downloaded 

from TCGA data portal (https://www. cancer.gov/tcga/). To assess the somatic mutation burden in 

LIHC, the total number of nonsynonymous mutations was used as a quantitative index, followed by 

the calculation of the optimal density gradient threshold of tumor mutation burden (TMB) score 

associated with the survival using Survminer package in R. Based on high- or low-TMB scores, the 

samples were divided into two groups. The mutation frequencies of the top 30 driver genes in the high- 

and low-ICI score groups were also compared using the maftool package in R. 

2.7. Acquisition of immunotherapy datasets 

To examine the relationship between ICI scores and immunotherapy, the efficiency of ICI scores 

in predicting patient treatment benefits was further evaluated. Based on the expression profile data and 

clinical information in the IMvigor210 cohort (http://research-

pub.gene.com/IMvigor210CoreBiologies/), the ICI scoring model was used to classify all samples into 

the high-score group (High) or low-score group (Low). Similarly, the GSE78220 dataset 

(ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE78nnn/GSE78220/matrix/) in GEO was downloaded for the 

corresponding analysis. 

2.8. Statistical analysis  

All statistical comparisons involved in this study alongside the hypothesis testing for the 

significance of differences between groups were based on the statistical analysis methods in R 3.6. 

3. Results 

3.1. ICI subtypes in TME 

Three independent ICI subtypes with significant survival differences were identified based on the 

infiltration levels of 22 immune cell types (Table S1) in each sample of TCGA-LIHC dataset and 

assessment of tumor purity (Table S2), as shown in Figure 2A–J. 
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Figure 2. Consistent clustering of tumor ICI features. A, B, C, and D show the clustering 

results when the number of classifications, k = 2, 3, 4, 5, respectively; F, G, H, and I show 

the survival curves when the number of classifications, k = 2, 3, 4, 5, respectively; E: 

distribution of CDF curves after consistent clustering; J: distribution of the areas under the 

CDF curves after consistent clustering. 

Amongst the three, ICI1 and ICI2 showed a significantly better prognosis with a median survival 

of 818 days, while ICI 1/3 was associated with a poorer prognosis with a median survival time of 581 

days (Figure 3A). A heat map based on the correlation coefficient was used to visualize the correlation 

between different immune cell types (purity of 22 types of immune cells, tumor cells, and stromal cells) 

in the TME; the results indicated the prevalent interactions between immune cells, as shown in Figure 3B. 

A comparison of the TME components of the three molecular subtypes revealed the intrinsic biological 

differences resulting in different clinical phenotypes; these were subsequently visualized using heat 

maps (Figure 3C,D). The feature distribution of the ICI3 subtype with a poor prognosis suggested a 

significantly high level of infiltration of macrophages M2, mast cell resting in ICI3. On the contrary, 

T cells CD8+, T cells CD4 memory resting, T cell follicular helper, T cells regulatory (Tregs), 

macrophages M0, macrophages M1, and plasma cells showed lower infiltration. 

The expression of two important immune checkpoints, PD1 and PD-L, in each ICI subtype was 

also analyzed. Our results indicated that the features in ICI1/2 subtypes were characterized by a 

significantly higher expression level of PD1 expression as compared to that in the ICI3 subtype. The 

significance of the observed differences was confirmed using the Kruskal-Wallis test (Figure 3E,F). 
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Figure 3. ICI subtypes in TME. A: survival curves for the three ICI subtypes; B: correlation between ICI features; C: 

heat map for ICI features; D: differences in the ICI features among the three ICI subtypes; E/F: differences in PD1/PD-

L1 expression between the two ICI subtypes. 

A B

C

D E

F
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3.2. Identification of Immune Gene Subtype (IGS) 

The IPS for TCGA-LIHC dataset from TCIA database (https://tcia.at/patients) was collected, as 

shown in Table S3. The optimal density gradient threshold for IPS associated with survival was 

calculated using the Survminer package in R. Ultimately, TCGA-LIHC tumor samples were divided 

into two groups with high or low IPS values using the threshold of 7.75; significant survival differences 

were found between the two groups, as shown in Figure 4A,B. 

 

Figure 4. IPS features. A: distribution of IPS (upper plot) and selection of the optimal 

density gradient points (lower plot); B: survival differences between the groups. 

Gene differential expression analysis was performed between high- and low-IPS groups 

comprising TCGA-LIHC tumor samples using the limma package in R software. Of the total 359 

identified DEGs (Table S4), 325 were markedly high in the high IPS group while 34 showed enhanced 

expression in the low IPS group. On subsequent unsupervised clustering of all 359 IPS-DEGs, the 

tumor samples of TCGA-LIHC could be classified into three immune gene subtypes (IGS 1, 2, and 3) 

with significant survival differences among them, as shown in Figure 5A–J. 
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Figure 5. Consistent clustering of tumor IPS-DEGs. A, B, C, and D show the clustering 

results when the number of classifications, k = 2, 3, 4, 5, respectively; F, G, H, and I show 

the survival curves when the number of classifications, k = 2, 3, 4, 5, respectively; E: 

distribution of CDF curves after consistent clustering; J: distribution of areas under the 

CDF curves after consistent clustering. 

All gene features positively associated with the immune gene subtypes were the ICI gene 

features A (~87), while the remaining 272 IPS-DEGs comprised ICI gene features B (~272) (Table S5, 

Figure 6A,B). Further functional enrichment analysis for GO terms related to ICI gene signatures A 

and B was performed using the clusterProfiler package in R. The top 10 pathways enriched in the three 

functional classifications (BP, CC, and MF) are shown in the bubble chart in Figures 6C,D. The results 

illustrated that most of the enriched pathways were related to immunobiological processes. 

Correlation analysis revealed significant differences in the features of the majority of ICIs in 

tumors between different immune gene subtypes (Figure 6E). Similarly, the levels of PD1/PD-L1 

expression showed substantial differences among the three immune gene subtypes (Figure 6F,G). IGS2 

was associated with higher PD-L1 expression and lower PD1 levels. Taken together, consistency was 

observed between the ICI features and prognostic profiles of different immune gene subtypes, thus 

confirming that the classification method for immune cell subtypes was scientific and reasonable. 
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Figure 6. Identification of tumor immune gene subtypes. A: heat map of immune gene subtypes; B: survival curves for 

immune gene subtypes; C: functional enrichment of feature A genes associated with immune gene subtype; d: functional 

enrichment of feature B genes associated with immune gene subtype; E: differences in ICI features among the immune 

gene subtypes; F, G: differences in PD1/PD- L1 expression among the immune gene subtypes. 

A B

C D

E F

G
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3.3. Construction of ICI scoring model 

To quantify ICI in tumors according to the gene expression, a tumor ICI scoring model was 

constructed based on a set of ICI gene features and B. Subsequently, the optimal density gradient 

threshold of tumor ICI scores associated with survival was calculated. A value of 6.85 was selected as 

the threshold to divide the tumor samples in TCGA-LIHC into two groups with high or low ICI scores. 

There was a significant difference in survival between the two groups (Figure 7A,B).  

 

Figure 7. Grouping of ICI scores. A: distribution of ICI scores (upper plot) and the selection of optimal 

density gradient points (lower plot); B: survival differences between the groups. 

The prognostic impact of ICI scores was evaluated. Subgroup analysis of ICI scores using Kaplan-

Meier analysis revealed that patients in the high ICI score group had significantly higher OS rates than 

those in the low ICI score group (Figure 8A). The impact of radiotherapy on the prognosis of each ICI 

subgroup was evaluated. A clear trend toward survival advantage amongst patients receiving adjuvant 

therapy (Figure 8B) and chemotherapy (Figure 8C) was observed. The Sankey diagram of 

transformations among immune gene subtypes, ICI score groups, and survival status was shown in 

Figure 8D. After we could determine the prognostic value of the ICI score in TCGA-LIHC cohort 

dataset, the immunocompetence and tolerance conditions of each group necessitated analysis. Thus, 

CD274, CTLA4, HAVCR2, IDO1, LAG3, and PDCD1 were selected as immune checkpoint-related 

features, while CD8A, CXCL10, CXCL9, GZMA, GZMB, IFNG, PRF1, TBX2, and TNF comprised 

the immune activation-related features. Except for IDO1, TBX2, and TNF, most of the genes related 

to immune checkpoints and immune activation were significantly overexpressed in the high ICI group 

(Figure 8F). The biological differences between high- and low-ICI score groups were investigated by 

gene set enrichment analysis (GSEA), whereby the top ten enriched pathways included 

KEGG_ALLOGRAFT REJECTION, KEGG_ANTIGEN PROCESSING AND_PRESENTATION, 

KEGG_CELL ADHESION MOLECULES CAMS, KEGG_CHEMOKINE SIGNALING PATHWAY, 

KEGG_CYTOKINE CYTOKINE RECEPTOR INTERACTION, KEGG_GRAFT VERSUS HOST 

DISEASE, KEGG_HEMATOPOIETIC CELL LINEAGE, KEGG_LEISHMANIA INFECTION, and 

KEGG_NATURAL KILLER CELL MEDIATED CYTOTOXICITY, KEGG_PRIMARY 

IMMUNODEFICIENCY (Figure 8E). 
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Figure 8. Construction of the tumor ICI scoring model. A: survival differences between ICI score groups; b: survival 

differences between radiotherapy and ICI score groups; C: survival differences between chemotherapy and ICI score 

groups; D: Sankey diagram of transformations among immune gene subtypes, ICI score groups, and survival status; E: 

gene set functional enrichment analysis for DEGs between ICI score groups; F: gene expression differences for immune 

checkpoints and immune activation between ICI scores groups. 
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3.4. Correlation analyses for tumor ICI scores and somatic variants 

Accumulating evidence suggests that TMB may determine an individual’s response to cancer 

immunotherapy. Therefore, evaluating the intrinsic link between TMB and ICI scores to elucidate the 

genetic traits of each ICI group is a meaningful logical step. Therefore, the Survminer package in R 

was used to calculate the optimal density gradient threshold of the TMB score associated with survival. 

A value of 1.75 was chosen as the threshold to divide the tumor samples in TCGA-LIHC into two 

groups with high- or low-TMB scores. We observed a significant difference in survival between the 

two groups (Figure 9A,B). 

 

Figure 9. Grouping of TMB scores. A: distribution of TMB scores (upper plot) and the 

selection of optimal density gradient point (lower plot); B: survival differences between 

the groups. 

The TMB of patients in the high ICI and low ICI score groups was compared (Figure 10A). The 

group of patients with higher ICI scores showed considerably lower TMB relative to the group with 

lower ICI scores. Further, correlation analysis confirmed that ICI scores were negatively correlated 

with TMB (Figure 10B). Next, patients were divided into discrete high- or low-TMB groups based on 

the immune set point of TMB (Figure 10C); patients with lower TMB showed better OS than those 

with higher TMB. 

Given the prognostic value of TMB and ICI scores, the synergistic effects of these scores for 

prognostic stratification of LIHC were evaluated. The results indicated that TMB status did not 

interfere with predictions based on ICI scores. Moreover, ICI score subtypes showed significant 

survival differences between the high- and low-TMB groups (Figure 10D). Overall, these findings 

suggested that ICI scores may serve as a potential predictor independent of the TMB as also a valid 

measure of response to immunotherapy. 

We also evaluated the distribution of somatic variants in LIHC driver genes between the low- 



7192 

Mathematical Biosciences and Engineering  Volume 19, Issue 7, 7178–7200. 

and high-ICI groups. The top 30 driver genes with the highest frequency of change were compared 

(Figure 10E,F). Analysis of mutation annotation files for TCGA-LIHC cohort revealed significant 

differences in the mutational profiles between the high- and low-ICI groups. Indeed, these results may 

provide new ideas to elucidate the mechanism underlying tumor ICI composition and gene mutations 

in immune checkpoints. 

 

Figure 10. Correlation between ICI scores and somatic variants. A: differences in TMB 

between high- and low-ICI score groups; B: correlation between ICI scores and TMB; C: 

survival differences between high- and low-TMB groups; D: survival differences between 

TMB and ICI scores groups; E: waterfall plot for gene mutation distribution in tumors of 

high ICI score groups; F: waterfall plot for gene mutation distribution in tumors of low ICI 

score groups. 

A B C D

E F
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3.5. Predictive role of tumor ICI scores for potential immunotherapeutic benefits 

 

Figure 11. The role of tumor ICI scores in predicting immunotherapeutic benefits. A: 

differences in ICI scores between different treatment response groups in the IMvigor210 

cohort; B: differences in survival between high- and low-ICI score groups in the 

IMvigor210 cohort; C: differences in the proportion of treatment responses between high- 

and low-ICI score groups in the IMvigor210 cohort; D: differences in ICI scores between 

different treatment response groups in the GSE78220 cohort; E: survival differences 

between high- and low-ICI score groups in the GSE78220 cohort; F: differences in the 

proportion of various treatment responses between the high- and low-ICI score groups in 

the GSE78220 cohort. 

At present, novel immune checkpoint blockade therapies are used in cancer treatment to block T-

cell suppressor molecules for cancer therapy. To examine the relationship between ICI scores and 

immunotherapy, the efficiency of ICI scores in predicting patient treatment benefits was further 

evaluated. Based on expression profile data and clinical information from the IMvigor210 cohort 

(http://research-pub.gene.com/IMvigor210CoreBiologies/), the ICI scoring model was used to classify 

all samples into the high-score group (High) or low-score group (Low). The findings showed that high 

scores of patients in the IMvigor210 cohort were associated with objective responses to anti-PD-L1 



7194 

Mathematical Biosciences and Engineering  Volume 19, Issue 7, 7178–7200. 

therapy (Figure 11A). Moreover, patients with high scores lived significantly longer than those with 

low scores (Figure 11B). The objective response rate to anti-PD-L1 therapy was higher in the high-

score group as compared to the low-score group in the IMvigor210 cohort (Figure 11C). Similar results 

were observed in the GSE78220 cohort of GEO, wherein different immunotherapies, including 

cytokines, vaccines, and checkpoint blockers were administered (Figure 11D–F). Overall, these data 

suggest that ICI scores may correlate with responses to immunotherapies. 

3.6. Identification of biomarkers in tumor ICI score subtypes 

Identification of high-quality biomarkers is a proven strategy for simplifying clinical work to 

make accurate judgments for the tumor ICI subtypes. Therefore, 359 IPS-DEGs associated with tumor 

immunophenotypes screened previously were evaluated for their classification accuracies. The Caret 

package was used to construct a binary decision tree and perform cross-validation (k = 5) based on 

specificity, sensitivity, likelihood ratio (LR), and area under the curve (AUC). The results indicated 

that GBP5 was located at the root of the binary decision tree; its AUC was 79.76% (Figure 12A). 

Finally, the model yielded a total of 15 genes with importance scores (Table S6), of which the four 

genes, namely GBP5 (AUC: 0.9590), MZB1 (AUC: 0.9460), TIGIT (AUC: 0.9675), and HLA-

DOB (AUC: 0.9018) were retained in the binary decision tree (Figure 12B). These four genes may 

serve as candidate biomarkers. 

 

Figure 12. Identification of biomarkers. A: binary decision tree; B: ROC curves. 

4. Discussion 

The benefits of chemotherapy and targeted therapy are currently limited for HCC; immune 

checkpoint inhibitors seem to be promising for HCC treatment. However, the results of several clinical 

trials seem unsatisfactory. Checkmate 040 is a phase I / II clinical trial for the anti-programmed cell 

death protein 1 (anti-PD-1) antibody, nivolumab, in patients with advanced HCC. The results showed 

that the objective remission rate (ORR) was 20% and the disease control rate (DCR) was 64% [7]. In 

the Keynote-224 experiment, pembrolizumab, an anti-PD-1 antibody, was administered to patients 

showing progression after sorafenib treatment; the ORR was 17% and DCR was 62% [8]. 
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Unfortunately, no positive results were obtained in the phase III experiment [22,23], which 

highlights the urgent need to analyze the special immune microenvironment characteristics of HCC 

and screen subgroups showing good responses to ICIs, so as to provide a theoretical basis for 

clinical immunotherapy. 

Previous studies have shown that TIICs play an important role in patients’ prognoses [24–28]. 

Thus far, existing studies have conducted correlation analysis on the distributional characteristics of 

TIICs in HCC and their impacts on prognosis [29,30], however, a comprehensive analysis on TIICs in 

HCC is lacking [31]. In this study, we first divided HCC patients into three subtypes showing different 

prognoses according to the infiltration levels of immune cells. There were significant differences in 

the types of immune cell infiltrates among the three subtypes. For instance, M2 macrophage proportion 

was higher in ICI3 with poor prognosis, while ICI1/2 subtypes with good prognoses were characterized 

by high abundances of CD8 positive T cells and low levels of M2 macrophages, consistent with the 

results of previous studies [32–35], thus proving the credibility of our analysis. However, the levels of 

PD1/PD-L1 expression in ICI1/2 subtypes were significantly higher, while those of PD1/PD-L1 in the 

ICI3 subtype were lower. This phenomenon differed from our conventional understanding. On the one 

hand, it showed that the level of PD1/PD-L1 expression cannot fully represent the characteristics of 

immune cell infiltration. On the other hand, it led to reasonably speculate that the expression of 

immune-related genes does not completely correspond to immune cells. Therefore, it prompted us to 

further analyze the immune-related genes. 

HCC samples were divided into high- or low-expression groups according to their IPSs, followed 

by DEG analysis between the two groups. After cluster analysis, HCC tumor samples could be divided 

into three immune gene subtypes with obvious survival differences among them. The levels of 

PD1/PD-L1 expression showed significant differences among the three immune gene subtypes. It was 

speculated that gene differences may better predict the levels of PD1/PD-L1 expression, rather than 

the differences in immune cell infiltrates. PDL1 is an important prognostic indicator of the efficacy of 

immune checkpoint inhibitors [36]. It is recommended to use immune checkpoint inhibitors for 

patients with high PDL1 expression in tumors [37–39]. Thus, we classified HCC patients into different 

subtypes based on prognosis and PD1/PD-L1 according to their immune-related gene expression. In 

order to further simplify the accurate judgment of tumor immune infiltration score subtypes in clinical 

settings, identifying high-quality biomarkers is an effective strategy. Therefore, a binary decision tree 

was constructed and cross-validated for DEGs related to tumor immunogenicity. Finally, the four 

following genes were obtained: GBP5 (guanylate binding protein 5), MZB1 (marginal zone B - and 

B1 cell-specific protein), TIGIT (T-cell immunoreceptor with Ig and ITIM domains), and HLA-DOB 

(HLA class II histocompatibility antigen, DO beta chain). Among them, GBP5 [40,41], MZB1 [42,43], 

and TIGIT [44] have been previously shown to promote tumor progression. TIGIT is an inhibitory 

receptor. Studies have shown that blocking PD-L1 and TIGIT can improve tumor efficacy [45,46]. 

HLA-DOB can be used as the core gene in the immune prediction model [47,48]. Taken together, these 

genes can be used as candidate biomarkers to greatly simplify clinical judgments and improve the 

possibility of clinical transformation. 

Another predictor of the efficacy of immune checkpoint inhibitors is TMB, whereby the 

cumulative increase in gene mutations leads to an increase in the TMB, thereby enhancing 

heterotypic protein synthesis and leading to an increased probability of recognition by immune 

cells collectively [49–52]. In this study, we divided the tumor samples into two groups with high- or 

low TMB scores; significant differences in survival between the two groups were observed. In order 

to simplify the immune status of HCC, we used gene expression to quantify the immune cell infiltration 

levels in the tumor. The tumor samples were divided into two groups with high- or low ICI scores. The 
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ICI score does not only distinguish the prognosis of HCC but the OS rate of patients in the high ICI 

score group was significantly higher than that in the low ICI score group; similar trends were observed 

for ORR of anti-PD-L1 treatment between the two groups. The same trend of survival advantage was 

observed as that for patients receiving chemotherapy but further analysis showed that ICI score was 

significantly negatively correlated with TMB, which is different from previously reported conclusions. 

This could be related to the special immune microenvironment in HCC. However, more systematic 

sequencing and clinical experiments are necessary to validate our findings. 

There are some limitations to this study. First, we only used public data for analysis, and not the 

real clinical data for further verification. Second, the specific analysis of the impact of various 

treatments on immune typing and its characteristics was lacking. Finally, functional verification using 

in vivo and in vitro experiments for the main prognostic genes needs to be performed in the future. 

5. Conclusions 

In conclusion, we systematically analyzed the immune microenvironment of HCC, divided the 

samples into different subtypes according to the prognosis, described the characteristics of immune 

cell infiltration levels and immune-related gene expression for each subtype, and provided the efficacy 

characteristics of each subtype of HCC for immune checkpoint inhibitors. More importantly, we 

screened four representative tumor immunogenicity-related DEGs, which are expected to simplify 

clinical work and enhance the possibility of transformation. 
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