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Abstract: In this paper we study the k-domination and total k-domination numbers of catacondensed
hexagonal systems. More precisely, we give the value of the total domination number, we find upper
and lower bounds for the 2-domination number and the total 2-domination number, characterizing the
catacondensed hexagonal systems which attain these bounds, and we give the value of the 3-domination
number for any catacondensed hexagonal system with a given number of hexagons. These results
complete the study of k-domination and total k-domination of catacondensed hexagonal systems for all
possible values of k.
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1. Introduction

Let G = (V, E) be a simple graph. For a positive integer k, a set S ⊆ V is a k-dominating set of
G if every vertex in V \ S is adjacent to at least k vertices of S . The minimum cardinality among
all k-dominating sets is called the k-domination number, and it is denoted as γk(G). This invariant
was introduced by Fing and Jacobson [1], and has been studied by many researchers [2–9]. A set
S ⊆ V is a total k-dominating set of G if every vertex in V is adjacent to at least k vertices of S . The
total k-domination number is the minimum cardinality among all total k-dominating sets, denoted as
γkt(G). We refer to [10–13] for more details on this definition. When k = 1 in the previous definitions,
we recover the extensively studied domination number γ(G) and total domination number γt(G) of
G [14, 15]. For recent results in domination number of graphs we refer to [16–19].

Molecular structures are represented by (molecular) graphs, where the atoms correspond to the ver-
tices and the chemical bonds correspond to the edges. Perhaps one of the most important molecular
graphs are the hexagonal systems, graph representation of benzenoid hydrocarbons which have innu-
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merable applications in chemistry [20]. In QSAR and QSPR studies, a topological index (or molecular
descriptor) is a numerical parameter associated to the molecular graph, which correlates well with
many physical and chemical properties of the molecules [21–24]. One such descriptor is the domina-
tion number. The connection between the domination number and the RNA structure given in [25],
motivated many researchers to use domination based parameters to study chemical graphs [26–32].

In recent years there has been much interest in the study of the domination number and the total
domination number of hexagonal systems [26, 27, 30, 31, 33–37]. In this paper we go one step further
and study the 2-domination and the total 2-domination of a significant class of hexagonal systems,
the so-called catacondensed hexagonal systems. Specifically, we find upper and lower bounds for
γ2 and γ2t over the set of catacondensed hexagonal systems, and characterize those which attain the
bounds. Also, we give the value of the total domination number and the 3-domination number for any
catacondensed hexagonal system with a given number of hexagons.

Recall that a hexagonal system is a finite connected plane graph without cut vertices, in which all
interior regions are mutually congruent regular hexagons. A hexagonal system is said to be simple if
it can be embedded into the regular hexagonal lattice in the plane without overlapping of its vertices.
Hexagonal systems that are not simple are called jammed. They are of great importance for theoretical
chemistry because they are natural graph representations of benzenoid hydrocarbons. We refer to [20]
for more details on the hexagonal systems. A hexagonal chain (abbreviated as HC) is a hexagonal
system with the properties that (a) it has no vertex belonging to three hexagons, and (b) it has no
hexagon with more than two adjacent hexagons (Figure 1, both figures on the left). A catacondensed

Figure 1. A linear HC, a general HC and a CHS.

hexagonal system (abbreviated as CHS) is a hexagonal system which has no vertex belonging to three
hexagons (Figure 1, the figure on the right). It is clear that a hexagonal chain is a particular case of a
catacondensed hexagonal system. We will say that a hexagon in a CHS is a linear hexagon L if it has
exactly two non-adjacent vertices with degree 2. We will say that a hexagon is an angular hexagon (LA
or RA, see Figure 1) if it has exactly two adjacent vertices with degree 2. A hexagon in a CHS is a leaf
if it is adjacent to only one hexagon, and a hexagon in a CHS is a branching hexagon A if it is adjacent
to three hexagons. An inner branch in a CHS is a consecutive sequence A1 − T1 − T2 − · · · − Tk − A2

of adjacent hexagons such that A1 and A2 are the only branching hexagons in that sequence. Two
consecutive branching hexagons is also considered an inner branch. An outer branch in a CHS is a
consecutive sequence T − T1 − T2 − · · · − Tk − A of adjacent hexagons such that T is a leaf and A is the
only branching hexagon in that sequence. We denote by HC or CHS the set of all hexagonal chains
or catacondensed hexagonal systems, respectively. If we want to indicate the number of hexagons h or
the number of branching hexagons a3, we will write CHS(h) or CHS(h, a3).

In this work we study the k-domination and total k-domination numbers of catacondensed hexagonal
systems. Since the maximum degree of a CHS is 3, and taking into account that the domination number
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was studied in two previous works [26,27], we focus here on the remaining cases; the total domination
number, the 2-domination number, the total 2-domination number and the 3-domination number of a
catacondensed hexagonal system.

We show here some operations we will continuously use to get the results. Given H ∈ CHS and a
set of vertices S ⊆ V(H), we denote by H − S the subgraph of H obtained by removing the vertices in
S and all the edges incident to those vertices. Given a hexagonal leaf T of H whose vertices are {vi}

6
i=1,

such that deg(v1) = deg(v6) = 3, we define H 	 T = H − {vi}
4
i=2 (see Figure 2).

Figure 2. The graph H 	 T .

On the other hand, if Ti is a hexagon in H adjacent to exactly two hexagons Ti−1 and Ti+1, and we
denote V(Ti) = {vi

j}
6
j=1, then we define H 	 Ti in the following way:

(1) If vi
3, v

i
4 ∈ V(Ti−1) and vi

1, v
i
6 ∈ V(Ti+1) (see Figure 3 on the left), then vi

3 = vi−1
1 and vi

4 = vi−1
6 , and

we denote by H 	 Ti the catacondensed hexagonal system such that V(H 	 Ti) = V(H − {vi
j}

5
j=2)

and E(H 	 Ti) = E(H − {vi
j}

5
j=2) ∪ {vi−1

5 vi
6, v

i−1
2 vi

1} (see Figure 3 on the right).

Figure 3. The graph H 	 Ti.

(2) If vi
4, v

i
5 ∈ V(Ti−1) and vi

1, v
i
6 ∈ V(Ti+1) (see Figure 4 on the left), then vi

4 = vi−1
1 and vi

5 = vi−1
6 , and

we denote by H 	 Ti the catacondensed hexagonal system such that V(H 	 Ti) = V(H − {vi
j}

5
j=2)

and E(H 	 Ti) = E(H − {vi
j}

5
j=2) ∪ {vi−1

5 vi
6, v

i−1
2 vi

1} (see Figure 4 on the right).

Figure 4. The graph H 	 Ti.
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(3) If vi
2, v

i
3 ∈ V(Ti−1) and vi

1, v
i
6 ∈ V(Ti+1) (see Figure 5 on the left), then vi

2 = vi−1
1 and vi

3 = vi−1
6 , and

we denote by H 	 Ti the catacondensed hexagonal system such that V(H 	 Ti) = V(H − {vi
j}

5
j=2)

and E(H 	 Ti) = E(H − {vi
j}

5
j=2) ∪ {vi−1

5 vi
6, v

i−1
2 vi

1} (see Figure 5 on the right).

Figure 5. The graph H 	 Ti.

2. Total domination number in catacondensed hexagonal systems

In this section we give the value of the total domination number for any catacondensed hexagonal
systems with a given number of hexagons. For that, we will use the following well known result for
cycles with n vertices.

Proposition 2.1. For any cycle Cn with n vertices

γt(Cn) =

 n
2 + 1 if n ≡ 2 (mod 4)⌈

n
2

⌉
otherwise.

.

Theorem 2.2. If H ∈ CHS(h), then γt(H) = 2(h + 1).

Proof. We prove the result by induction on the number of hexagons h. The result can be easily checked
when h = 1, so we suppose that γt(H′) = 2h for any H′ ∈ CHS(h − 1) and we take H ∈ CHS(h).
Since every catacondensed hexagonal system has a Hamiltonian cycle, by Proposition 2.1 we have that
γt(H) ≤ γt(C4h+2) = 2(h + 1). Now, we take a minimum total dominating set D of H and we consider
a hexagonal leaf T in H, whose vertices are named as in Figure 6. If we suppose that v3 < D, then

Figure 6. A leaf T of H.

v1, v5 ∈ D and we can study two cases. If v2 < D, then v4 ∈ D and D′ = D\ {v4, v5} is a total dominating
set in H′ = H 	 T . Therefore, γt(H′) = 2h ≤ |D′| = |D| − 2 = γt(H) − 2, that is, γt(H) ≥ 2(h + 1). If
v2 ∈ D, since v5 must be dominated, we have that |{v4, v6}∩D| = 1, then D′ = (D\{v2, v4, v5, v6})∪{v6} is
a total dominating set in H′ with cardinality |D|−2. Therefore, γt(H′) = 2h ≤ |D′| = |D|−2 = γt(H)−2,
that is, γt(H) ≥ 2(h + 1). Finally, we suppose that v3 ∈ D and, by symmetry, that v4 ∈ D. Moreover,
we can assume that v2, v5 < D, then D′ = D \ {v3, v4} is a dominating set in H′ and we get the result.
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3. 2-domination number in catacondensed hexagonal systems

In this section we present a lower and an upper bound for the 2-domination number of any cata-
condensed hexagonal system with a given number of hexagons. As we did in Section 2, since any
catacondensed hexagonal system has a Hamiltonian cycle, we get the following upper bound.

Proposition 3.1. If H ∈ CHS(h), then γ2(H) ≤ 2h + 1.

Proof. It is well known that γ2(Cn) =
⌈

n
2

⌉
for a cycle Cn with n vertices, then, since H has a Hamiltonian

cycle with 4h + 2 vertices, we have that

γ2(H) ≤ γ2(C4h+2) = 2h + 1.

Next, we will give a characterization for all catacondensed hexagonal systems attaining that upper
bound. More precisely, we will prove that a catacondensed hexagonal system attains that upper bound
if and only if the number of angular hexagons in all its inner branches is an odd number. For that, we
will need the following lemmas.

Lemma 3.2. If H is a CHS, then there exists a minimum 2-dominating set such that it does not contain
two adjacent vertices with degree 2.

Proof. The result is trivial if H has only one hexagon. Let D be a minimum 2-dominating set of H
and let u1, u2 ∈ D be two adjacent vertices such that deg(u1) = 2 = deg(u2). We name by u3, u4, u5, u6

the remaining consecutive vertices in the same hexagon, where u1 is adjacent to u6 and u2 is adjacent
to u3, so we know that u3, u6 < D. If u6 (or u3) has degree 3, then D′ = (D \ {u1}) ∪ {u6} (or D′ =

(D \ {u2}) ∪ {u3}) is also a 2-dominating set. If deg(u3) = deg(u6) = 2, since u6 < D and deg(u5) = 3,
the set D′ = (D \ {u1}) ∪ {u6} is also a 2-dominating set.

Lemma 3.3. If H is a CHS and T is a leaf in H with consecutive vertices {v1, v2, . . . , v6}, then there
exists a minimum 2-dominating set D such that {vi}

6
i=1 ∩ D = {v1, v3, v5} or {vi}

6
i=1 ∩ D = {v2, v4, v6}.

Proof. If deg(v1) = 3 = deg(v6) and D is a minimum 2-dominating set of H given by Lemma 3.2, then
{v1, v3, v5} ⊆ D or {v2, v4, v6} ⊆ D. If we suppose, for instance, that {v1, v3, v5} ⊆ D and v6 ∈ D, if
w ∈ N(v6) \ {v1, v5}, we have that D′ = (D \ {v6}) ∪ {w} is a minimum 2-dominating set.

For any catacondensed hexagonal system H we will denote by D2(H) the set of minimum 2-
dominating sets in H satisfying Lemmas 3.2 and 3.3.

Lemma 3.4. Let H be a CHS with a leaf T non adjacent to a branching hexagon, then

γ2(H) = γ2(H 	 T ) + 2.

Proof. We suppose that T1 is the adjacent hexagon to T , and that v1, v2 . . . , v6 and v1, u2, u3, u4, u5, v6

are the consecutive vertices of T and T1, respectively. If D1 ∈ D2(H 	 T ), then v1 ∈ D1 or v6 ∈ D1. For
instance, if v1 ∈ D1, then D1 ∪ {v3, v5} is a 2-dominating set in H, therefore, γ2(H) ≤ γ2(H 	 T ) + 2.
If D ∈ D2(H) and, for instance, v1, v3, v5 ∈ D, we can have the three situations showed in Figure
7. In cases (a) and (b) we have that u5 ∈ D, then D1 = D \ {v3, v5} is a 2-dominating set in H 	 T ,
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Figure 7. Three possibilities for T1.

that is, γ2(H 	 T ) ≤ γ2(H) − 2. The same happens in case (c) if u5 ∈ D. Thus, we suppose case
(c) such that u5 < D. In such a case, u4 ∈ D and there exists w such that w ∈ {u2, u3} ∩ D. If we
take D1 = (D \ {v1, v3, v5,w}) ∪ {u2, v6}, we obtain a 2-dominating set in H 	 T and, consequently,
γ2(H 	 T ) ≤ γ2(H) − 2.

In Figure 8 we can see that Lemma 3.4 is not true if T is adjacent to a branching hexagon.

Figure 8. γ2(H) = 12 and γ2(H 	 T ) = 11.

Lemma 3.5. Let H be a CHS and let T1 − T2 − T3 be three consecutive hexagons in H such that T2 is
a linear hexagon and T1 and T3 are not branching hexagons. Then,

γ2(H) = γ2(H 	 T2) + 2.

Proof. We name the vertices in T1,T2 and T3 as shown in Figure 9. If D is a minimum 2-dominating

Figure 9. Vertices in T1,T2 and T3.

set in H, the possibilities for vertices in V(T2) ∩ D could be supposed to be, by symmetry, the ones
shown in black in Figure 10.
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Figure 10. Vertices in T1,T2 and T3.

In cases (a) and (b), D\ {u2
1, v

2
1} and D\ {u1

2, v
1
2} are 2-dominating sets in H	T2, respectively. In case

(c), if D\ {u1
2, v

2
1} is not a 2-dominating set in H	T2, then v1

1, v
3
1 < D. Since T1 and T3 are not branching

hexagons, we have the situation showed in Figure 11, where {u1
0, u

1
1} ∩ D , ∅ and {u3

1, u
3
2} ∩ D , ∅.

Without loss of generality, we can assume that u1
1, u

3
1 ∈ D. In such a case, D′ = (D \ {u1

2, u
2
2, v

2
1}) ∪ {v

2
2}

is a 2-dominating set in H 	 T2.

Figure 11. Vertices in T1,T2 and T3.

Finally, if D′ is a minimum 2-dominating set in H	T2 we have three different cases. If D′∩{v2
2, u

2
2} =

{v2
2, u

2
2}, then D = D′ ∪ {v1

2, u
1
2} is a 2-dominating set in H. If D′ ∩ {v2

2, u
2
2} = {u2

2}, then D = D′ ∪ {v2
1, u

1
2}

is a 2-dominating set in H. If D′ ∩ {v2
2, u

2
2} = ∅, then D = D′ ∪ {v2

1, u
2
1} is a 2-dominating set in H.

Therefore, γ2(H) ≤ γ2(H 	 T2) + 2.

Lemma 3.6. Let H be a CHS and let A be a branching hexagon in H. If T is a linear hexagon adjacent
to A and there exists a minimum 2-dominating set D such that D ∩ V(T ) ∩ V(A) = ∅, then

γ2(H) = γ2(H 	 T ) + 2.

Proof. If we name the vertices as in the Figure 12, then v1, v3, u1, u3 ∈ D, so D\{v3, u3} is a 2-dominating
set in H 	 T . To prove that γ2(H) ≤ γ2(H 	 T ) + 2 we can do the same we did in the last part of the
proof of Lemma 3.5 with vertices v4, u4 instead of v2

2, u
2
2.

Notice that any branching hexagon adjacent to two leaves and to a linear hexagon, satisfies the
condition needed in Lemma 3.6.

Lemma 3.7. Let H be a CHS and let A be a branching hexagon in H adjacent to two leaf hexagons T
and T ′. If D ∈ D2(H) satisfies |D ∩ V(A)| ≥ 3, then

γ2(H) = γ2(H 	 T ) + 2.
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Figure 12. Black vertices must belong to D.

Proof. If D′ is a minimum 2-dominating set in H	T , it is clear that it contains a vertex in V(A)∩V(T ),
so γ2(H) ≤ γ2(H 	 T ) + 2. If D ∈ D2(H) satisfies |D ∩ V(A)| ≥ 3, by Lemma 3.3, without loss of
generality, and moving the vertices in D if it were necessary, we can assume that D contains the black
vertices shown in Figure 13. Then, γ2(H 	 T ) ≤ γ2(H) − 2.

Figure 13. Black vertices belong to D.

Proposition 3.8. If H ∈ CHS(h, 0) or H ∈ CHS(h, 1), then γ2(H) = 2h + 1.

Proof. If H ∈ CHS(h, 0), we can apply Lemma 3.4 recursively to get the result. For H ∈ CHS(4, 1),
it can be checked that γ2(H) = 9, and, if H ∈ CHS(h, 1) with h ≥ 5 we can apply Lemma 3.4 to any
leaf non adjacent to a branching hexagon.

In Figure 8 was shown that this result might not be true for H ∈ CHS(h, a3) with a3 ≥ 2, in other
words, when H has inner branches.

Theorem 3.9. For any H ∈ CHS(h), γ2(H) = 2h + 1 if and only if every inner branch in H has an odd
number of angular hexagons.

Proof. By absurdum, we suppose that there exists H ∈ CHS(h, a3) such that all its inner branches
have an odd number of angular hexagons and γ2(H) ≤ 2h. We take that catacondensed hexagonal
system H with the minimum number of hexagons and, if there is more than one, the one with the
minimum number of branching hexagons. As a consequence, a3 ≥ 2, H does not have two adjacent
branching hexagons and H does not satisfy the conditions given in Lemmas 3.4–3.7. If T and T ′ are
two leaves adjacent to a branching hexagon A and T1 is the other hexagon adjacent to A, we know that,
for any D ∈ D2(H) we have |V(A) ∩ D| = 2, V(A) ∩ V(T1) ∩ D = ∅ and T1 is not a linear hexagon.
Without loss of generality, we can assume that T1 is a RA hexagon. We consider the inner branch
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A − T1 − T2 − · · · − Tk − A′ in H. If k ≥ 3, by Lemma 3.5, T1,T2, . . . ,Tk−1 are angular hexagons. For
instance, we suppose that T1 and T2 are RA and LA hexagons, respectively (the case is similar when
both are RA hexagons), as shown in Figure 14 on the left. By Lemmas 3.3 and 3.7 we know that there

Figure 14. Black vertices belong to D.

exists D ∈ D2(H) which contains the black vertices shown in that figure. Therefore, every branch in
H′ = (H 	 T1) 	 T2 has an odd number of angular hexagons, D \ (V(T1) ∪ V(T2)) is a 2-dominating
set in H′ and γ2(H′) ≤ γ2(H) − 4 ≤ 2(h − 2), a contradiction. If k = 2, then we have the situation
shown in the center of Figure 14, and we get the same contradiction with H′ = H 	 T2. If k = 1, then
we have the situation shown in Figure 14 on the right. If v2 or u3 belongs to D, we can move some
vertices in D to get D′ ∈ D2(H) satisfying the condition given in Lemma 3.7. Then, v2, u3 < D and
v3 ∈ D or u2 ∈ D. If v3 ∈ D, then we consider H′ ∈ CHS(h, a3 − 1) such that V(H′) = V(H) and
E(H′) = (E(H) \ {v1v2, v3v4})∪{v4w2, v1w1}. It is easy to check that D is a 2-dominating set in H′, then,
since all the inner branches of H′ have an odd number of angular hexagons, we get a contradiction with
the minimality of the number of branching hexagons. If u2 ∈ D, then we consider H′ ∈ CHS(h, a3−1)
such that V(H′) = V(H) and E(H′) = (E(H)\ {u1u2, u3u4})∪{u1w2, u4w1} to get the same contradiction.

Now, let us see that, if γ2(H) = 2h + 1, then every inner branch in H has an odd number of angular
hexagons. By absurdum, if we suppose that H has a inner branch A1 − T1 − · · · − Tr−2 − A2 with an
even number of angular hexagons and we denote the vertices in the Hamiltonian cycle v1, v2, . . . , v4r+2

as shown in Figure 15, we denote by l, ar and al the number of linear hexagons, right angular hexagons

Figure 15. Inner branch with an even number of angular hexagons.

and left angular hexagons in this hexagonal chain, respectively, by Pu the path v1 − v2 − · · · − v j and by
Pl the path v j+1 − v j+2 − · · · − v4r+2, we have that

j = 2l + 3ar + al + 5 = 2l + 2ar + (ar + al) + 5
4r + 2 − j = 2l + ar + 3al + 5 = 2l + 2al + (ar + al) + 5.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7138–7155.
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Therefore, since ar + al is an even number, then j = 2r1 + 5, 4r + 2 − j = 2r2 + 5 and r1 + r2 = 2r. We
will build a 2-dominating set D in H such that |D| ≤ 2h. Firstly, we take the set

D′ = {v2, v4, . . . , v j−3, v j−1, v j+2, v j+4, . . . , v4r−1, v4r+1},

whose cardinality is 2r, and we start with D = D′. Secondly, we include vertices in D in the fol-
lowing way. If there is a hexagon in H, different from A1, A2,T1, . . . ,Tr−2, with consecutive vertices
u1, u2, . . . , u6 such that u1 is already in D, we include u3, u5 in D. If we do this process with all the
hexagons in H, we get a final set D such that it is a 2-dominating set with cardinality equal to 2h, a
contradiction.

Next, we give a lower bound for the 2-domination number using the number of hexagons and the
number of branching hexagons.

Theorem 3.10. If H ∈ CHS(h, a3), then

2h + 1 −
⌊a3

2

⌋
≤ γ2(H).

Proof. By Proposition 3.8 we can assume that a3 ≥ 2. By absurdum, we suppose that there exists
H ∈ CHS(h, a3) such that γ2(H) ≤ 2h −

⌊
a3
2

⌋
, and we take H, satisfying this inequality, with the

minimum number of hexagons. Therefore, H and D ∈ D2(H) cannot satisfy the conditions given in
Lemmas 3.4–3.7. If A is a branching hexagon adjacent to two leaves T and T ′, and to another hexagon
T1, then T1 is a branching hexagon or an angular hexagon, and, without loss of generality, we can
assume that we have one of the two situations shown in Figure 16, where black vertices belong to D.
If we denote H′ = H 	T 	T ′ 	 A and D′ = D \ (V(T )∪V(T ′)∪V(A)), and we consider the case when

Figure 16. Two possible situations when A is a branching hexagon adjacent to two leaves.

T1 is a branching hexagon, then D′ ∪ {w1} is a 2-dominating set in H′ and

γ2(H′) ≤ |D′ ∪ {w1}| = γ2(H) − 5 ≤ 2h −
⌊a3

2

⌋
− 5 = 2(h − 3) −

⌊
a3 − 2

2

⌋
,

a contradiction. If T1 is an angular hexagon and u1 ∈ D, then D′ = (D \ {w2,w4}) ∪ {w1,w3} is a
minimum 2-dominating set and, by Lemma 3.7, we get a contradiction. The same happens if u4 ∈ D.
Since u1, u4 < D, we know that u2 ∈ D or u3 ∈ D. If T2 is a branching hexagon, we can see that
D′ \ {w2} is a 2-dominating set in H′ 	 T1 and

γ2(H′ 	 T1) ≤ |D′ \ {w2}| = γ2(H) − 7 ≤ 2h −
⌊a3

2

⌋
− 7 = 2(h − 4) −

⌊
a3 − 2

2

⌋
,
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a contradiction. If T2 is a linear hexagon, then we know that u2, u3 ∈ D and, by Lemma 3.5, we can
assume that T2 is adjacent to a branching hexagon, consequently, D′ \ {w2,w4,w5} is a 2-dominating
set in H′ 	 T1 	 T2 and

γ2(H′ 	 T1 	 T2) ≤ |D′ \ {w2,w4,w5}| = γ2(H) − 9 ≤ 2h −
⌊a3

2

⌋
− 9

= 2(h − 5) −
⌊
a3 − 2

2

⌋
,

a contradiction.
Finally, if T2 is also an angular hexagon, as we did in the proof of Theorem 3.9 with Figure 14 on

the left, D \ (V(T1) ∪ V(T2)) is a 2-dominating set in H 	 T1 	 T2 and

γ2(H 	 T1 	 T2) ≤ |D \ (V(T1) ∪ V(T2))| = γ2(H) − 4 ≤ 2h −
⌊a3

2

⌋
− 4

= 2(h − 2) −
⌊a3

2

⌋
,

a contradiction.

Proposition 3.11. For any h ≥ 6 and any a3 such that 2 ≤ a3 ≤
2(h−1)

5 , there exists H ∈ CHS(h, a3)
such that γ2(H) = 2h + 1 −

⌊
a3
2

⌋
.

Proof. We prove the result studying different cases. Case 1. We suppose that a3 is an even number
and h = 5a3

2 + 1. We consider G ∈ CHS(6, 2) and H ∈ CHS(5, 1) shown in Figure 17. If a3 = 2,
then G satisfies the equality required. If a3 ≥ 4, we consider four consecutive vertices v1, v2, v3, v4

Figure 17. Two CHS used in the proof of Proposition 3.11.

with degree 2 in a leaf hexagon of G and G1 the CHS such that V(G1) = (V(G) \ {v2, v3}) ∪ V(H)
and E(G1) = (E(G) \ {v1v2, v2v3, v3v4}) ∪ E(H) ∪ {v1u2, v4u1}. If a3 = 4, then G1 satisfies the equality
required, if not, we continue this process, it means, we take four vertices v1, v2, v3, v4 with degree 2 in
a leaf hexagon of G1 and we take another CHS like H in Figure 17, then we construct G2 as the CHS
such that V(G2) = (V(G1)\{v2, v3})∪V(H) and E(G2) = (E(G1)\{v1v2, v2v3, v3v4})∪E(H)∪{v1u2, v4u1}.
If a3 = 2 + 2k, in k steps we obtain Gk satisfying all the requirements.
Case 2. We suppose that a3 is an even number and h > 5a3

2 + 1. Then we call h′ = 5a3
2 + 1 = h − j and

apply Case 1 to obtain G′k such that γ2(G′k) = 2h′ + 1−
⌊

a3
2

⌋
. If we attach a linear chain with j hexagons

to any leaf of G′k, we obtain a new H ∈ CHS(h, a3) satisfying the equality.
Case 3. We suppose that a3 is an odd number. If we apply Case 1 and 2 to a′3 = a3 − 1 and any

h′ ≥ 5a′3
2 + 1, we obtain G′k ∈ CHS(h′, a′3) such that γ2(G′k) = 2h′ + 1−

⌊
a′3
2

⌋
. Finally, if we take any leaf
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T of G′k and we attach two new hexagons to this leaf in such a way that, in the obtained catacondensed
hexagonal system H, the hexagon T is now a branching hexagon, then we need four extra vertices to
2-dominate H, therefore

γ2(H) ≤ γ2(G′k) + 4 = 2h′ + 1 −
⌊
a′3
2

⌋
+ 4 = 2(h′ + 2) + 1 −

⌊a3

2

⌋
,

and this can be obtain for every h = h′ + 2 ≥ 5a′3
2 + 1 + 2 = 5a3+1

2 , in particular, for any h ≥ 5a3
2 + 1.

It is easy to check that, for any H ∈ CHS(h, a3), it is satisfied a3 ≤
h−2

2 , so the inequality 2h + 1 −⌊
h−2

4

⌋
≤ γ2(H) is immediately obtained. Next, let us see that we can improve this lower bound. For

that, we will need the following lemmas.

Lemma 3.12. If H ∈ CHS(h, a3) does not have three consecutive branching hexagons, then a3 ≤
2(h−1)

5 .

Proof. The result is trivial if a3 = 2, so we suppose that a3 ≥ 3. Let T1 − T2 − · · · − Tk − A1 and
Tk+1 − Tk+2 − · · · − Tk+ j − A1 two outer branches in H. We build a partition of the hexagons in H in the
following way:

(1) If there is an inner branch A1−Tk+ j+1−· · ·−Tk+ j+i−A2, then we take M1 = {T1,T2, . . . ,Tk+ j+i, A1}.

(2) If A1 is adjacent to another branching hexagon A2, then we take A1, A2,T1, T2, . . . ,Tk+ j in M1 and,
for any inner branch A2 − T ′1 · · · − T ′l − A3 or outer branch A2 − T ′1 · · · − T ′l , we take T ′1, . . . ,T

′
l in

M1.

(3) For every p ≥ 2, we take Mp in the following way. Let T ∈
⋃p−1

s=1 Ms be a hexagon adjacent to a
branching hexagon A′1 <

⋃p−1
s=1 Ms, then we distinguish two cases.

(3.a) If A′1 is not adjacent to another branching hexagon, then we take A′1 in Mp and, for any inner
branch A′1 − T ′1 · · · − T ′l − A′2 or outer branch A′1 − T ′1 · · · − T ′l , we take T ′1, . . . ,T

′
l in Mp.

(3.b) If A′1 is adjacent to another branching hexagon A′2, then we take A′1 and A′2 in Mp and, for any
inner branch A′i − T ′1 · · · − T ′k − A′3 (T ′1 , T if i = 1) or outer branch A′i − T ′1 · · · − T ′k (i = 1, 2),
we take T ′1, . . . ,T

′
k in Mp.

With this partition, if we name h(Mp) and a3(Mp) the number of hexagons and the number of branching
hexagons in Mp, respectively, we have

a3 = a3(M1) +
∑
p≥2

a3(Mp) ≤
2(h(M1) − 1)

5
+

∑
p≥2

2h(Mp)
5

=
2
5

∑
p≥1

h(Mp) − 1

 =
2(h − 1)

5
.

Lemma 3.13. Let H ∈ CHS and let D be a 2-dominating set in H. If T1,T2 and T3 are three consecu-
tive hexagons in H such that T2 is an angular hexagon in the hexagonal chain H′ ≡ T1 − T2 − T3, then
there exists i ∈ {1, 2, 3} such that |D ∩ V(Ti)| ≥ 3.
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Proof. Firstly, there are not three consecutive vertices in V(H′) such that none of them belongs to D, so
|D∩V(Ti)| ≥ 2 for i ∈ {1, 2, 3}. Secondly, if |D∩V(Ti)| = 2, then the distance between these two vertices
is three. Therefore, an easy verification shows that there exists i ∈ {1, 2, 3} such that |D∩ V(Ti)| ≥ 3.

Theorem 3.14. If H ∈ CHS(h), then

2h + 1 −
⌊
h − 1

5

⌋
≤ γ2(H).

Proof. By absurdum, we suppose that there exists H ∈ CHS(h) such that γ2(H) ≤ 2h −
⌊

h−1
5

⌋
, and we

take H, satisfying this inequality, with the minimum number of hexagons. So, by Lemma 3.4, we know
that every leaf hexagon is adjacent to a branching hexagon. Moreover, we take H with the minimum
number of branching hexagons.

If D is a minimum 2-dominating set in H and there exists a branching hexagon A such that |D ∩
V(A)| ≥ 3, then there exist three consecutive vertices u1, u2, u3 ∈ V(A) such that u1, u3 ∈ D, u2 < D
and the edge u1u2 belongs to another hexagon T . We take any leaf T ′ in H with consecutive vertices
w1,w2, . . . ,w6, and we suppose that deg(w2) = deg(w3) = deg(w4) = deg(v5) = 2, w3 ∈ D and w4 < D.
If u1, u2, v3, v4, v5, v6 are the consecutive vertices in T , and we consider the catacondensed hexagonal
system H′ such that V(H′) = V(H) and E(H′) = (E(H) \ {u2v3, u1v6}) ∪ {v6w3, v3w4}, we have that D
is also a 2-dominating set in H′, so γ2(H′) ≤ γ2(H) ≤ 2h −

⌊
h−1

5

⌋
, but H′ has less branching hexagons,

which is a contradiction.
Finally, since 2h + 1−

⌊
a3
2

⌋
≤ γ2(H) ≤ 2h−

⌊
h−1

5

⌋
, we deduce that

⌊
h−1

5

⌋
+ 1 ≤

⌊
a3
2

⌋
and, consequently,

a3 >
2(h−1)

5 . By Lemma 3.12, there exists a branching hexagon A2 adjacent to another two branching
hexagons A1 and A3 and, by Lemma 3.13 there exists i ∈ {1, 2, 3} such that |D ∩ V(Ai)| ≥ 3. Therefore,
we get again the contradiction.

4. Total 2-domination number in catacondensed hexagonal systems

In this section we show a lower and an upper bound for the total 2-domination number of a cata-
condensed hexagonal system, and we characterize the ones attaining the bounds. Given H ∈ CHS, we
denote by s2(H) the number of sequences X − L − L − · · · − L − Y in H such that the number of linear
hexagons L is zero or an even number, and X and Y are not linear hexagons. We need the following
two results, which appear in [10], to get the bounds for the total 2-domination number.

Lemma 4.1. Let G be a graph with minimum degree 2 and let D be a total 2-dominating set in G. Then
N(v) is contained in D for every vertex v such that deg(v) = 2.

Proposition 4.2. Let G be a graph with order n and maximum degree ∆. If A = {v ∈ V(G) : deg(v) =

∆}, then γ2t(G) ≥ 2n−|A|
∆−1 .

Theorem 4.3. Let H ∈ CHS(h). Then,

3(h + 1) ≤ γ2t(H) ≤ 3(h + 1) + s2(H).

Proof. If H ∈ CHS(h), then the maximum degree is ∆ = 3 and the number of vertices with degree 3
is equal to 2(h − 1), consequently, the lower bound is directly obtained by Proposition 4.2.
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Now, we construct a total 2-dominating set D in the following way. For any sequence X − L1 − L2 −

· · · − L2k − Y such that X and Y are the only non-linear hexagons, we take V(X)∪V(L2)∪V(L4)∪ · · · ∪
V(L2k)∪ V(Y) ⊆ D. Therefore, for the 2k + 1 hexagons L1 − L2 − · · · − L2k − Y we have left 2k vertices
outside D. For any sequence X − L1 − L2 − · · · − L2k+1 − Y such that X and Y are the only non-linear
hexagons, we take V(X)∪V(L2)∪V(L4)∪ · · · ∪V(L2k)∪V(Y) ⊆ D, Therefore, for the 2k + 2 hexagons
L1 − L2 − · · · − L2k+1 −Y we have left 2k + 2 vertices outside D. It is clear that D is a total 2-dominating
set and |D| = 4h + 2 − (h − 1 − s2(H)) = 3h + 3 + s2(H).

There are many catacondensed hexagonal systems attaining the upper bound, for instance, H1 and
H2 shown in Figure 18.

Figure 18. Two CHS such that γ2t(H1) = 3(9 + 1) + 2, s2(H1) = 2, γ2t(H2) = 3(8 + 1) + 3,
s2(H2) = 3.

In the following theorem we characterize all catacondensed hexagonal systems attaining the lower
bound in Theorem 4.3.

Theorem 4.4. If H ∈ CHS(h), γ2t(H) = 3(h + 1) if and only if s2(H) = 0.

Proof. By Theorem 4.3 we only need to prove that, if γ2t(H) = 3(h + 1), then s2(H) = 0. This result is
true when h ≤ 3. By induction, we suppose that it is true for every H′ ∈ CHS(h′), when h′ < h, and
let us prove the result for H ∈ CHS(h). Let H ∈ CHS(h) such that γ2t(H) = 3(h + 1) and let D be
a minimum total 2-dominating set in H. We group the vertices of H in the following way. We name
by T1,T2, . . . ,Th the hexagons in H, such that T1 is a leaf and T2 is adjacent to T1. If v1, v2, . . . , v6 are
the consecutive vertices in T1 such that deg(v1) = deg(v6) = 3, then we define V4(T1) = {v1, v2, v5, v6}.
Next, if V(Tk)∩V(T j) , ∅ and V4(T j) has been already defined, then V4(Tk) = V(Tk) \ (V(Tk)∩V(T j)).
It is clear that V(H) = {v3, v4} ∪

(⋃h
k=1 V4(Tk)

)
.

Firstly, we suppose that there exists a linear hexagon Tk in H such that |D ∩ V4(Tk)| = 2. In such
a case, if v and v′ are the two vertices in V4(Tk) with degree equal to 2, then they do not belong to D.
We denote by Tk−1 and Tk+1 the two hexagons adjacent to Tk and we consider the two catacondensed
hexagonal systems H1 ∈ CHS(h1) and H2 ∈ CHS(h2) in H − {v, v′}. Then, we have that D1 =

D ∩ V(H1) and D2 = D ∩ V(H2) are total 2-dominating sets in H1 and H2, respectively. Moreover,
3(h1 + h2 + 2) = 3(h + 1) = |D| = |D1| + |D2| ≥ 3(h1 + 1) + 3(h2 + 1), then |D1| = 3(h1 + 1) and
|D2| = 3(h2 + 1). Therefore, by induction hypothesis we know that s2(H1) = 0 = s2(H2). If Tk−1

and Tk+1 are angular hexagons or branching hexagons in H, then s2(H) = 0. If Tk−1 is an angular or
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branching hexagon in H and Tk+1 is a linear hexagon in H, since the number of linear hexagons in
the hexagonal chain Tk+1 − Tk+2 − · · · − Tk+r is an odd number, the number of linear hexagons in the
hexagonal chain Tk−1 − Tk − Tk+1 − Tk+2 − · · · − Tk+r is also an odd number. If Tk−1 and Tk+1 are linear
hexagons in H, since the number of linear hexagons in the hexagonal chains Tk−r′−· · ·−Tk−2−Tk−1 and
Tk+1 −Tk+2 − · · · −Tk+r is an odd number in both cases, the number of linear hexagons in the hexagonal
chain Tk−r′ − Tk−1 − Tk − Tk+1 − Tk+2 − · · · − Tk+r is also an odd number. Consequently, s2(H) = 0.

Finally, we suppose that |D ∩ V4(Tk)| ≥ 3 for any linear hexagon Tk. Since |D ∩ V4(Tk)| ≥ 3 for
every angular hexagon Tk and |D ∩ V4(Tk)| ≥ 2 for any branching hexagon Tk, if we denote by l the
number of linear hexagons, by a3 the number of branching hexagons, and by a the number of angular
hexagons, using also that the number of leaves is equal to a3 + 2, we conclude that

|D| = 2 +

∣∣∣∣∣∣∣
h⋃

k=1

D ∩ V4(Tk)

∣∣∣∣∣∣∣ ≥ 2 + 4(a3 + 2) + 2a3 + 3l + 3a

= 6a3 + 3l + 3a + 10 > 3(2a3 + 2 + l + a + 1) = 3(h + 1),

which is a contradiction.

As we saw in Figure 18, there are many catancondensed hexagonal systems attaining the upper
bound given in Theorem 4.3, so we characterize now the ones attaining that upper bound when s2(H)
is as big as possible, that is, when s2(H) = h−1. A hexagonal chain such that its consecutive (from left
to right) hexagons are L−LA−RA−LA−RA · · ·−LA−RA−L or L−LA−RA−LA−RA · · ·−RA−LA−L
is called zigzag.

Proposition 4.5. If H ∈ CHS(h), γ2t(H) = 4h + 2 if and only if H is a zigzag or H ∈ CHS(4, 1).

Proof. If H is a zigzag or H ∈ CHS(4, 1), every vertex has a neighbor with degree 2, so every vertex
must be in the total 2-dominating set. If γ2t(H) = 4h + 2, then every vertex must have a neighbor with
degree two. Let v1 be any vertex and let v2 be a vertex adjacent to v1, such that deg(v2) = 2 and both
belong to the hexagon T with consecutive vertices v1, v2, . . . , v6. If deg(v1) = 3, then deg(v3) = 2, so
T is an angular hexagon or a leaf, that is, every vertex belongs to a leaf or to an angular hexagon. If
H contains two consecutive angular hexagons of the same type or and angular hexagon adjacent to a
branching hexagon, there is a vertex such that all its neighbors have degree equal to 3. Therefore, H is
a zigzag or H ∈ CHS(4, 1).

5. Final conclusions

In any catacondensed hexagonal system (with more than one hexagon) the maximum degree is equal
to three, so all possible cases for the k-domination number and total k-domination number are when
1 ≤ k ≤ 3, except for the total 3-domination number, which does not make sense. Since the domination
number was studied in two previous papers [26,27], the whole study of these two parameters will finish
after giving the next result about the 3-domination number.

Theorem 5.1. If H ∈ CHS(h), then γ3(H) = 3(h + 1).

Proof. If D is 3-dominating set, then every vertex with degree 2 must belong to D, and there are 2h + 4
vertices with degree equal to 2. Moreover, in any edge sharing two hexagons must have a vertex of D,
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therefore, |D| ≥ 2h + 4 + h − 1 = 3(h + 1). Now, if we consider a set of vertices A such that it contains
exactly one vertex in any edge sharing two hexagons, and such that every two vertices in A are at a
distance bigger than or equal to 2, then D = V(H) \A is a 3-dominating set with cardinality 3(h + 1).
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37. S. Majstorović, A. Klobučar, T. Došlić, Domination numbers of m-cactus chains, Ars Comb., 125
(2016), 11–22.

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 7, 7138–7155.

http://dx.doi.org/https://doi.org/10.1007/s10910-014-0422-1
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.3390/math10010067
http://dx.doi.org/https://doi.org/10.1007/s10910-018-0877-6
http://dx.doi.org/https://doi.org/10.1007/s10910-018-0877-6
http://dx.doi.org/https://doi.org/10.3390/math7111110
http://dx.doi.org/
http://dx.doi.org/
http://creativecommons.org/licenses/by/4.0

	Introduction
	Total domination number in catacondensed hexagonal systems
	2-domination number in catacondensed hexagonal systems
	Total 2-domination number in catacondensed hexagonal systems
	Final conclusions

