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Abstract: Considering the effect of the natural enemy on aphid populations, the corresponding model
with delay is built. The model is analyzed using the qualitative theory of differential equations and
catastrophe theory etc. For the outbreak phenomenon of aphid populations, the corresponding man-
agement model is proposed and the catastrophe controller is designed to keep the system in a virtuous
cycle by means of the qualitative theory of impulsive differential equations. In the mean time, some
simulations are carried to prove the results. The paper not only provides a new method for catastrophe
control but also expands the application fields of catastrophe control.
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1. Introduction

Though the application of catastrophe theory experiences a period of ups and downs [1–3], catas-
trophe phenomena such as pest outbreak, draw some ecologists and mathematicians’ attention to catas-
trophe theory [4–7].

In the 50-acre experiment plot near Northwest A and F University, Zhao Huiyan et al. investigated
the open system of the wheat aphid populations for 50 days in 1987–1988. The following phenomena
are shown [8]: (1) The wheat aphid populations shows distinct difference in every growth stages of
wheat, for example, the amount starts to increase in wheat joining stage and goes up faster in the filling
stage. (2) The amount of the wheat aphid populations shows hysteresis after spraying pesticides;
that is, the wheat aphid populations suddenly decrease, and then increase and exceed the amount be-
fore. (3) When the density of the wheat aphid populations is low, the individuals don’t disturb each
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other; that is, there is no correlation between the individual growth rate and the corresponding density.
However, a relationship appears gradually with the increase of the wheat aphid populations, and there
exists a threshold below which the corresponding individual growth rate increases and above which it
decreases. So far, Zhao Huiyan et al. have been devoting to the research above. According to data in
the investigations, some catastrophe models are established to successfully predict the outbreak of the
wheat aphid populations in Guanzhong and Weihe areas of Shanxi Province [9]. On the other hand,
they employ some catastrophe models to study the ecological mechanism behind them, such as the fold
catastrophe model [8], the cusp catastrophe model [9, 10], the swallowtail catastrophe model [11, 12],
the butterfly catastrophe model [13] and the elliptic catastrophe model [14]. On the basis of the above,
an APHIDSim Software is developed to simulate the dynamics of the wheat aphid populations [15].
The research above not only realizes the first application of catastrophe theory in ecosystem but also
promotes the real combination of ecology and mathematics.

In 1990s, Ma Zhanshan et al. conducted the laboratory experiments of Russian wheat aphid popula-
tions in 1994–1995 to investigate the survival, development, reproduction of 800 Russian wheat aphid
populations. The following results are got [16–19]: (1) Cohort life tables, reproductive heterogeneity
tables and reproductive schedule tables are constructed. (2) Some demographic models are proposed
to simulate the growth of the populations. (3) The corresponding cusp catastrophe model is obtained
by choosing intrinsic growth rate as the state variable of the system, temperature and host plant-growth
stage as control variables. The study offers the theoretical support for pest management.

On the basis of Zhao Huiyan and Ma Zhanshan’ study, Zhao Lichun et al. apply singular system
theory and control theory to wheat field ecosystems, the main results are as followings [20–24]: (1) For
the chemical management of the wheat aphid populations, the cusp catastrophe model with impulsive
effects is built and the corresponding controllers are designed not only to minimize the management
cost but also to keep the wheat aphid populations at the refuge level. (2) For the swallowtail catastrophe
model and the butterfly catastrophe model, the qualitative analysis is studied to explain the outbreak
phenomenon of the wheat aphid populations. (3) Based on cusp catastrophe model, the corresponding
singular model is established to reveal the catastrophe mechanism of the wheat aphid populations. In
a word, the study above not only expands the application field of singular system theory but also offers
a new application background for catastrophe control.

It is well known that aphid populations seriously damage wheat by feeding on the different parts of
the crop and by transporting some disease causative agents. Hence it is very crucial to manage them in
a sustainable way, which belongs to the scope of catastrophe control. In the early 2000s, considering
the similarity between the transfer function in automatic control principle and the potential function
in catastrophe theory, Sun Rao et al. introduced the catastrophe control into the quantitative research
and description of control systems. The catastrophe control is applied in the artificial heart and the
integrated navigation system for the first time [25]. With development of catastrophe control theory,
it has been extensively used in some engineering systems [26–31] and network systems [32, 33]. But
the applications in ecology just starts, many issues need further studying, which are exactly what the
paper is going to do.

The organization of the paper is as follows, firstly, a catastrophe model of the wheat aphid popula-
tions with delay is proposed and the catastrophe behaviors are analyzed using the qualitative theory of
differential equations. Secondly, for biological management such as releasing natural enemy popula-
tions, the control model with impulse effects is proposed and the corresponding catastrophe controller
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is designed to make the wheat field ecosystem in a virtuous cycle. In the mean time, some simulations
are carried to prove the results.

2. Modelling

Considering the following model [8]

1
x

dx
dt

= a + bx − cx2, (2.1)

where x is the density of aphid populations, a is the corresponding intrinsic growth rate, a, b, c are
positive constants.
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Figure 1. The bifurcation diagram of the model (2.2).

Zhao Huiyan et al. transform the model (2.1) into the following,

dx
dt

= −cx[(x − a1)2 − P], (2.2)

where a1 = b
2c , P = a

c + ( b
2c )2, a = r − d and r, d are the birth rate and the death rate of the wheat aphid

populations respectively.

Remark 2.1. In the the model (2.2), b
2c is the threshold below which the individual growth rate of the

wheat aphid population increases and above which it decreases.

Remark 2.2. Obviously, the model (2.2) is a fold catastrophe model. The parameter P is not only
related to the birth rate and the death rate but also to the threshold. From Figure 1, it is seen that
the wheat aphid populations suddenly drops when P = P0 = 0 and breaks out when P = P1, which
express the ecological mechanism of the pest sudden drop or outbreak from a view of dynamics. So it
is reasonable to take the parameter P as an important index of pest management.

Remark 2.3. Using the bimodality (two stable manifolds x = 0 and x − a =
√

P) in the model (2.2),
Zhao Huiyan explains the outbreak phenomenon of the wheat aphid populations.

For the predator population, Volterra introduces the delay to describe the effect of feeding predator,
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the following model is given [34]
dN1

dt
= ε1N1 − αN1N2,

dN2

dt
= −ε2N2 + βN2

∫ t

−∞

F(t − τ)N1(τ)dτ,

(2.3)

For the term
∫ t

−∞
F(t − τ)N1(τ)dτ in the model (2.3), N.Macdonald specifies F(t) as the following

form
F(z) = a exp(−az). (2.4)

Remark 2.4. For the term
∫ t

−∞
F(t − τ)N1(τ)dτ in the model (2.3), we get the following result∫ t

−∞
F(t − τ)N1(τ)dτ =

∫ ∞
0

F(t)N1(t − s)ds.

On the other hand, the literature [35] shows that the dynamics of the bupleurum aphid populations
is closely related to the amount of natural enemies and there exists a delay in the seedling stage.

Considering the above, the delay is introduced into the model (2.1) and the following is obtained

dx
dt

= x[a + bx − cx2 − ω

∫ t

−∞

f (t − s)x(s)ds], (2.5)

where ω > 0 is a parameter; the meaning of x, a, b, c are the same as the model (2.1).

Remark 2.5. ω in this model (2.5) is interpreted as the foraging efficiency of the natural en-
emy populations for the wheat aphid populations For the model (2.5), let f (t − s) = e−a0(t−s) and
y = a0

∫ t

−∞
e−a0(t−s)x(s)ds, a0 is the saturation coefficient of the natural enemy populations, thus the

following is got
dy
dt

= a0[x(t) − y(t)]. (2.6)

Combining the model (2.5) with the model (2.6), the following is obtained
dx

a0dt
=

1
a0

x[a + bx − cx2 −
ω

a0
y(t)],

dy
a0dt

= x(t) − y(t).

(2.7)

For the model (2.7), let dt∗ = a0dt, γ1 = 1
a0
> 0, γ2 = ω

a0
> 0. For convenience, dt∗ is replaced with

dt, the model is got, {
ẋ = γ1x(a + bx − cx2 − γ2y),
ẏ = x − y.

(2.8)

Remark 2.6. For the model (2.8), the coefficient γ2 includes the parameter ω related to the foraging
efficiency of natural enemy populations, thus it is seen as the main parameter of the model.

In the following sections, the model is analyzed using the qualitative theory of differential equations.
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3. Model analysis

As the parameter γ2 in the model (2.8) is the main parameter related to the natural enemy popula-
tions, it should be focused on in the model analysis.

Let {
γ1x(a + bx − cx2 − γ2y) = 0,
x − y = 0.

Obviously, (x∗0, y
∗
0) = (0, 0) is an equilibrium of the model (2.8), the others are determined by the

following
cx2 + (γ2 − b)x − a = 0.

Let ∆ = (γ2 − b)2 + 4ac, ∆ > 0 implies that the model (2.8) has two nonzero equilibriums, that is
x∗1 =

b − γ2 −
√

(γ2 − b)2 + 4ac
2c

,

y∗1 =
b − γ2 −

√
(γ2 − b)2 + 4ac
2c

,


x∗2 =

b − γ2 +
√

(γ2 − b)2 + 4ac
2c

.

y∗2 =
b − γ2 +

√
(γ2 − b)2 + 4ac
2c

.

Remark 3.1. Let A0 = (0, 0), A1 = (x∗1, y
∗
1), A2 = (x∗2, y

∗
2). Because x∗1 < 0, y∗1 < 0, thus equilibrium A1

is meaningless ecologically, the qualitative analysis near the point A1 is omitted.

In the following, the qualitative analysis near the point A0 and A2 are studied, let{
ẋ = f (x, y),
ẏ = g(x, y),

(3.1)

where f (x, y) = γ1x(a + bx − cx2 − γ2y), g(x, y) = x − y.
According to the literature [36], the following theorems are obtained.

Theorem 3.1. For the model (2.8),
(1) The equilibrium A0 is a saddle;
(2) If x∗2 >

b
2c and 2

√
D2 < 1, then the equilibrium A2 is a stable node,

where D2 = γ1c(x∗2)2 + aγ1 (see Figures 2 and 3.).

Proof. (1) For the equilibrium A0, the corresponding Jacobian determinant is

∂( f , g)
∂(x, y)

∣∣∣A0 =

∣∣∣∣∣∣ aγ1 0
1 −1

∣∣∣∣∣∣ , (3.2)

the characteristic equation is
λ2 − T0λ + D0 = 0,

where T0 = aγ1 − 1, D0 = −aγ1.

Obviously, D0 < 0 means that the equilibrium A0 is a saddle
(2) Using the same method as the above, the characteristic equation at the equilibrium A2 is got

λ2 − T2λ + D2 = 0, (3.3)

where T2 = −2γ1c(x∗2)2 + bγ1x∗2 − 1, D2 = γ1c(x∗2)2 + aγ1.
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D2 > 0 means that the equilibrium A2 is a focus or a node, which can be determined by the sign of
Y = T 2

2 − 4D2. According to the condition (2), T2 < −1 and Y > 0, thus the equilibrium A2 is a node;
T2 < 0, thus the equilibrium A2 is stable(see Figure 2). Thus the equilibrium A2 is a stable node (see
Figure 3).
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Figure 2. Parameter analysis of Theorem 3.1.
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Figure 3. Phase portrait of Theorem 3.1.

Theorem 3.2. For the equilibrium A2 in the model (2.8), the following results are obtained
(1) x∗2 >

b
2c and 2

√
D2 > 1,

(i) if −2
√

D2 < T2 < −1, then the equilibrium A2 is a stable focus (see Figures 4(a) and 5(a));
(ii) if T2 < −2

√
D2, then the equilibrium A2 is a stable node (see Figures 4(b) and 5(b)).

(2) x∗2 <
b
2c and 2

√
D2 < 1,

(i) if −1 < T2 < −2
√

D2, then the equilibrium A2 is a stable node (see Figures 6(a) and 7);
(ii) if −2

√
D2 < T2 < 0, then the equilibrium A2 is a stable focus (see Figures 6(b) and 8);

(iii) if 0 < T2 < 2
√

D2, then the equilibrium A2 is an unstable focus (see Figures 6(c) and 9);
(iv) if T2 > 1, then the equilibrium A2 is an unstable node (see Figure 6(d) and Figure 10).

(3) x∗2 <
b
2c and 2

√
D2 > 1,

(i) if −1 < T2 < 0, then the equilibrium A2 is a stable focus (see Figures 11(a) and 12(a));
(ii) if 0 < T2 < 2

√
D2, then the equilibrium A2 is an unstable focus (see Figures 11(b) and 12(b));

(iii) if 2
√

D2 < T2, then the equilibrium A2 is an unstable node (see Figures 11(c) and 12(c)).
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Remark 3.2. For the result (1) in Theorem 3.2, the condition x∗2 > b
2c shows that the wheat aphid

populations corresponding to the equilibrium A2 is greater than its threshold density and stabilizes at
the point A2. If the condition x∗2 >

b
2c is taken as x∗2 <

b
2c , the results are seen in (3) of the Theorem 3.2

(Figure 6).
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Figure 4. Parameter analysis portrait in (1) of Theorem 3.2.
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Figure 5. Phase portraits in (1) of Theorem 3.2.

Remark 3.3. For the result (2) in Theorem 3.2, the followings are found: when T2 changes from −1
to +∞, it undergoes two special values: one is T2 = 0, the other is T2 = 2

√
D2. For the former, the

equilibrium A2 changes from a stable focus to an unstable one and is surrounded by a stable period
orbit, thus T2 = 0 is referred to as a catastrophe point at which the wheat aphid populations jump
suddenly to the outbreak level (see from Figures 8 and 9). For the latter, the equilibrium A2 changes
from the focus to the node, and the stability remains unchanged.

Remark 3.4. For the result (3) in Theorem 3.2, when T2 changes from −1 to +∞, there exits two special
values: one is T2 = 0, the other is T2 = 2

√
D2. For the former, the structure change of the model (2.8)

appears; that is, the equilibrium A2 changes from a stable focus to an unstable one and is surrounded
by a stable limit cycle (see Figure 10). For the latter, the stability of equilibrium A2 remains unchanged,
while the type changes.
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Figure 6. Parameter analysis in (2) of Theorem 3.2.
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Figure 7. Global phase portrait near the equilibrium A2 for the first case in (2) of Theorem
3.2.

For the results (2) and (3) in Theorem 3.2, when T2 goes through T2 = 0, the point A2 of the model
(2.8) changes from a stable equilibrium to an unstable one and a stable limit circle appears. The limit
circle in the result (3) is located in the domain {(x, y)|0 ≤ x ≤ 4, 0 ≤ y ≤ 1.2}, which indicates that
the system is in a virtuous cycle(see Figure 12(b)); while the limit circle in the result (2) undergoes
three jumps(see segment A0B, CD and DA0 in Figure 8): The first one means that the amount of the
wheat aphid populations changes from x ≈ 0.03 to x ≈ 9000 in a short time, which shows that the
wheat aphid populations break out when the density of the enemy populations is low. The second one
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second case in (2) of Theorem 3.2.
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Figure 9. Global and the corresponding local phase portrait near the equilibrium A2 for the
third case in (2) of Theorem 3.2.
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the fourth case in (2) of Theorem 3.2.
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Figure 11. Parameter analysis in (3) of Theorem 3.2.

means that the amount of the wheat aphid populations decreases suddenly. The last one means that the
migration of the enemy populations results from the lack of food. For the first one, it is very necessary
to release additional enemy populations in a short time, the corresponding control is designed in the
following section.

4. Controller design

The aphid populations are typical R-strategy of small body size, short period, rapid multiplica-
tion, etc. the breakout phenomena are common. Figure 8(a) shows that A0 ≈ (0.03, 0.02) and
B ≈ (9000, 0.02), which means that the amount of the wheat aphid populations changes dramati-
cally from x ≈ 0.03 to x ≈ 9000, that is, the outbreak of the aphid populations. It also indicates that the
natural enemy populations in ecological system can’t to prevent the outbreak of the aphid populations
by self-regulating mechanism, it is necessary to release additional enemy populations in a short time.
Impulsive state feedback control may be used to describe the processes, the corresponding model is
given 

ẋ = γ1x(a + bx − cx2 − γ2y), x , h,
ẏ = x − y, x , h,
∆x = −kα, x = h,
∆y = α, x = h,

(4.1)
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where α is the amount of the natural enemy populations y(t) released, k is the corresponding absorption
rate for the wheat aphid populations, x = h is an economic threshold which does damage to wheat.

For the model (4.1), the following remarks are presented:
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Remark 4.1. In the model (4.1), the term ∆y = α means that the additional enemy populations are
released; The term ∆x = −kα represents the amount of the aphid populations decreased by releasing
the enemy populations and the control gain k may be regulated to describe the predation effect.

Remark 4.2. The biological interpretation of the model (12) is that the enemy populations should be
released to keep the wheat aphid populations at the refuge level as soon as possible when the amount
of the wheat aphid populations reaches the level x = h.

Remark 4.3. The condition x∗2 <
b
2c means that the equilibrium A2 is on the left of the line x = b

2c .

Figure 13 is used to describe the structure of impulse control of the model (12), in which the line
L1 : x = h is the impulsive set; the line L2 : x = h− kα is the corresponding image set; the point A0 and
the point A2 are the equilibria; the line OA2 is Y-isoline; Y-axis and the parabola ÔA2 are X-isoline; the
point P is the intersection of the parabola ÔA2 and the image set L2.

In the following section, the controller is designed to keep the wheat aphid populations at the refuge
level by regulating the amount α of the enemy populations released. And then the qualitative analysis
is studied to evaluate the control effect by means of the method in the literature [39], the specific steps
are as follows:

Step I Considering the orbit starting from the point P on the line L1, it jumps onto the point P+

on the line L2, and then moves to the point P1 on the line L1 as time goes. It is worth noting that the
orbit becomes vertical as it crosses the parabola ÔA2 and horizontal as it crosses the line OA2, thus the
region M encircled by the curve PP+P1P is formed (see Figure 14).

The following steps show that all the orbits of the model (12) finally go into the region encircled
by the curve PP+P1P and remain in it forever; that is, the control achieves the purpose for regulating
wheat aphid populations.

Step II If the initial point Q is inside the region encircled by the curve PP+P1P, the orbit starting
from the point hits the point Q0 on the impulsive set L1 and jumps onto the point Q+

0 on the corre-
sponding image set L2, and then it moves on. Such processes may be repeated many times, but the
orbit remains in the region forever.

Step III If the initial point R is outside the region encircled by the curve PP+P1P, the following
cases are considered:

Case 1 The initial point R is located on the left of the region, thus the orbit starting from the point
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hits the point R0 on the impulsive set L1, jumps onto the point R+
0 on the image set L2, and then goes

into the region and remains in it.
Case 2 The initial point R is located on the right of the region, thus the orbit starting from the point

goes through the line L1 from the right to the left, and then shows the same dynamics as Case 1.
Step IV If the initial point S is on the boundary of the region, for example S = P, the corresponding

orbit shows the same dynamics as Step I.

Remark 4.4. The steps above describes the whole implementing process of controller design, the
results show that the orbits starting from the points around the equilibrium A2 eventually enters the
region M encircled by the curve PP+P1P and remains in it, which indicates that the region is the
attractive region of the model (4.1).

Further, the existence of periodical solutions of the model (4.1) may be investigated. In general,
the two methods are used to finish the task, one is theory method, for example, the literature [37] gen-
eralizes some theories of periodical solutions from the differential equations to impulsive differential
equations, and these theories are applied in a predator-prey model; The other is geometrical analysis,
for example, the literature [38] generalizes successor functions and Poincare-Bendixson theorem from
the differential equations to impulsive differential equations, and gives the geometrical analysis of a
predator-prey model with two state impulses. In the following, the latter is used to study the existence
of periodical solutions of the model (4.1).

In Figure 14, Let P = (xp, yp), P1 = (xp1 , yp1), thus the successor function of the point P is

f (P) = yp1 − yp < 0. (4.2)

Similarly, let R = (xr, yr), the corresponding image point is R1 = (xr1 , yr1). According to Remark
3.4, we have

f (R) = yr1 − yr > 0. (4.3)

Combine (4.2) and (4.3), the existence of periodical solutions of the model (4.1) is proven.

5. Discussion

In fact, the outbreak of aphid populations is a catastrophe phenomenon, the ecologists usually give
qualitative explaination from the ecological views; In the paper, the delay is introduced the catastro-
phe model to reveal the mechanism behind the outbreak, which provides the mathematical details for
the application of catastrophe theory in ecosystems. Due to the rapid multiplication of aphid popula-
tions, releasing enemy and spraying become the main measures of aphids management in agricultural
production. The paper uses impulsive control to express the process, in which a new method for the
theory study of aphid populations is provides. In a sense, the above realizes the combination of ecol-
ogy, mathematics and catastrophe control theory. On the other hand, the essence of catastrophe control
is the criticality control of systems. Literature [39] gives the method of identifying the type of critical
point and literature [40] illustrate the main achievements in the study of critical dynamics in biological
systems. Whether they are applied to regulate the catastrophe behavior of the wheat aphid populations
is the future work.
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