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Abstract: This paper presents a novel approach to the joint proactive and reactive planning of 
deliveries by an unmanned aerial vehicle (UAV) fleet. We develop a receding horizon-based approach 
to contingency planning for the UAV fleet’s mission. We considered the delivery of goods to spatially 
dispersed customers, over an assumed time horizon. In order to take into account forecasted weather 
changes that affect the energy consumption of UAVs and limit their range, we propose a set of reaction 
rules that can be encountered during delivery in a highly dynamic and unpredictable environment. 
These rules are used in the course of designing the contingency plans related to the need to implement 
an emergency return of the UAV to the base or handling of ad hoc ordered deliveries. Due to the 
nonlinearity of the environment’s characteristics, both constraint programming and genetic algorithm 
paradigms have been implemented. Because of the NP-difficult nature of the considered planning 
problem, conditions have been developed that allow for the acceleration of calculations. The multiple 
computer experiments carried out allow for comparison representatives of the approximate and exact 
methods so as to judge which approach is faster for which size of the selected instance of the UAV 
mission planning problem. 

Keywords: contingency planning; UAV fleet mission; weather changes; declarative modeling; genetic 
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1. Introduction 

In this paper, we consider the planning of an unmanned aerial vehicle (UAV) fleet mission 
problem with highly dynamic and unpredictable environment constraints [1–5]. Typical disruptions in 
urban deliveries by UAVs (characterized by frequent stop-and-go movements, low consolidation, and 
frequent re-scheduling), may be caused by changes in the order by customers, or shifting weather 
conditions (e.g., a sharp drop in temperature, icing of propellers, turbulence), which affect the energy 
consumption of UAVs and cause their shorter range due to the depletion of batteries [6,7]. For that 
reason, the routing of a UAV fleet in a partially known and unpredictable environment should 
guarantee a reactive on-line determined contingency reaction. 

The UAVs’ routes can be determined in the course of proactive planning [8] and generated in 
offline mode or in reactive planning [9,10], then executed in the online mode. Routes determined in 
proactive planning guarantee the achievement of the planned mission’s goal for the environment’s 
parameters, which change at predetermined intervals. Scenarios corresponding to planned reactive 
rules do not guarantee the existence of reactive end-to-end paths employed in the routing process while 
adapting it to changes in the environment during mission execution [2,6,10–18]. In particular, the 
reactive routing strategies linking the “route discovery (proactive route planning)” and “route 
maintenance (reactive rules adopting)” concepts [19] are responsible for UAV robustness to the 
changes that appear in the urban distribution context. In this context, our study focuses on reactive 
planning [20,21] of deliveries by a UAV fleet, which are resistant to sudden changes in weather 
conditions and unforeseen changes in the delivery schedules.  

The originality of the paper results from its merging of the proactive and reactive planning of 
missions of UAV fleet. The developed models allow for predictive (i.e., taking into account forecasted 
weather conditions changing) and reactive (i.e., enabling interruption of a drone’s mission) planning 
of delivery missions in terms of the constraint satisfaction problem [6,22,23] and the easy 
implementation of the proposed genetic algorithm in a commercially available constraint programming 
environment, e.g., IBM ILOG. 

The paper is structured as follows. Section 2 presents the state of art. The approach to UAV 
mission contingency planning is presented in Section 3. The declarative model for reactive planning 
of deliveries by UAV fleets according to the constraint satisfaction problem is described in Section 4. 
Sufficient conditions guaranteeing the existence of a non-empty space of admissible solutions and, 
consequently, a reduction in the time expenditure incurred on the assessment of the weather changes 
are outlined in Section 5. The structure and operation of the developed genetic algorithm are presented 
in Section 6. The results of the conducted experiments regarding implementation of an accurate and 
approximate approach to UAV fleet mission planning are discussed in Section 7. Final conclusions are 
stated in Section 8, followed by suggestions for future research. 

2. Related work 

UAV mission planning issues play a key role in supply management systems in distributed 
networks belonging to the VRP class of NP-hard computational complexity [2,24]. Consequently, the 
sub-problems of routing and scheduling occurring in them also encounter a combinatorial explosion 
barrier, forcing the use of approximate solution methods. The goal is to identify a set of routes for a 
fleet of vehicles that optimizes some underlying objective function while subject to problem-specific 
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constraints [25–29]. These efforts, according to the current taxonomy of available route planning 
methods, can be partitioned into two main categories: approximation and exact methods [6,26,30–34].  

In general planning of the UAV path comes down to finding the path connecting the starting point 
with the destination that guarantees the fulfillment of the UAV operational requirements within the 
specified UAV flight constraints. Problems of this type undertaken in the area of UAV routing, i.e., 
VRP class problems [1,5], are formulated for various assumptions covering both the topography and 
the presence of obstacles. The topography, related to, e.g., mountainous and/or urbanized areas, 
influences the changes of the flight trajectory level, while the presence of stationary and/or dynamic 
obstacles makes it impossible to keep the straight shape of the trajectory [35]. Limitations of this type, 
force the inclusion of many new variables multiplying the complexity of UAVs trajectory planning 
problems, thus implying the need to use metaheuristic algorithms. The underlying nature-inspired 
algorithms such as the Bath algorithm, particle swarm optimization (PSO), artificial bee colony (ABC) 
algorithm, ant colony algorithm (ACO), grey wolf algorithm, etc. compete in terms of their 
convergence accuracy and proceeding efficiency [36–38]. 

Many works dealing with the problem of UAV routing, in particular those related to the use of 
UAVs in situations related to the monitoring of reservoirs, fields and forests, as well as flood victims 
support, assume UAV moves over flat terrain without obstacles that exclude the linear shape of their 
trajectory. In situations of this type, assuming that the UAV takes off vertically with the collected goods 
and also lands vertically in order to unload it, the problem of UAV routing boils down to determining 
the appropriate wind correction angle, correcting its drift [24]. Assuming these assumptions, this work 
addresses the problem of re-planning a UAV route in situations where sudden changes in wind direction 
and its intensity go beyond the fluctuation ranges adopted at the stage of proactive route planning. 

An approximation method attempts to find the best possible solution while providing no 
guarantees as to the quality of that solution, i.e., it prefers quick solutions over optimal ones. In turn, 
an exact method is guaranteed to find the best solution to the problem given enough time, i.e., it is 
oriented toward the search for the optimal solution at the expense of the time incurred to obtain it. In 
the approximation approach, there are methods that implement heuristic algorithms (e.g., 
metaheuristics-driven ones, such as variable neighborhood search (VNS), simulated annealing (SA), 
and tabu search (TS)); population algorithms, such as PSO, ACO, ABC and evolutionary algorithms, 
such as memetic algorithms (MMA), and genetic algorithm (GA)) [26,30,32,34]. 

The exact approach leverages intelligent forms of enumerative search, such as dynamic 
programming (DP), mixed integer linear programming (MILP), branch-and-bound (BB), and 
constraint programming (CP) [6,31,33]. All of the above-mentioned approaches are supplemented by 
computer simulation tools, such as flight simulators [37,39,40]. 

There is a growing trend in research aimed at developing an interactive tool dedicated to online 
planning missions carried out by UAV teams, as reflected in numerous publications [12,13,16,22]. The 
aim of this research is to devise solutions that enable proactive and/or reactive planning of UAV 
missions in situations caused, for instance, by contingency planning in dynamic environments, i.e., 
decision support tools facilitating analysis and different scenarios comparison. Besides emergency 
situations, such tools can be helpful in various fields of application, e.g., reconnaissance and mapping, 
package delivery and delivery communication capabilities, healthcare and so on [3,4,12,13,18]. 

The UAV mission planning problems encountered in practice are characterized by a large variety 
of parameters, constraints, and specific evaluation criteria. Some examples of possible differences are 
listed in the following exemplary sets:  
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 parameters specifying UAVs (e.g., maximum loading capacity, maximum energy capacity, 
empty weight, payload weigh, ground speed, and aerodynamic drag coefficient), environmental 
conditions (e.g., weather forecasts including wind speed and direction, air density, temperature drizzle, 
or snowfall), and distribution network topology (e.g., number of delivery points, number of depots, 
and distances between delivery points and depots); 

 constraints determining UAVs trajectories (e.g., to avoid collisions, a UAV is configured with 
at least one flight corridor and flight path), battery durability, delivery volumes, delivery periods, and 
changing weather conditions; 

 evaluation criteria used to determine UAV fleet routings that guarantee the maximum benefits 
with the shortest total path, in particular, the maximum travel distance (limited by the capacity of the 
battery used), the minimum length of the sum of the flight path of each UAV, timely deliveries, 
resistance to changes in weather conditions, and/or service delivery deadlines. 

As already mentioned, problems of this type belong to the category of NP-hard problems. This 
means that instances of such problems encountered in practice (due to their size as well as the number 
and variety of characteristics describing them) can be resolved within a reasonable time interval using 
approximate methods. In that context, the exact (i.e., optimal) solutions achieved in a similar time 
frame by exact methods refer, however, only to the small size instances out of practical significance. 
It is also easy to see that, in general, it is difficult to say which approach is best used for a given 
problem instance. The literature is rather scarce on this topic. Therefore, the research gap in this field 
is the motivation behind our research aimed at the implementation of selected methods representing 
both the approximate and exact approaches to compare them on using an arbitrarily selected example 
of a UAV fleet planning problem. 

The comparison included CP as representative of the exact approach and GA as representative of 
the approximate approach. CP is a paradigm for solving combinatorial problems according to which 
users declaratively state the constraints on the feasible solutions for a set of decision variables. The 
acceptable solution sought is the set of decision variables values satisfying all the constraints [6,22,27]. 
It is worth emphasizing that CP is more general than MILP, allowing variable types beyond integer 
and continuous (e.g., interval and set variables), and dropping the restriction of linearity in the 
constraints and objective function. In turn, the GA, being the representative of evolutionary algorithms, 
is a search technique inspired by evolutionary biology such as inheritance, mutation, selection, and 
crossover used in computing to find true or approximate solutions to optimization and search problems 
[41–43]. Carrying out appropriate computer experiments allows to judge which approach is faster for 
which size of the selected instance of the UAV mission planning problem. 

3. Approach to UAVs fleet online routing 

We consider a distribution network, which is modeled by the graph 𝐺 𝑁, 𝐸   where 𝑁
𝑁 , … , 𝑁 , … , 𝑁  signifies the set of 𝑛 |𝑁| nodes (distinguishing 𝑁  node representing a base 

and 𝑁 , … , 𝑁  nodes representing delivery points), and 𝐸 𝑁 , 𝑁 | 𝑖, 𝑗 ∈ 1, … , 𝑛 , 𝑖  𝑗  
signifies the set of edges determining the possible connections between nodes. Given a fleet of UAVs 
𝒰 𝑈 , … , 𝑈 , … , 𝑈  that delivers to the points {𝑁 , … , 𝑁 }, to each delivery point 𝑁  an ordered 
quantity of goods 𝑧 ∈ ℕ  (taken from the base 𝑁 ) should be transported. Deliveries are made as 
part of the mission 𝑆, which consists of sub-missions 𝑆  (i.e., delivery plans that include a single 
course of UAVs: base-delivery points-base). 𝑍 denotes a sequence consisting of variables 𝑧 : 𝑍 
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𝑧 , … , 𝑧 ). It is assumed that all required goods should be delivered in the given horizon time 𝐻. The 
amount of goods delivered during one sub-mission 𝑆   by the 𝑈   to the delivery point 𝑁   is 
determined by the variable 𝑐 ∈ ℕ . 𝐶   is a sequence :  𝐶 𝑐 , … , 𝑐 , … , 𝑐 , … , 𝑐  
determining the payload weight delivered by fleet 𝒰. Variable 𝑄  denotes the payload capacity of 
𝑈  (amount of goods transported by 𝑈  cannot exceed 𝑄 ). Moreover, each 𝑈  is described by the 
following technical parameters: battery capacity 𝐶𝐴𝑃, airspeed 𝑣𝑎, drag coefficient 𝐶 , front surface 
𝐴, and UAV width 𝑏. Time spent on take-off and landing 𝑈  on delivery point 𝑁  is indicated by 
variable 𝑤 ∈ ℕ. Note that 𝒰 ⊆ 𝒰 denotes a set of UAVs used during sub-mission 𝑆 . The moment 
when the 𝑈 ∈ 𝒰   arrives to the delivery point 𝑁  during sub-mission 𝑆  is indicated by variable 
𝑦 ∈ ℕ[s]. In that context, the sequence 𝑌  consisting of moments 𝑦 , is called the schedule of the 

fleet 𝒰 : 𝑌 𝑦 , … , 𝑦 , … , 𝑦 , … , 𝑦 . 
We assume that the variable 𝑡 , ∈ ℕ determines traveling time between nodes 𝑁 , 𝑁 , where: 

𝑁 , 𝑁 ∈ 𝐸, and routes of 𝑈 ∈ 𝒰  during sub-mission 𝑆  are represented by sequences: 𝜋 

𝑁 , … , 𝑁 , 𝑁 , … , 𝑁 , where: 𝑘 ∈ 1, . . , 𝑛 , 𝑁 , 𝑁 ∈ 𝐸 . 𝛱  denotes a sequence of 

UAVs routes executed during sub-mission 𝑆 :    𝛱 𝜋 , … , 𝜋 , … , 𝜋  (in cases when 𝑈 ∉
𝒰  then 𝜋 △). The delivery plan of one UAV sub-mission 𝑆  is defined as a sequence: 𝑆 

𝒰 , 𝛱 , 𝑌 , 𝐶 . 
It is assumed that a plan of a UAV sub-mission 𝑆  is implemented under specific weather 

conditions, i.e., the weather forecast is known for each sub-mission 𝑆  . The forecasted weather 
conditions are described by the set 𝔽  of pairs composed of direction 𝜃  and wind speed 𝑣𝑤 
𝜃, 𝑣𝑤 ∈ ℱ , i.e., 𝔽  is defined as follows: 𝔽 𝜃, 𝑣𝑤 |𝜃 ∈ 0°, 360° , 𝑣𝑤 ∈ 0, ℱ 𝜃  . Where 

 ℱ 𝜃  is a function that’s values determine the maximum forecasted wind speed for given direction 
𝜃. The weather conditions determine the admissibility of the adopted sub-mission’s plan 𝑆 , i.e., they 
determine whether during its implementation, the batteries of UAVs will not be prematurely discharged. 

A function Υ , 𝜃   determines the borderline wind speed (for a given direction 𝜃 ), which 
guarantees the successful completion of the delivery plan by the 𝑈  during sub-mission 𝑆  in the 
distribution network 𝐺: Υ , 𝜃 max Γ , 𝜃 , where: Γ , 𝜃  – set of wind speed’s values 𝑣𝑤 for 
a given direction 𝜃, for which the batteries of 𝑈  is not discharged. The sub-mission’s plan 𝑆  is 
assumed [14] to be resistant to the forecast weather conditions 𝔽 if the boundary wind Υ , 𝜃  of all 
𝑈 ∈ 𝒰   in any direction 𝜃  does not exceed the forecasted value  𝑍 𝜃  : 
 ∈ 𝒰 

 ∈ °, ° 𝛶 , 𝜃 ℱ 𝜃 . 

The implementation of the designated mission 𝑆  may be subject to various disturbances 𝐼𝑆 . 
Among them, there are sudden changes in the weather (beyond the expected ℱ∗ 𝜃   range), and 
changes in orders 𝑍), order changes (increase /decrease amount of ordered deliveries 𝑍∗), changes in 
the number of delivery points served (changing the structure of the network 𝐺∗). The UAV fleet, when 
performing the mission plan 𝑆, meets a disturbance 𝐼𝑆 𝑡∗  - covering one of the cases: the weather 
ℱ∗ θ , the network 𝐺∗, orders Z∗, at the time 𝑡∗. In such situations, it becomes necessary to answer 
the question: Does a re-route plan exist for mission 𝑆∗ that guarantees timely deliveries in a given 
time horizon 𝐻 and at acceptable battery level? To illustrate the motivation behind our approach, let 
us consider a distribution network from Figure 1a) covering an area of 100 km2 and containing 39 
delivery points (nodes 𝑁 , … , 𝑁 ). 
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Figure 1. Graphical illustration of the distributed delivery problem. 

 

Figure 2. Example of “safe” execution of mission of fleet 𝒰 𝑈 , 𝑈 , 𝑈 , 𝑈 . 

a) 
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The goods are delivered by a fleet of UAVs, which is stationed in the base 𝑁  –technical 
parameters of UAVs are collected in the table from Figure 1c). The weight of individual orders is: z
z 5 , z 10, z z 15,  z z 5, z 10, z 15, z z 5,  z 10,
z z 15,  z 5. In that context, we search for the minimum fleet size that guarantees timely 
deliveries of the required amount of goods. It is apparent that the smallest fleet that guarantees timely 
delivery (within the time horizon of 2.5 h) consists of 𝒰 𝑈 , 𝑈 , 𝑈 , 𝑈   UAVs, see Figure 2. The 
mission 𝑆 of Figure 2 consists of 6 sub-missions: 𝑆 𝑆 , 𝑆 , … , 𝑆  following conditions where 
the wind speed does not exceed 9 m/s. 

An example illustrating the course of UAV fleet mission 𝑆  and the values of the resistance 
functions: 𝛶 , 𝜃 , 𝛶 , 𝜃 , 𝛶 , 𝜃 , 𝛶 , 𝜃  is shown in Figure 2. It is evident that the UAVs’ routes 
in the mission 𝑆  are weatherproof for the given forecasted weather (i.e., 𝛶 , 𝜃 ℱ 𝜃 :  

π 
 N , N , N , N , N , N , N ; π 

 N , N , N , N , N , N , N : 
π 

 N , N , N , N , N , N , N ; π 
 N , N , N , N , N , N , N  

and the robustness function UAVs: 𝛶 , 𝜃 , 𝛶 , 𝜃 , 𝛶 , 𝜃 , 𝛶 , 𝜃 . 
All goods should be delivered within 2.5 hours (𝑇 9000 s . The deliveries take place in 

different forecasted weather conditions (set 𝔽), which are illustrated in Figure 1b). According to the 
forecast, the wind speed does not exceed 𝑣𝑤 9 .  

We consider a situation in which the weather conditions of the mission carried out rapidly changed 
at the time 𝑡∗ 3000[s], i.e., during the execution of the sub-mission 𝑆 , the wind speed increased 
to 𝑣𝑤  11 𝑚/𝑠 for direction 𝜃 210° 230°. 

 

Figure 3. Sub-mission 𝑆  after changed weather conditions: the wind speed increased to 
𝑣𝑤 11 𝑚/𝑠 in the direction 𝜃 210° 230°. 
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Such a change means that this mission cannot be continued due to too much energy consumption 
(the mission's resistance function 𝛶 , 𝜃  values are below the level corresponding to speed 11  – 

see Figure 3). Figure 3 shows the location of the UAVs at time 𝑡∗ 3000 𝑠 , i.e., upon receipt of 
information about a change in weather, and marked the place where the battery 𝑈  will be discharged 
in the event of continuation of deliveries in accordance with the current plan 𝑆 . 

In this situation, it is necessary to correct the route of the sub-mission 𝑆  being carried out, which 
forces the search for an answer to the following question: 

Given a UAV fleet 𝒰 𝑈 , 𝑈 , 𝑈 , 𝑈   providing deliveries to the delivery points allocated in 
the network 𝐺 from Fig. 1, the UAV fleet realizes the delivery mission plan 𝑆∗ from fig. 2 b). At the 
time 𝑡∗ 3000 a rapid weather ℱ∗ 𝜃  change, i.e., disturbance 𝐼𝑆, occurs and results in 𝑣𝑤 
 11 𝑚/𝑠; 𝜃 210° 230°. Does a reroute plan exist for mission 𝑆∗ that guarantees the timely 
delivery of the ordered supplies in a given time horizon 𝐻 9000 𝑠  and at an acceptable battery 
level? 

4. Approach to UAV fleet online routing 

Planning drone missions is founded on setting the so-called proactive plans specifying the UAV 
flight routes (see Figure 4) to guarantee timely delivery to each recipient while taking into account the 
constraints of the assumed distribution network 𝐺 and forecasted weather ℱ 𝜃  condition changes. 
This means that routes and schedules determining the flights of individual UAVs (obtained in the 
course of proactive fleet mission design) take into account the amount and magnitude of the anticipated 
disturbances. 

 

Figure 4. Proactive approach to UAV fleet mission planning. 

In other words, proactive planning is carried out before the mission is carried out and boils down 

Distribution network 

Forecasted weather 

Proactive 

planning 

Proactive schedule 

Proactive routes 
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to setting routes and schedules, guaranteeing timely deliveries in the given distribution network even 
in a situation of changing weather (within the set range specified by weather forecast). The 
implementation of such plans in a real environment may be disrupted as a result of a sudden unforeseen 
change in weather conditions (exceeding the range assumed at the proactive planning stage), which 
may lead to premature depletion of the UAV’s battery. In such situations, attempts are made to replace 
proactive plans by implementing reactive planning principles. Reactive planning (Figure 5), implies 
changing a proactive plan already being implemented, e.g., due to the occurrence of a disturbance such 
as rapid weather and/or orders change. Reactive plans must therefore take into account the extent to 
which the planned deliveries were carried out and adjust the further actions of the UAVs to the 
prevailing weather conditions. The purpose of reactive planning is therefore an attempt to change 
mission plans to those that guarantee timely deliveries under new weather conditions. Due to the need 
to make decisions in the online mode, reactive planning methods must have a short time of 
determination of the solution. 

 

Figure 5. Reactive approach to UAV fleet mission planning. 

The UAV mission planning process (Figure 6) therefore includes two stages. The first one 

Reactive 

planning 

Proactive schedule 

Proactive routes 

 Disturbance Resistance function 

Reactive routes 

Reactive schedule 

Disturbance 

Return to base

rerouting

Disturbance 
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involves proactive planning, which results in a UAVs mission plan that guarantees timely deliveries in 
the forecasted weather conditions. The second stage is responsible for reactive planning undertaken in 
situations where during the implementation of the proactive plan there is a disruption exceeding 
previous predictions. 

In that context, the proposed reaction (replanning) to the occurrence of a disturbance 𝐼𝑆 𝑡∗  can 
be reduced to dynamic re-routing and rescheduling of previously adopted routes 𝛱 , schedules 𝑌 , 
and delivered goods 𝐶  is stated in the basic proactive plan for the mission by the UAV fleet. It is a 
feasible adjustment of the assumed 𝛱  , 𝑌  , and 𝐶   values to the changes in forecasted weather 
ℱ∗ 𝜃 , as well as corrections introduced to the network 𝐺∗or orders 𝑍∗. 

 

Figure 6. Proactive-reactive UAV fleet mission planning. 

To formally define the concept of disturbance 𝐼𝑆 𝑡∗ , we will introduce the concept of the state 
of mission implementation 𝑆. The state of the mission 𝑆 at the time 𝑡 is defined as follows: 𝐼𝑆 𝑡
𝑀 𝑡 , ℱ∗ 𝜃, 𝑡 , 𝐺 

∗ 𝑡 , 𝑍∗ 𝑡   where: 𝑀 𝑡   is an allocation of UAVs to nodes at the time 𝑡 : 
𝑀 𝑡 

 𝑁 , … , 𝑁 , … , 𝑁  , where: 𝑎 ∈ 1, . . , 𝑛   determines the (delivery points) node 𝑁  

occupied by 𝑈  (or the node the 𝑈  is headed to). ℱ∗ 𝜃, 𝑡  is the weather condition forecast at the 
time 𝑡. 𝐺 

∗ 𝑡  is the graph model of the distribution network structure at time t (number and location 
of delivery points). 𝑍∗ 𝑡   is the sequence of goods requested at the time 𝑡 . The state 𝐼𝑆 𝑡∗  

Input data:  

 Distribution network 

 Forecasted weather  

Proactive planning 

Delivery mission plan

Implementation 

Are there 

 disruption unforeseen by 

proactive planning? 

N 

Y 
Reactive planning 

Modified delivery mission plan 

START 

END 
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following condition ℱ∗ 𝜃, 𝑡∗ ℱ∗ 𝜃 ∨ 𝐺 
∗ 𝑡∗ 𝐺 ∨ 𝑍∗ 𝑡∗ 𝑍   is called the disturbance 

occurring at the time 𝑡∗.  
Occurrence of 𝐼𝑆 𝑡∗  disturbance should be assessed in terms of its impact on the further course 

of the mission of S (that is, whether the value of the resistance function 𝛶 , 𝜃  is greater than ℱ 𝜃 ). 
If the implementation of the mission is at risk (𝛶 , 𝜃 ≱ ℱ 𝜃  ), an attempt should be made to 
reschedule it. The following condition action (if-then) rules are used for this purpose: 

1) If the adopted mission plan 𝑆  is not resistant to disturbance 𝐼𝑆 𝑡∗  
∃ ∈ ,.., , ∈ ,.., Υ , θ ≱ ℱ θ , then it should be checked whether it is possible to adapt (re-plan) 

it to adjust to new conditions, i.e., decide whether all UAVs in the air should continue their current 
missions or make the appropriate corrections. 

2) If there are UAVs (in the set 𝒰R) that cannot continue to fly due to disturbance 𝐼𝑆 𝑡∗ , then 
they should be returned to the base and allow, if possible airborne UAVs (the set 𝒰\𝒰R) to take over 
their tasks.  

3) If the tasks of the UAVs returning to the base (the set 𝒰R  cannot be taken over by UAVs 
still performing their missions, then it should be checked whether the reserve UAVs available at the 
base (the set 𝒰B) can take over their responsibilities. This means the UAVs in the air continue their 
existing missions, while the reserve UAVs take over the liabilities of the UAVs returned to the base. 

4) If the reserve UAVs (the set 𝒰B) are unable to take over the responsibilities of those returned 
to the base (the set 𝒰R), then their activity should be suspended until the disturbance is resolved.  

The above rules have been used in the reactive mission planning method 𝑆. The idea behind this 
method is as follows. During the implementation of the mission 𝑆, there is a continuous monitoring 
of the state of the 𝐼𝑆 𝑡   (for 𝑡 ∈ 0 … 𝐻  ). If at the state 𝐼𝑆 𝑡   the following condition holds 
ℱ∗ 𝜃, 𝑡∗ ℱ∗ 𝜃 ∨ 𝐺 

∗ 𝑡∗ 𝐺 ∨ 𝑍∗ 𝑡∗ 𝑍  (i.e., there is a change in the weather forecast or 
in the structure of the distribution network as well as in the size of the requests, etc.) and the mission 
𝑆 is under threat (i.e., at least one of the UAVs will not return to base due to low battery), then an 
attempt is made to replan it. The purpose of replanning is to select a mission 𝑆 

∗  adapted to the new 
conditions caused by the disturbance 𝐼𝑆 𝑡  . In practice, it comes down to solving the relevant 

constraints optimization problem (COP) denoted as 𝐶𝑆 𝒰 
 , 𝑆,  𝐼𝑆 𝑡 , where: 𝒰 

 —defines the fleet 

designated by condition action rules 1–4. The relevant constraints distribution process follows the 
sequence where, firstly, an attempt is made to designate the mission 𝑆 

∗   for the fleet 𝒰 
 𝒰 

(according to rule 1). In the event of failure, an attempt is made to designate it for the fleet 𝒰 


𝒰\𝒰𝑅 (according to rule 2) and then for the fleet 𝒰 
 𝒰\𝒰𝑅 ∪ 𝒰𝐵 (according to rule 3). If an 

admissible solution 𝑆 
∗  sitll does not exist, then the currently used mission plan should be modified 

(due to the 𝑟𝑒𝑑𝑢𝑐𝑒 function) in such a way that it removes the UAVs sub-missions which are not 
resistant to disturbance 𝐼𝑆 𝑡  (according to rule 4).  

It should be noted that the designation of mission 𝑆 
∗   is associated with the designation of 

routings 𝛱  , schedules 𝑌 ,  and delivery sequences 𝐶   throughout the remaining time horizon 
𝑡 … 𝐻  . Due to the disturbance 𝐼𝑆 𝑡∗   occurrence, the proposed reactive planning algorithm 

(implemented in the IBM ILOG environment) generates the end-to-end paths that modify previously 
planned routes, restoring the ability to implement the designated mission delivery plan. 

The mathematical formulation of the COP 𝐶𝑆 𝒰 
 , 𝑆,  𝐼𝑆 𝑡  aimed at contingency planning of 

UAV mission design employs the following parameters, variables, sets, and constraints. 
Parameters: 
𝐺 : graph of a distribution network for sub-mission 𝑆 ; 
𝒰 : the subset of UAVs 𝒰 ⊆ 𝒰 carrying out the sub-mission 𝑆 ; 
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𝑧 : demand at node 𝑁 , 𝑧 0; 
𝐾: the size of the fleet of UAVs; 
𝑛𝑝 : consumer priority at the point 𝑁 , 𝑛𝑝 0; 
𝑑 , : distance between 𝑁 , 𝑁 ; 
𝐴: the front-facing area of a UAV; 
𝑡 , : travel time between 𝑁 , 𝑁 ; 

𝐶 : the aerodynamic drag coefficient; 
𝑤: time spent on take-off and landing of a UAV; 
𝑡𝑠: the time interval at which UAVs can take off from the base; 
𝑄: maximum loading capacity; 
𝑒𝑝: the empty weight of a UAV; 
𝐼𝑆 𝑡 : state of UAV mission; 
𝐷: an air density; 
𝐻: time horizon; 
Υ , 𝜃 : weather resistance function; 
𝑔: the gravitational acceleration; 
ℱ 𝜃 : forecasted wind speed; 
𝑏: the width of an UAV; 
𝐶𝐴𝑃: the energy capacity of an UAV; 
𝑣𝑎 ,

 : air speed between nodes 𝑁 , 𝑁 ; 
𝑣𝑔 ,

 : ground speed between 𝑁 , 𝑁 ; 
𝜑 , : heading angle of vector 𝑣𝑎 ,

 ; 
𝜗 , : the course angle of vector 𝑣𝑔 ,

 . 

Decision variables: 
𝑥 ,  : the binary variable used to indicate if 𝑈   travels between nodes 𝑁 ,  𝑁  , after the 

disturbance 𝐼𝑆 𝑡∗  occurrence (during sub-mission 𝑆 ); 

𝑥 ,
1 if 𝑈  travels between nodes Nβ, Nλ

0 otherwise.
; 

𝑦 : the time at which 𝑈  arrives at node 𝑁 , after the disturbance 𝐼𝑆 𝑡∗  occurrence  (during 
sub-mission 𝑆 ); 

𝑐 : the weight of freight delivered to node 𝑁  by 𝑈 , after the disturbance 𝐼𝑆 𝑡∗  occurrence 
(during sub-mission 𝑆 ); 

𝑓 , : the weight of freight carried between nodes 𝑁 , 𝑁  by 𝑈 , after the disturbance 𝐼𝑆 𝑡∗  

occurrence (during sub-mission 𝑆 ); 
𝑃 ,  : the energy per unit of time consumed by 𝑈   during the flight between nodes 𝑁 , 𝑁  

(after the disturbance 𝐼𝑆 𝑡∗  occurrence); 
𝑏𝑎𝑡 : the total energy consumed by 𝑈 , after the disturbance 𝐼𝑆 𝑡∗  occurrence (during sub-

mission 𝑆 ); 
𝑠 : the take-off time of 𝑈 , after the disturbance 𝐼𝑆 𝑡∗  occurrence; 
𝑐𝑝 : the total weight of freight delivered to node 𝑁 , after the disturbance 𝐼𝑆 𝑡∗  occurrence 

(during sub-mission 𝑆 ); 
𝜋 

 : the route of 𝑈  after the disturbance 𝐼𝑆 𝑡∗  occurrence (during sub-mission 𝑆 ), 𝜋 

𝑁 , … , 𝑁 , 𝑁 , … , 𝑁 , 𝑘 ∈ 1, . . , 𝑛 , 𝑁 , 𝑁 ∈ 𝐸. 

Sets: 
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𝑌  : is a sequence of moments 𝑦  , schedule of the fleet 𝒰   after the disturbance 𝐼𝑆 𝑡∗  
occurrence; 

𝐶 : is a sequence of weights of delivered goods 𝑐 ; 
𝛱 : the set of UAV routes 𝜋 

 ; 
𝑆  : the plan of sub-mission after the disturbance 𝐼𝑆 𝑡∗  occurrence: 𝑆 𝒰 , 𝛱 , 𝑌 , 𝐶 ; 

𝑆 
∗ : the re-route plan of the mission 𝑆 

∗ 𝑆  , … , 𝑆  , … , 𝑆  . 
Constraints limiting: routes, delivery of freight, and energy consumption: 
1) Routes. Relationships between the variables describing UAV take-off times/mission start 

times and task order: 

 𝑠 0;  𝑘 1 … 𝐾, 𝑙 1 … 𝐿, (1) 

 𝑦 0;  𝑖 1 … 𝑛;  𝑘 1 … 𝐾, (2) 

 𝑥 , 0;  𝑖 1 … 𝑛;  𝑘 1 … 𝐾. (3) 

 ∑ 𝑥 , 1 ;  𝑘 1 … 𝐾, 𝑙 1 … 𝐿,  (4) 

 𝑠 𝑡∗ ⇒ 𝑠 𝑠 ;  𝑘 1 … 𝐾, 𝑙 1 … 𝐿,  (5) 

  𝑦 𝑡∗ ⇒ 𝑥 , 𝑥 , ; 𝑗 1 … 𝑛;  𝑖 2. . . 𝑛;  𝑘 1 … 𝐾, 𝑙 1 … 𝐿, (6) 

  𝑦 𝑡∗ ⇒ 𝑦 𝑦 ; 𝑗 1 … 𝑛;  𝑖 2. . . 𝑛;  𝑘 1 … 𝐾, 𝑙 1 … 𝐿, (7) 

 𝑠 𝑠 𝑡𝑠  ; 𝑘, 𝑞 1 … 𝐾;  𝑘 𝑞, 𝑙 1 … 𝐿, (8) 

 𝑦 0 ∧ 𝑦 0 ⇒ 𝑦 𝑦 𝑤  ;  𝑘, 𝑞 1 … 𝐾; 𝑘 𝑞, (9) 

 𝑥 , 1 ⇒ 𝑦 𝑠 𝑡 ,  ;  𝑗 1 … 𝑛;  𝑘 1 … 𝐾, (10) 

 𝑥 , 1 ⇒ 𝑦 𝑦 𝑡 , 𝑤 ;  𝑗 1 … 𝑛;  𝑖 2. . . 𝑛;  𝑘 1 … 𝐾, (11) 

 𝑦 𝐻 ∑ 𝑥 , , 𝑖 1 … 𝑛;  𝑘 1 … 𝐾,  (12) 

 ∑ 𝑥 ,  ∑ 𝑥 , ;  𝑖 1 … 𝑛;  𝑘 1 … 𝐾,  (13) 

Delivery of freight. Relationships between variables describing already delivered and requested 
amount of freight: 

  𝑦 𝑡∗ ⇒ 𝑐 𝑐 ; 𝑗 1 … 𝑛;  𝑖 2. . . 𝑛;  𝑘 1 … 𝐾;  𝑙 1 … 𝐿, (14) 

 𝑐 0;  𝑖 1 … 𝑛;  𝑘 1 … 𝐾; 𝑙 1 … 𝐿, (15) 

 𝑐 𝑄 ∑ 𝑥 , ;  𝑖 1 … 𝑛;  𝑘 1 … 𝐾, 𝑙 1 … 𝐿, (16) 
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 ∑ 𝑐 𝑄;  𝑘 1 … 𝐾 ; 𝑙 1 … 𝐿, (17) 

 𝑥 , 1 ⇒ 𝑐 1 ;  𝑘 1 … 𝐾;  𝑖 1 … 𝑛;  𝑗 2 … 𝑛, (18) 

 ∑ ∑ 𝑐 𝑧 ;  𝑖 1 … 𝑛, (19) 

 ∑ 𝑐 𝑐𝑠 ;  𝑘 1 … 𝐾; 𝑙 1 … 𝐿, (20) 

 𝑥 , 1 ⇒ 𝑓 𝑐 𝑐𝑠  ; 𝑗 1 … 𝑛;  𝑘 1 … 𝐾, 𝑙 1 … 𝐿, (21) 

 𝑥 , 1 ⇒ 𝑓 𝑐 𝑓𝑐 𝑐  ; 𝑖, 𝑗 1 …𝑛;  𝑘 1 … 𝐾, 𝑙 1 … 𝐿, (22) 

 𝑥 , 1 ⇒ 𝑓 , 𝑐𝑠  ; 𝑗 1 … 𝑛;  𝑘 1 … 𝐾, 𝑙 1 … 𝐿, (23) 

 𝑥 , 1 ⇒ 𝑓 , 𝑓 𝑐  ;  𝑖, 𝑗 1 … 𝑛;  𝑘 1 … 𝐾, 𝑙 1 … 𝐿, (24) 

2) Energy consumption. To ensure waterproofness of the 𝑆  sub-mission (i.e., its robustness 
to weather condition changes 𝑍 𝜃 ), the amount of energy required to complete the task carried out 
by an UAV must not exceed the capacity of its battery:  

 𝛶 , 𝜃 ℱ 𝜃 ;   𝜃 ∈ 0∘, 360∘ , (25) 

 𝛶 , 𝜃 max Γ , 𝜃 , (26) 

 Γ , 𝜃 𝑣𝑤 | 𝑣𝑤 ∈ 𝑅   ∧   ∈ … 𝑏𝑎𝑡 𝜃, 𝑣𝑤 𝐶𝐴𝑃 , (27) 

 𝑏𝑎𝑡 𝜃, 𝑣𝑤 ∑ ∑ 𝑥 , 𝑡 , 𝑃 , 𝜃, 𝑣𝑤 , (28) 

 𝑃 , 𝜃, 𝑣𝑤 𝐶 𝐴 𝐷 𝑣𝑎 ,
 𝜃, 𝑣𝑤

 ,

 ,
 ,

, (29) 

where, 𝑣𝑎 ,
 𝜃, 𝑣𝑤  and 𝑡 ,  depend on the assumed goods delivery strategy.  

If the ground speed 𝑣𝑔 ,
  is constant, then an air speed 𝑣𝑎 ,

  is calculated from: 

 𝑣𝑎 ,
 𝜃, 𝑣𝑤 𝑣𝑔 ,

 𝑐𝑜𝑠𝜗 , 𝑣𝑤 𝑐𝑜𝑠𝜃 𝑣𝑔 ,
 𝑠𝑖𝑛𝜗 , 𝑣𝑤 𝑠𝑖𝑛𝜃  (30) 

 𝑡 , 𝑑 , /𝑣𝑔 ,
  (31) 

3) The objective function. A mission 𝑆  plan to maximize customer satisfaction expressed by 
the following function is sought: 

  𝑓 𝑆    ∑ 𝑛𝑝 𝑐𝑝    (32) 

The adoption of such a function means that customers with the lowest level of expectations to be 
met are served first. 

Constraints (1)–(13) describe the relationship between routes (represented by the variables: 𝑥 , ) 

and the delivery schedule (variables 𝑦  and 𝑠 ). Constraints (5)–(7) provide, that the plan before 
disturbance should be the same like proactive plan (represented by 𝑠 , 𝑥 , , 𝑦 ). Other constrains 

provide, that it is not possible for multiple UAVs to take off from the base at the same time (8), a 
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delivery points cannot by simultaneously served by several UAVs (9), deliveries are made in 
accordance with the adopted route (10), (11) and on time (12) and it guarantees closed loops of the 
routes (13).  

Constraints (14)–(24), link UAV routes ( 𝑥 , ) to the amounts of delivered goods (variables 𝑐 ). 
They also ensure that the UAVs are not overloaded (16), (17), and that correct amounts are delivered 
(19). Constraints (20)–(24) determine the weight (𝑓 , ) of the goods at each section of the taken route.  

Constraints (25)–(31) describe the values of the determined weather resistance functions 𝛶 , 𝜃  
for the fleet 𝒰  and ensure that these values exceed the value of the function ℱ 𝜃  (forecasted wind 
speed). The value of the 𝛶 , 𝜃  function depend on the amount of energy consumed by a UAV in 
flight which in turn depends non-linearly on the speed value 𝑣𝑎 ,

 𝜃, 𝑣𝑤 . This means that some of 

the constraints, e.g. (29), (30), in the adopted model, have a non-linear character, thus implying the 
necessity to use the capabilities of declarative environments (in particular constraints programming). 

Since the re-planning of the mission delivery plan 𝑆 is the result of the disturbance 𝐼𝑆 𝑡∗ , the 
new set of sub-missions 𝑆  , … , 𝑆  , … , 𝑆   guaranteeing timely delivery are determined by solving 
the following COP (33): 

 𝐶𝑆 𝒰 
 , 𝑆,  𝐼𝑆 𝑡∗  𝒱, 𝒟 , 𝒞 𝒰 

 , 𝑆,  𝐼𝑆 𝑡∗ , 𝑓 ,  (33) 

where: 
𝒱 𝛱 , 𝑌 , 𝐶 |𝑙 1 … 𝐿 —the set of decision variables: 𝛱 —the set of routes determining the 

schedule 𝑌 ; 𝑌 —schedule of the fleet 𝒰 
  guarantees timely service of delivery points in the case 

of disturbance 𝐼𝑆 𝑡∗ ; and 𝐶 —sequence of weights of delivered goods by the fleet 𝒰 
 ; 

𝒟—the finite set of decision variable domains: 𝑥 , ∈ 0,1 , 𝑦 ∈ ℕ, 𝑐 ∈ ℕ; 

𝒞 —the set of constraints that takes into account the set of routes 𝛱  , schedules 𝑌  , and the 
disturbance 𝐼𝑆 𝑡∗ , while determining the relationships linking the operations executed by UAVs (1)–
(31); 

𝑓 —the objective function defined by (32). 
To solve COP (33), the values of the decision variables from the adopted set of domains for which 

the given constraints are satisfied and guarantee the maximum value of objective function must be 
determined. 

5. Constraint relaxation 

The previous section demonstrated that solving the COP (33) problem enables the designation of 
an 𝑆 

∗   mission resistant to 𝐼𝑆 𝑡∗  disturbances caused by changing weather conditions specified by 
ℱ 𝜃 . Solving this problem, however, is very time-consuming, which results from the necessity to 
verify the inequality (25) of the wind direction change 𝛶 , 𝜃 ℱ 𝜃  carried out for each increment 
𝜃 ∈ 0∘, 360∘  . To replace condition (25) with an equivalent that is less time consuming 
computationally, it was assumed that the continuous (smooth) 𝛶 , 𝜃  function will be approximated 
by a discrete function represented by a finite set 𝕐 , 𝛶 , 𝜃 |𝑖 1 … 𝑙𝑞; 𝜃 𝜃 , where 𝑙𝑞 is 
an arbitrarily taken number of samples. This set contains the vertices of a polygon 𝕐 ,

∗ 𝜃  depicted 
in Figure 7. 
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Figure 7. Discretization of the function 𝛶 , 𝜃 . 

For such assumptions, the following property holds:  
Property 1: For any wind direction 𝜃 ∈ 0∘, 360∘   function of 𝛶 , 𝜃   mission, 𝑆 

∗   takes 
values no less than its discrete form 𝕐 ,

∗ 𝜃 : 𝜃 ∈ 0∘, 360∘
,  𝛶 , 𝜃  𝕐 ,

∗ 𝜃 . 
This means that the function 𝛶 , 𝜃  can be replaced by the function 𝕐 ,

∗ 𝜃  and, in fact, the 
set of vertices in 𝕐 ,  . In practice, it means reducing the quantity of condition (25) checks to the 
number of vertices of the adopted polygon. Consequently, constraint (25) can be replaced by the 
following one: 

 𝕐 ,
∗ 𝜃 ℱ 𝜃 ;   𝜃 ∈ 𝜃 , … , 𝜃   (34) 

6. Evolutionary algorithm 

The introduction of constraints relaxation (34) of the considered problem (33) reduces the 
computational effort but not adequately to solve problems of the scale of those occurring in practice. 
This means that in online mode, problems of the type (33) involve networks not exceeding 100 nodes. 
To speed up the calculations, a genetic algorithm dedicated to this problem has been developed. 

For the purposes of the developed algorithm, it is assumed that sub-mission 𝑆  is represented by 
chromosons 𝐶𝐻   describing deliveries made by the UAVs of fleet 𝒰 : 

 𝐶𝐻  𝜋 
 , 𝑌 

 , 𝐶 
 , … , 𝜋 

 , 𝑌 
 , 𝐶 

 , … , 𝜋 
 , 𝑌 

 , 𝐶 
   (35) 

In other words, 𝐶𝐻   consists of the routes 𝜋 
  (𝑘 1, … , 𝐾); schedules 𝑌 

  (𝑘 1, … , 𝐾); 
and volumes of deliveries 𝐶 

  (𝑘 1, … , 𝐾) describing the sub-mission 𝑆 . 
The framework of the proposed genetic algorithm implementing such chromosomes is presented 

in Fig. 8. According to the algorithm flowchart, its input data are: 𝑆 𝑆 , … , 𝑆 , … , 𝑆 — the 
proactive mission plan, 𝐼𝑆 𝑡∗  —the disturbance occurring at the moment 𝑡∗ , 𝑆  —the submission 
affected by the disturbance, 𝒰 —the fleet of UAVs available in reactive mode (while following rules 
1–4). 

Resistance function 

𝛶 , 𝜃  

Forecasted wind 

speed ℱ 𝜃  

Vertex belonging

to the set 𝕐 ,  

Polygon 𝕐 ,
∗ 𝜃

𝛶 , 0  

𝛶 , 90  

𝛶 , 180  

𝛶 , 270 𝛶 , 270  

𝛶 , 0

𝛶 , 90  
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Figure 8. Framework of the proposed genetic algorithm. 

The next stages of the algorithm include: 
1) Determination of the j-th population 𝑃𝑂   represented by the set of chromosomes describing 

different ways to accomplish a sub-mission 𝑆 : 𝑃𝑂  𝐶𝐻  |𝑖 1 … 𝐿𝑃 , where 𝐶𝐻  —is the 

i-th chromosome from j-th population following submission 𝑆  (defined according to (35)); 𝐿𝑃—
population size. Individuals of the initial population (𝑗 0) are selected at random from among the 
so-called “alive individuals”—solutions that meet the constraints (1)–(31). Individuals of population 
𝑃𝑂    for 𝑗 0  are selected from the set 𝑃𝑂  ∪ 𝐷𝐸  ∪ 𝑀𝑈    ( 𝐿𝑃  best individuals 

population). 

2) Population growth rate. For each chromosome 𝐶𝐻  ∈ 𝑃𝑂   , the value of the objective 

function is determined 𝑓 𝐶𝐻  . 

3) Selection. From among the individuals of the population 𝑃𝑂  , a subset 𝑆𝑃𝑂 ⊆ 𝑃𝑂    is 

drawn (it is assumed that that the parameter 𝑝𝑠 determines the probability of the event that 𝐶𝐻   

belongs to the set 𝑆𝑃𝑂  : 𝑝𝑠 𝑃 𝐶𝐻  ∈ 𝑆𝑃𝑂  ). 

4) Crossover. Subsequent pairs of the set 𝑆𝑃𝑂   are crossed with each other. The result of the 
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operation of crossing two chromosomes 𝐶𝐻   and 𝐶𝐻   is a pair of chromosomes 𝐶𝐻   and 

𝐶𝐻   , in which one (randomly selected) k-th element of the route 𝜋 ,   is replaced by another 

selected at random k-th element of the route 𝜋 , . The idea of crossing operation is illustrated by 

Figure 9. It should be noted that along with the replacement of route elements, the corresponding 

elements of the schedule 𝑌 ,   and delivery 𝐶 ,  sequences are replaced. The result of the crossing 

process is a set of descendants 𝐷𝐸   of the population 𝑃𝑂   (only alive individuals are included in 
the set 𝐷𝐸  . 

5) Mutation. From among the elements of the set 𝑃𝑂  ∪ 𝐷𝐸  , a set of individuals undergoing 
mutation is selected at random (with a probability of 𝑝𝑚 ).  Operation of the chromosome 

𝐶𝐻   mutation consists of a random change of one  (randomly selected) element of the  𝑘 route 

𝜋 , . As a result of this operation, a set of mutated individuals 𝑀𝑈   of population 𝑃𝑂   is formed. 

 

Figure 9. The idea of the chromosomes 𝐶𝐻   and 𝐶𝐻   crossing operation. 

According to the presented algorithm, operations used for Selection, Crossover, and Mutation of 
individuals of the population 𝑃𝑂   are repeated until the stopping condition (that can be seen as a 
stopping rule or simply stopping criteria) is satisfied. In the considered version of the algorithm, the 
following types of the stopping condition are distinguished: 

 Condition 1 (C1): value of the objective function of the best individual of the population 

max
…

𝑓 𝐶𝐻   has reached the expected value 𝑅𝑉: max
…

𝑓 𝐶𝐻  𝑅𝑉; 

 Condition 2 (C2): value of the objective function of the best individual of the population 

max
…

𝑓 𝐶𝐻    has not changed in 𝑞  generations: max
…

𝑓 𝐶𝐻  

 𝐶𝐻  𝜋 , , 𝑌 , , 𝐶 ,  

𝑁  𝑁  𝑁  𝑁   𝜋 , : 0 30 60 90 𝑌 , : 5 10 5 10 𝐶 , :

 𝐶𝐻  𝜋 , , 𝑌 , , 𝐶 ,  

𝑁  𝑁  𝑁  𝑁   𝜋 , : 0 40 80 100 𝑌 , : 5 15 5 5 𝐶 , :

 𝐶𝐻  𝜋 , , 𝑌 , , 𝐶 ,  

𝑁  𝑁  𝑁  𝑁   𝜋 , : 0 30 40 90 𝑌 , : 5 10 15 10 𝐶 , :

 𝐶𝐻  𝜋 , , 𝑌 , , 𝐶 ,  

𝑁  𝑁  𝑁  𝑁   𝜋 , : 0 60 80 100 𝑌 , : 5 5 5 5 𝐶 , :
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max
…

𝑓 𝐶𝐻  ⋯ max
…

𝑓 𝐶𝐻  ; 

 Condition 3 (C3): the number of generations has reached the limit value 𝑙𝑒: 𝑗 𝑙𝑒. 
Satisfaction of the stopping condition allows you to determine the next submissions 𝑆  (where 

𝑆 𝑏𝑒𝑠𝑡 𝐶𝐻  ) constituting the reactive UAV fleet mission plan 𝑆̅ 𝑆 , … , 𝑆 , 𝑆 , … , 𝑆 . 

7. Computational experiments 

We consider the network from Figure 1, in which the four UAVs 𝒰 𝑈 , 𝑈 , 𝑈 , 𝑈  service 
delivery points 𝑁 – 𝑁  . The structure of the implementation of subsequent sub-missions 

𝑆 , 𝑆 , … , 𝑆  of the adopted mission plan 𝑆 is presented in Figure 2. 
Let us consider a situation related to the appearance of a disturbance IS(3000), specified in Section 

2, where at the time 𝑡∗ 3000  [s], during the execution of the sub-mission 𝑆  , the wind speed 
increased to 𝑣𝑤  11 𝑚/𝑠 with the same wind intensity and direction 𝜃 210° 230°. With 
such a change in weather conditions, the implementation of the adopted plan turns out to be impossible. 
It becomes necessary to re-plan the implemented mission, including the introduction of the new sub-
missions 𝑆 , 𝑆  , 𝑆  , 𝑆 , 𝑆   to correct its course. For this purpose, the considered problem has been 
modeled in 𝐶𝑂𝑃 (33) formalism. The Intel Core i7-M4800MQ 2.7 GHz, 32 GB RAM has been used 
to carry out the necessary calculations, employing: 

1) The constraint programming environment IBM ILOG,  
2) The genetic algorithm (shown on the Figure 8) implemented in Matlab environment. 
Ad. 1. Implementation of considered problem in the constraint programming environment IBM 

ILOG has shown that the solution time for problems of size considered does not exceed 25 s. Figure 
10 demonstrates the mission 𝑆 

∗   schedule being adapted to the weather conditions caused by the 
disturbance IS(3000). Rule 2, i.e., If there are UAVs that (within the set 𝒰𝑅) cannot continue to fly 
due to disturbance 𝐼𝑆 𝑡∗ , then they should be returned to the base to allow, if possible, airborne 
UAVs (the set 𝒰\𝒰𝑅) to take over their tasks, was used in the selection of mission 𝑆 

∗ . 

 

Figure 10. Change in the mission plan as per rule 2 (solution obtained from IBM ILOG). 
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Consequently, due to disturbance IS(3000) increasing the risk of premature battery depletion, a 
decision to turn 𝑈  back to the base was made (see sub-mission 𝑆 ). At the same time 𝑈  continued 
its mission unchanged. The undertaken decision forced the necessity to reschedule subsequent sub-
missions 𝑆 , 𝑆 , 𝑆 , 𝑆 , creating a new alternative mission plan 𝑆 

∗  . The mission implementing such a 
modified plan will end at 6900 s. 

Ad. 2. Solving the problem under consideration using the genetic algorithm from Figure 8 took 2 
s. Figure 11 shows the schedule of obtained mission 𝑆 

∗ . To determine a proactive plan, as before, rule 
2 was used. According to this rule 𝑈  is to turn back to the base. The further course of the mission is 
carried out in 8 sub-missions 𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 . It is apparent that the obtained solution is 
associated with a longer mission time (8500s). 

This example demonstrates that the constraint programming environment allows us to obtain 
solutions of better quality (mission completion time is reduced by 19%) but at the expense of increased 
calculation time (more than 10 times longer solution determination time). 

 

Figure 11. Change in the mission plan as per rule 2. 

To assess the scalability of the proposed approach in terms of the possibility of its use in an online 
mode (i.e., to solve the problem in < 600 s) in decision support systems, a series of quantitative 
experiments have been carried out. Tables A1–A3 (Appendix A) contain the results of the experiments 
that were conducted for the three functions of forecasted weather ℱ 𝜃 9, 10, 11 𝑚/𝑠 . The 
experiments were carried out for the network of 𝑛 40,60, … ,220 randomly designated delivery 
points (on an area of 10 km × 10 km) and a fleet consisting of 𝐾 2,3,4 UAVs within the technical 
parameters, as shown in the table from Figure 1c). For each of the considered variants of the network, 
a proactive mission plan has been set out to guarantee the deliveries in the time horizon 𝐻 10,000 
s. It was assumed that at the moment 𝑡∗   2000 s, there is a change in the weather forecast 
(disturbance IS (2000)) that lasts until the end of the considered time horizon. The change in weather 
involves increasing the expected wind speed by 2m/s and equals accordingly ℱ∗ 𝜃 =11, 12, 13 m/s. 
The UAVs route planning is aimed at the reactive performance of delivery missions in a given time 
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horizon, under expected weather conditions ℱ∗ 𝜃 .  
In the conducted experiments, two approaches were compared: 
1) The constraint programming environment IBM ILOG CPLEX implemented the following 

stopping condition: 
C0. The optimal value of the objective function has been reached or the time  𝑇𝐶 600𝑠 allotted 

for calculations has elapsed. 
2) The Genetic Algorithm (GA) shown in Figure 8 specified by: 𝐿𝑃 1000 (population size); 

𝑝𝑠 0.25 (probability of selection); 𝑝𝑚 0.01 (probability of mutation), and implemented in the 
Matlab environment using three distinct stopping conditions: 

C1. value of the objective function of the best individual of the population has reached the value 
of solution obtained from the IBM ILOG CPLEX environment (see condition C0); 

C2. value of the objective function of the best individual of the population has not changed 
through 𝑞 10 generations; 

C3. the number of generations has reached the limit value 𝑙𝑒: 𝑗 200. 
The results (i.e., the times with relaxation 𝑇𝐶 determining the reactive mission plan design) are 

presented in Figures 12–15 (and Tables A1–A3). Figure 12 compares the time expenditure incurred in 
determining the reactive plan in the ILOG environment and the developed GA (implementing the 
stopping condition C1). In the GA variant under consideration, it is assumed that the calculation is 
stopped when the value of the objective function specified by the solution obtained from the ILOG 
environment is reached. Calculations were carried out for weather conditions ℱ 𝜃 9 , ∀Θ ∈

0°, 360° . Disruption (for which a reactive plan is sought) consists of changing the wind speed to 
ℱ∗ 𝜃 11 .  

 

Figure 12. Comparison of computation times for the ILOG environment and GA (for 
stopping condition C1) and weather conditions ℱ 𝜃 9 , ∀Θ ∈ 0°, 360°  (see Table 

A1). 

ILOG solutions

GA solutions
𝑚𝑇

𝑚𝑇 𝜎

𝑚𝑇 𝜎
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It is evident that determining the optimal solution (maximizing objective function (32)) in the 
ILOG environment (dashed lines in Figure 12) requires significant computational effort. The scale of 
problems (number of network nodes 𝑛) for which it is possible to determine a solution on-line ( 600 
s) decreases with the size of the UAV fleet and amounts to: 𝑛 220 for 𝑘 2; 𝑛 140 for 𝑘
3; and 𝑛 100 for 𝑘 4. Determining reactive plans for the set values of the objective function 
(obtained from the ILOG environment) using the implemented GA requires, in turn, a much lower 
computation time. As such, the considered scale of the network for all solutions were received in a 
time below 300 s—see ribbon-like lines presented means (𝑚𝑇) and standard deviation (𝑚𝑇 𝜎) of 
time computations. Such advantages of the GA results from the assumption that the solution (mission 
plan) was sought at the set (optimal) value of the objective function. Subsequent experiments were 
carried out on the assumption that the value of the objective function is unknown (stopping conditions 
C2 and C3 are used). 

Figure 13 shows the results of experiments in which the stopping conditions C2 (Figure 13a) and 
C3 (Figure 13b) were implemented in the GA. In the first case, as before, the solution designation 
times for the GA do not exceed 400 s for the network size 𝑛 220. 

 

Figure 13. Comparison of the results of experiments carried out for the ILOG and GA (for 
stopping conditions C2 a) and C3 b)) under weather conditions ℱ 𝜃 9 , ∀Θ ∈

0°, 360°  (see Appendix A-Table A1). 
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illustrated in Figure 13, which shows the changes in the value of the objective function for the solutions 
obtained. These values are expressed in % of optimal solutions obtained from the ILOG environment 
(e.g., a value of 70% means that the solution obtained from the GA has a value of the objective function 
equal to 0.7 of the result obtained from the ILOG environment). Mission plans determined using the 
GA are characterized by a lower value of the objective function than the solutions obtained in the ILOG 
environment, representing respectively:  80%  (for 𝑘 2 ); 70%  (for 𝑘 3 ); and 60% 
(for 𝑘 4) values obtained when using the ILOG environment. 

In the second case (condition C3—see Figure 13b), the mission plans determined using the GA 
are characterized by a higher value of the objective function: 95% (for 𝑘 2); 85% (for 𝑘
3); and 75% (for 𝑘 4). However, obtaining such values requires significant computation times, 
which in the considered case are greater than in the ILOG environment (see Figure 13). It is also worth 
noting that the calculation times in both analyzed cases (C2 and C3) are characterized by a very low 
standard deviation value (𝜎 2 for C2 and 𝜎 25 for C3; see Table A1), which means that despite 
the randomly generated population, the solution is usually obtained at the same time. 

The presented experiments demonstrate that the planning of reactive missions using accurate 
methods (e.g., in the ILOG environment) is limited to small-scale networks (up to 100–220 nodes). 
This range can be increased using the proposed GA (implementing stopping condition C2); the solution 
is obtained on-line (<600 s). However, this result coincides with a lower value of the target function 
(e.g., at the level of 60%–80% of optimal solutions). 

In further experiments, the influence of weather conditions on the time and quality of the solutions 
obtained was examined. Figures 14 and 15 show the results of experiments carried out for weather 
conditions ℱ 𝜃 10  and ℱ 𝜃 11 , in which a disturbance in the form of changes in wind 

speed ℱ∗ 𝜃 11    oraz ℱ∗ 𝜃 12   , respectively, was considered. The results of the 

experiments are collected in Tables A2 and A3 (see Appendix A). 
Figures 14 and 15 compare the solutions obtained in the ILOG and GA environments with the 

stopping condition C2. It is evident that the change in weather conditions affects the time it takes for 
the ILOG environment to obtain a solution: 

 for ℱ 𝜃 10 , the scale of problems for which it is possible to determine a solution on-

line ( 600 s) amounts to: 𝑛 200 for 𝑘 2; 𝑛 120 for 𝑘 3 and 𝑛 80 for 𝑘 4;  
 for ℱ 𝜃 11 , the scale of problems for which it is possible to determine a solution on-

line ( 600 s) amounts to: 𝑛 200 for 𝑘 2; 𝑛 100 for 𝑘 3, 𝑛 80 for 𝑘 4. 
It is also apparent that the change in weather conditions has increased the GA calculation time to 

500 s. However, the change in weather conditions does not affect the quality of the solutions obtained. 
The value of the target function for the missions set by the GA remains at a similar level as before: 

 for ℱ 𝜃 10 , the value of the objective function is equal to: 78% (for 𝑘 2); 

68% (for 𝑘 3); 60% (for 𝑘 4); 
 for ℱ 𝜃 11 , the value of the objective function is equal to: 75% (for 𝑘 2); 

65% (for 𝑘 3); 60% (for 𝑘 4). 
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Figure 14. Comparison of the results of experiments carried out for the ILOG and GA (for 
stopping condition C2) under weather conditions ℱ 𝜃 10 , ∀Θ ∈ 0°, 360°   (see 

Appendix A-Table 2). 

 

Figure 15. Comparison of the results of experiments carried out for the ILOG and GA (for 
stopping condition C2) under weather conditions ℱ 𝜃 11 , ∀Θ ∈ 0°, 360°   (see 

Appendix A-Table A3). 

The conducted experiments indicate that the greatest impact on the time of determining the 
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8. Conclusions 

We propose a reactive routing method to solve the problem of UAV fleet mission contingency 
planning in a dynamically changing environment. We have considered plans for UAV route missions 
in the event that the weather changes beyond the previously predicted situation and/or that the 
previously agreed order fulfillment terms change. The need to react in such situations enforces the 
establishment of condition-action rules that allow for the designation of appropriate possible end-to-
end routes and enabling safe completion of the mission or its continuation in a modified version during 
an emergency scenario. 

The main advantage of the proposed model is its open structure, which allows for taking into 
account several variables and constraints, particularly the conditions, enabling a significant acceleration 
of calculations related to the variants of UAV routes caused by changes in weather conditions. 

The developed model was implemented in the IBM ILOG declarative programming environment 
and the author's Genetic Algorithm. Computational results show that the proposed approach is suitable 
for online applications. The best results (i.e., the shortest time to determine the solution) were obtained 
for the GA in which the C2 stopping condition was applied (the value of the objective function has not 
changed through 𝑞 generations). Experiments have shown that the scale of problems for which on-
line, reactive UAV missions can be determined includes networks containing 𝑛 220  nodes and 
fleets 𝐾 4 UAVs.  

In the general case, however, it should be noted that the aforementioned advantage of heuristic 
methods is paid for by the lack of guarantee that the trajectories of the UAVs motion determined with 
their help are collision-free. This disadvantage does not have an exact method that implements CP 
techniques, so it allows planning UAVs routes carrying out their missions at the same flight ceiling. 

In our future research, we want to take into account the uncertain nature of the real-world 
variables which are not deterministic. Thus, a fuzzy approach could be applied to the UAV mission 
planning problem while allowing for a more accurate estimation of the timeliness of deliveries. 
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Appendix A 

Table A1. Results of experiments conducted for ℱ 𝜃 9 , ∀Θ ∈ 0°, 360° . 

  ℱ 𝜃 9
𝑚
𝑠

, ∀Θ ∈ 0°, 360°  

   
ILOG 

Genetic Algorithm (GA) 

   C1 C2 C3 

𝑛 𝐾 𝑇𝐶  𝑓   𝑚𝑇  𝜎 𝑓 % 𝑚𝑇  𝜎 𝑓 % 𝑚𝑇  𝜎 𝑓 % 

40 

2 2,17 300 60 34,214 300 100 0,06 0,015 205 68,33 58,51 0,45 285 95,00

3 3,73 450 15,45 4,726 450 100 5,68 1,883 300 66,67 78,37 23,258 330 73,33

4 151,69 600 11,27 4,472 600 100 15,69 0,236 355 59,17 111,36 1,133 420 70,00

60 

2 6,62 300 57,33 27,25 300 100 5,28 1,903 240 80,00 92,11 0,577 285 95,00

3 34,25 450 3,52 8,94 450 100 9,78 0,264 275 61,11 142,55 0,618 375 83,33

4 230 600 14,86 5,613 600 100 24,17 0,592 385 64,17 212,7 1,009 435 72,50

80 

2 11,1 300 68,7 35,29 300 100 8,52 0,059 240 80,00 141,76 0,585 270 90,00

3 80 450 25,7 12,96 450 100 16,05 0,307 355 78,89 230,05 0,934 390 86,67

4 382,29 600 20,97 12,468 600 100 34,66 0,89 360 60,00 339,92 1,729 420 70,00

100 

2 53,41 300 23,03 6,041 300 100 12,39 0,064 220 73,33 212,62 1,625 270 90,00

3 131 450 31 0,407 450 100 23,68 0,435 320 71,11 318,17 3,49 360 80,00

4 t>600  29,24 15,966 600 100 71,84 1,832 345 57,50 600 2,834 480 80,00

120 2 64,56 300 70 9,36 300 100 30,57 0,118 265 88,33 272,3 1,079 300 100,00
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  ℱ 𝜃 9
𝑚
𝑠

, ∀Θ ∈ 0°, 360°  

   
ILOG 

Genetic Algorithm (GA) 

   C1 C2 C3 

𝑛 𝐾 𝑇𝐶  𝑓   𝑚𝑇  𝜎 𝑓 % 𝑚𝑇  𝜎 𝑓 % 𝑚𝑇  𝜎 𝑓 % 

3 226,34 450 34 0,997 450 100 70,12 1,282 330 73,33 591,49 2,769 370 82,22

4 t>600  29 22,613 600 100 136,26 1,768 360 60,00 t>600       

140 

2 136,67 300 42 17,73 300 100 65,05 0,059 255 85,00 495,11 0,75 285 95,00

3 599,32 450 21,68 1,25 450 100 62,51 1,03 335 74,44 t>600       

4 t>600  66,53 26,45 600 100 143,45 0,74 375 62,50 t>600       

160 

2 368,99 300 40,21 22,58 300 100 43,19 0,43 225 75,00 599,98 0,58 300 100,00

3 t>600  24,11 7,06 450 100 78,12 1,01 315 70,00 t>600       

4 t>600  81 37,04 600 100 180,77 1,43 380 63,33 t>600    

180 

2 415,55 300 91 15,15 300 100 54,27 0,47 285 95,00 t>600    

3 t>600  37 12,55 450 100 103,34 0,98 290 64,44 t>600    

4 t>600  119,66 45,72 600 100 241,23 1,6 375 62,50 t>600    

200 

2 576,72 300 65,66 8,2 300 100 66,61 0,74 250 83,33 t>600    

3 t>600  38,7 6,54 450 100 133,09 0,67 305 67,78 t>600    

4 t>600  171,35 61,81 600 100 318,89 1,7 360 60,00 t>600    

220 

2 t>600  79,22 11,21 300 100 82,72 1,59 225 75,00 t>600    

3 t>600  49,89 8,73 450 100 156,67 1,01 290 64,44 t>600    

4 t>600  200,73 78,4 600 100 363,03 1,65 350 58,33 t>600    

Note: 𝑛—number of nodes (delivery points); 𝐾—size of the UAV fleet; 𝑇𝐶—time of computation for IBM ILOG; 𝑚𝑇—

average calculation time for GA; 𝜎—standard deviation of calculation time; 𝑓 —value of the objective function; %—

percentage assessment of the difference between solutions obtained from ILOG and GA: 
𝑓0

𝐺𝐴

 [%]. 

Table A2. Results of experiments conducted for ℱ 𝜃 10 , ∀Θ ∈ 0°, 360° . 

  ℱ 𝜃 10
𝑚
𝑠

, ∀Θ ∈ 0°, 360°  

  
ILOG 

Genetic Algorithm (GA) 

  C1 C2 C3 

𝑛 𝐾 𝑇𝐶  𝑓   𝑚𝑇  𝜎 𝑓 % 𝑚𝑇  𝜎 𝑓 % 𝑚𝑇  𝜎 𝑓 % 

40 

2 3,845 300 48,2 14,928 300 100 3,26 1,592 235 78,33 47,85 18,871 255 85,00

3 5,131 450 2,45 3,773 450 100 6,2 1,838 275 61,11 71,74 18,385 390 86,67

4 40,021 555 13,46 34,729 600 100 18,27 0,51 350 58,33 107,18 8,773 405 67,50

60 

2 7,859 300 65,32 21,081 300 100 5,67 1,771 215 71,67 83,56 16,7 270 90,00

3 28,583 450 4,14 6,781 450 100 10,51 1,666 305 67,78 132,41 10,643 370 82,22

4 394,009 600 17,67 12,881 600 100 28,24 1,576 340 56,67 200,59 6,408 410 68,33

80 

2 18,647 300 25 3,83 300 100 9,13 0,614 255 85,00 135,9 16,463 285 95,00

3 167,592 450 5,7 4,599 450 100 16,26 0,625 310 68,89 216,76 7,469 400 88,89

4 t>600  23,07 6,502 600 100 40,63 0,607 350 58,33 318,51 1,111 370 61,67
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  ℱ 𝜃 10
𝑚
𝑠

, ∀Θ ∈ 0°, 360°  

  
ILOG 

Genetic Algorithm (GA) 

  C1 C2 C3 

𝑛 𝐾 𝑇𝐶  𝑓   𝑚𝑇  𝜎 𝑓 % 𝑚𝑇  𝜎 𝑓 % 𝑚𝑇  𝜎 𝑓 % 

100 

2 49,724 300 3,04 26,858 300 100 12,5 1,027 240 80,00 197,63 13,839 285 95,00

3 49,194 450 145 10,953 450 100 25,42 1,213 295 65,56 317,09 1,416 355 78,89

4 t>600  152 12,186 600 100 79,71 1,639 375 62,50 t>600    

120 

2 52,216 300 196 0,912 300 100 17,39 1,71 235 78,33 271,71 2,794 285 95,00

3 t>600  212 8,147 450 100 45,84 0,991 310 68,89 t>600    

4 t>600  61,28 7,747 600 100 103,37 1,571 350 58,33 t>600    

140 

2 131,188 300 9,71 10,639 300 100 32,44 1,324 225 75,00 499,47 7,476 280 93,33

3 t>600 60 21,54 3,511 450 100 61,14 0,935 315 70,00 t>600    

4 t>600  83,21 3,003 600 100 144,88 1,046 390 65,00 t>600    

160 

2 356,773 300 10,24 5,985 300 100 42,83 0,453 255 85,00 t>600    

3 t>600  28,05 4,633 450 100 80,28 1,808 315 70,00 t>600    

4 t>600  65 6,726 600 100 202,13 0,641 400 66,67 t>600    

180 

2 541,505 300 98 15,498 300 100 53,36 1,072 225 75,00 t>600    

3 t>600  35,02 8,192 450 100 102,86 0,62 330 73,33 t>600    

4 t>600  150,85 8,599 600 100 268 1,556 365 60,83 t>600    

200 

2 599,257 300 19,27 0,625 300 100 72,3 1,418 245 81,67 t>600    

3 t>600  44,91 1,009 450 100 135,6 1,036 305 67,78 t>600    

4 t>600  202,68 1,436 600 100 354,15 1,509 365 60,83 t>600    

220 

2 t>600  19,37 0,54 300 100 81,89 0,754 235 78,33 t>600    

3 t>600  57,78 5,329 450 100 165,16 1,751 300 66,67 t>600    

4 t>600  239,33 0,801 600 100 428,7 0,626 365 60,83 t>600    

Note: 𝑛—number of nodes (delivery points); 𝐾—size of the UAV fleet; 𝑇𝐶 – time of computation for IBM ILOG; 𝑚𝑇—

average calculation time for GA; 𝜎 - standard deviation of calculation time; 𝑓 —value of the objective function; % - 

percentage assessment of the difference between solutions obtained from ILOG and GA: 
𝑓0

𝐺𝐴

 [%]. 

Table A3. Results of experiments conducted for ℱ 𝜃 11 , ∀Θ ∈ 0°, 360° . 

  ℱ 𝜃 11
𝑚
𝑠

, ∀Θ ∈ 0°, 360°  

  
ILOG 

Genetic Algorithm (GA) 

  C1 C2 C3 

𝑛 𝐾 𝑇𝐶  𝑓   𝑚𝑇  𝜎 𝑓 % 𝑚𝑇 𝜎 𝑓 % 𝑚𝑇  𝜎 𝑓 % 

40 

2 3,957 300 96 30,905 300 100 3,53 1,058 225 75,00 47,771 21,925 270 90,00

3 5,599 450 9,32 34,568 450 100 6,95 1,379 270 60,00 71,685 20,719 330 73,33

4 342,597 555 19,72 31,304 600 100 24,3 1,781 390 65,00 112,225 16,231 390 65,00

60 
2 6,845 300 32 7,138 300 100 6,11 1,083 205 68,33 83,249 21,772 255 85,00

3 12,292 450 45,61 9,525 450 100 11,43 0,841 270 60,00 131,21 14,801 325 72,22
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  ℱ 𝜃 11
𝑚
𝑠

, ∀Θ ∈ 0°, 360°  

  
ILOG 

Genetic Algorithm (GA) 

  C1 C2 C3 

𝑛 𝐾 𝑇𝐶  𝑓   𝑚𝑇  𝜎 𝑓 % 𝑚𝑇 𝜎 𝑓 % 𝑚𝑇  𝜎 𝑓 % 

4 29,543 600 25,54 10,312 600 100 38,16 1,102 330 55,00 204,368 14,424 385 64,17

80 

2 14,705 300 12 11,621 300 100 9,85 1,296 220 73,33 134,987 16,747 285 95,00

3 31,342 450 7,27 6,468 450 100 18,72 1,435 285 63,33 213,583 15,717 345 76,67

4 464,70  32,29 5,84 600 100 53,94 1,32 365 60,83 332,77 21,899 440 73,33

100 

2 47,528 300 3,73 5,277 300 100 14,25 0,485 240 80,00 196,489 5,106 285 95,00

3 t>600  24 5,703 450 100 26,79 1,146 300 66,67 320,935 17,292 405 90,00

4 t>600  36 5,605 600 100 105,38 1,101 350 58,33  t>600    

120 

2 69,069 300 58 12,056 300 100 20,05 1,357 250 83,33 272,852 22,023 285 95,00

3 271,93 450 18,2 5,425 450 100 47,08 1,23 305 67,78 595,066 20,186 360 80,00

4 486,909 600 35 1,515 600 100 119,51 1,746 365 60,83 t>600     

140 

2 93,477 300 98 8,019 300 100 33,55 1,701 225 75,00 493,384 5,415 270 90,00

3 476,9 450 24,52 5,884 450 100 62,62 1,753 310 68,89 t>600    

4 578,965 600 118,43 3,601 600 100 164,53 1,592 340 56,67 t>600    

160 

2 155,018 300 12,71 6,243 300 100 43,23 1,808 235 78,33 t>600    

3 t>600  32,04 1,503 450 100 85,6 0,579 295 65,56 t>600    

4 t>600  154 5,646 600 100 226,91 1,781 370 61,67 t>600    

180 

2 351,507 300 222 30,871 300 100 53,73 0,867 220 73,33 t>600    

3 t>600  40,46 3,673 450 100 102,23 0,861 285 63,33 t>600    

4 t>600  193,15 18,532 600 100 292,14 1,027 410 68,33 t>600    

200 

2 584,659 300 50 0,621 300 100 66,79 1,518 220 73,33 t>600    

3 t>600  48 1,259 450 100 129,77 1,351 330 73,33 t>600    

4 t>600  281,58 1,426 600 100 420,34 0,77 345 57,50 t>600    

220 

2 t>600  23,56 0,7 300 100 82,01 1,361 220 73,33 t>600    

3 t>600  65,46 1,086 450 100 167,36 0,671 310 68,89 t>600    

4 t>600  331,64 1,112 600 100 485,18 0,854 365 60,83 t>600    

Note: 𝑛—number of nodes (delivery points); 𝐾 – size of the UAV fleet; 𝑇𝐶—ime of computation for IBM ILOG; 𝑚𝑇—

average calculation time for GA; 𝜎—standard deviation of calculation time; 𝑓 —value of the objective function; %—

percentage assessment of the difference between solutions obtained from ILOG and GA: 
𝑓0

𝐺𝐴

 [%]. 
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