
MBE, 19(7): 7055–7075. 

DOI: 10.3934/mbe.2022333 

Received: 02 March 2022 

Revised: 15 April 2022 

Accepted: 06 May 2022 

Published: 12 May 2022 

http://www.aimspress.com/journal/MBE 

 

Research article 

Identification and validation of a tumor mutation burden-related 

signature combined with immune microenvironment infiltration in 

adrenocortical carcinoma 

Yong Luo, Qingbiao Chen* and Jingbo Lin* 

Department of Urology, the Second People’s Hospital of Foshan, Affiliated Foshan Hospital of 
Southern Medical University, Foshan 528000, China 

* Correspondence: Email: elvislam0738@outlook.com, QingbiaoChen@outlook.com; Tel: 
+8615625093895; Fax: +86075788032009. 

Abstract: Tumor mutation burden (TMB), an emerging molecular determinant, is accompanied by 
microsatellite instability and immune infiltrates in various malignancies. However, whether TMB is 
related to the prognosis or immune responsiveness of adrenocortical carcinoma (ACC) remains to be 
elucidated. This paper aims to investigate the impact of TMB on the prognosis and immune 
microenvironment infiltration in ACC. The somatic mutation data, gene expression profile, and 
corresponding clinicopathological information were retrieved from TCGA. The mutation landscape 
was summarized and visualized with the waterfall diagram. The ACC patients were divided into low 
and high TMB groups based on the median TMB value and differentially expressed genes (DEGs) 
between the two groups were identified. Diverse functional analyses were conducted to determine 
the functionality of the DEGs. The immune cell infiltration signatures were evaluated based on 
multiple algorithms. Eventually, a TMB Prognostic Signature (TMBPS) was established and its 
predictive accuracy for ACC was evaluated. Single nucleotide polymorphism and C > T were found 
to be more common than other missense mutations. In addition, lower TMB levels indicated 
improved survival outcomes and were correlated with younger age and earlier clinical stage. 
Functional analysis suggested that DEGs were primarily related to the cell cycle, DNA replication, 
and cancer progression. Additionally, significant differences in infiltration levels of activated CD4+ 
T cells, naive B cells, and activated NK cells were observed in two TMB groups. We also found that 
patients with higher TMBPS showed worse survival outcomes, which was validated in the Gene 
Expression Omnibus database. Our study systematically analyzed the mutation and identified a 
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TMBPS combined with immune microenvironment infiltration in ACC. It is expected that this paper 
can promote the development of ACC treatment strategies. 

Keywords: tumor mutation burden; immune microenvironment infiltration; adrenocortical 
carcinoma; prognosis 
 

1. Introduction 

Adrenocortical carcinoma (ACC) is a rare endocrine malignancy. It afflicts one in every million 
people each year, and the median overall survival is merely 3–4 years [1]. For individuals with local 
or locally progressive illness, radical resection is presently the sole curative option [2]. However, the 
cumulative recurrence rate is still high even after surgery [3]. The most widely used TNM (tumor, 
lymph node, and metastasis) classification was not satisfactory owing to the lack of predominant 
genomic and molecular characteristics [4,5]. Therefore, identifying pivotal genomic determinants to 
enhance the predictive accuracy is important for ACC treatment and survival analysis. 

In recent years, multiple acknowledged biomarkers for immune responsiveness, including 
microsatellite instability (MSI), tumor-infiltrating lymphocytes (TILs), and tumor mutation burden 
(TMB), especially the immune microenvironment infiltration and TMB, have shown great potential in 
the prediction of advanced or aggressive cancers [6–8]. TILs constitute the most crucial part of 
immunity since they can mediate the response of the immune system to chemotherapy, and they have 
revolutionized the treatments for many malignancies [7,9]. In addition, TILs have been confirmed to 
have a considerable impact on the development of tumors and clinical outcomes in various cancers, 
including lung cancer, urothelial carcinoma, and colorectal cancer [10–12]. It has been found that high 
mast cell infiltration indicates a better survival rate in ACC patients [13]. TMB represents the total 
number of somatic missense mutations in one megabase of genomic regions and has been determined 
as an emerging biomarker accompanied by immune infiltrates in various malignancies [14–16]. 
Notably, previous studies revealed that the TMB level could predict immunotherapy effect and survival 
outcomes across most cancer types [17–19]. High TMB in kidney renal clear cell carcinoma patients 
indicated an awfully poor survival outcome and inhibited immune cell infiltration [20]. Yan et al. 
constructed a prognostic signature by combining TMB and immune cell infiltrates to predict survival 
outcomes in cutaneous melanoma [21]. 

Increasing evidence revealed that polygenic mutation was related to the carcinogenesis and 
aggressive progression in ACC, indicating the predictive potential of TMB [1,22]. Mutations were 
transcribed and translated into novel antigens, which could be recognized and targeted by the 
tumor-immune system [23]. More mutations contribute to more antigens, making tumors more 
immunogenic and responsive to the immune system [17]. Nevertheless, merely about 20% of cancer 
patients could benefit from the immune strategy, which may be due to the involvement of TILs and 
the status of the tumor immune microenvironment (TIME) [24]. What is worse is that no 
biosignatures for evaluating the status of immune microenvironment infiltration in ACC have been 
found based on TMB level. Accordingly, it is of critical necessity to investigate the underlying 
molecular mechanism of immune infiltrates and the role of TMB based on an effective model 
containing multiple biomarkers for ACC. 

In this research, we intended to explore the prognostic role of TMB with the combination of the 
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characteristics of immune infiltrates in an attempt to provide a distinctive perspective for the further 
development of ACC treatment strategies. 

2. Materials and methods 

2.1. Data acquisition and analysis 

First of all, the somatic mutation data of 92 ACC patients were extracted from the Cancer 
Genome Atlas (TCGA, https://portal.gdc.cancer.gov/). After that, the “Masked Somatic Mutation” 
data was selected and processed by VarScan software. The Mutation Annotation Format of somatic 
mutation data was prepared and implemented by the “maftools” R package, which provided a wide 
range of analysis modules to execute a feature‐rich customizable visualization [25]. Then, the gene 
expression data of 92 ACC samples in HTSeq-FPKM format were obtained. Moreover, we retrieved 
the corresponding clinical data of all samples. In order to facilitate downstream analysis, all Ensembl 
gene IDs were converted to gene symbols using an annotation GTF file obtained from GENCODE. 
Meanwhile, we downloaded transcriptome expression profiles and clinical information of GSE76019, 
GSE33371, and GSE10927 from the Gene Expression Omnibus (GEO) for validation. The probe 
matrix of the GSE76019 cohort, including 34 patients, was converted to a gene matrix using the 
GPL13158 platform. Additionally, the GSE33371 and GSE10927 datasets, containing 23 and 24 
samples, respectively, were generated using the GPL570 platform. 

2.2. TMB value calculation and prognostic evaluation 

TMB refers to the total number of somatic missense mutations in a megabase of the genomic 
region, comprising base substitutions, insertions, and deletions. The Perl scripts were developed 
using the JAVA platform to specifically calculate the mutation frequency of all samples. The average 
length of the human exons is 38 megabase (Mb). Accordingly, the TMB estimate is equal to the total 
number of variants/38 for each sample. The calculation of TMB for 92 ACC patients was shown in 
Table S1. The ACC samples were divided into the low and high TMB groups. Then, the 
Kaplan-Meier analysis was conducted to compare the survival differences between two groups using 
the “survival” R package. We further assessed the relationship between TMB levels and clinical 
variables via Wilcoxon rank-sum test. 

2.3. Differentially expressed gene (DEG) and functional enrichment analyses 

The “Limma” package was selected for differential gene expression analysis without 
normalization between the two TMB groups with the screening criteria of | Fold change (FC) | > 1 [26]. 
The heatmap of all DEGs was analyzed and visualized utilizing the “Pheatmap” R package. Then, 
we used “org.Hs.eg.db” R package to convert all gene symbols into Entrez IDs for each DEG and 
implemented the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis using “enrichplot”, “ggplot2”, and “clusterProfiler” packages [27–29]. 
Additionally, gene set enrichment analysis (GSEA) was conducted by JAVA software. The 
“c2.cp.kegg.v7.2 symbols.gmt gene sets” obtained from the MSigDB database were chosen as the 
reference gene set [30]. False Discovery Rate (FDR) < 0.05 was considered as a threshold. 
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Homoplastically, the immune-related genes retrieved from the Immport were conducted by the 
“VennDiagram” package to select immune-related DEGs between two groups [31]. 

2.4. Survival analysis 

A total of 48 immune-related DEGs were screened out and the prognostic values in the two 
TMB groups were further evaluated. Ultimately, six core genes associated with survival outcomes 
were identified by the Kaplan-Meier analysis. Additionally, the Cox regression analysis was applied 
to verify the prognostic potential of these core genes. 

2.5. Analysis of the immune infiltrates of the core immune-related genes in ACC 

The CIBERSORT method was utilized to estimate the immune infractions, which was a newly 
developed tool that can convert gene expression data of each patient into immune infractions [32]. 
Detailed differential distributions of immune cells were analyzed and shown by the heatmap. 
Additionally, multiple algorithms containing EPIC, XCELL, MCPCOUNTER, QUANTISEQ, 
CIBERSORT-ABS, CIBERSORT, and TIMER were commanded to determine the differential 
abundances of immune infiltrates of core immune-related genes in ACC. 

 

Figure 1. The landscape of mutation profiles in ACC. 
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2.6. Establishment of TMB prognostic signature (TMBPS) 

We established a novel TMBPS containing six core immune-related genes and assessed its 
predictive accuracy for all ACC patients. The formula of TMBPS was as follows: TMBPS = Ʃ (βi × 
Expi) (I = 6). Moreover, the ROC curve was utilized to evaluate the predictive value of multiple 
clinical parameters in ACC. 

2.7. Statistical analysis 

The Wilcoxon rank-sum test was mainly used for comparisons between two groups based on the 
non-parametric hypothesis test. Kruskal-Wallis test was applied to analyze two or more categories. 
All statistical analyses were implemented using the R software (Version 4.1.1), and a P value less 
than 0.05 was considered to indicate statistically significant differences. 

3. Results 

3.1. The landscape of mutation profiles in ACC 

The somatic mutation profiles in ACC were analyzed for a comprehensive landscape of 
mutation profiles. The percentages (≥ 5%) of the top 34 mutated genes and mutation types marked in 
different colors were shown in the waterfall plot (Figure 1). On the whole, missense mutation, 
comprising single nucleotide polymorphisms (SNP) and C > T, was the predominant mutation type 
(Figure 2A–C). The median number of variants in each sample was 21.5 (Figure 2D), and the variant 
classifications were represented by different colors (Figure 2E). The simultaneous and exclusive 
correlation of mutated genes was depicted in Figure 2F. In order to reveal the mutation difference in 
TMB levels, the landscapes in two TMB groups were compared, as illustrated in Figure 3. Moreover, 
the gene expression data obtained from TCGA, consisting of 92 ACC patients (32 males and 60 
females), along with their clinicopathological features, were summarized in Table 1. The average age 
of these patients was 47.16 ± 16.30. 

3.2. The correlation of TMB with clinical prognosis 

The distributed patterns of clinical features of ACC in two TMB groups were depicted by the 
heatmap. TMB levels were closely associated with survival status and tumor stage (Figure 4A). 
Kaplan-Meier survival analysis suggested that ACC patients in the high TMB group tended to have a 
significantly worse survival outcome (Figure 4B,C). This finding is contrary to the result of previous 
studies [21,33]. Similarly, we assessed the correlation between clinical features and TMB values and 
found that a higher TMB level was correlated to older age and advanced tumor stage and AJCC-T 
stage (Figure 4D–F). Nevertheless, no significant correlation was observed between TMB level and 
gender, AJCC-N stage or AJCC-M stage (Figure 4G–I). 
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Figure 2. Summary of mutation profiles in ACC. (A) Variant classification; (B) Variant 
types; (C) SNV classification; (D) Variants in each sample; (E) Summary of variant 
classification; (F) The simultaneous and exclusive correlation of mutated genes. 
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Figure 3. A comprehensive landscape comparison of mutation profiles between the low 
(A,C,E) and high (B,D,F) TMB groups. 
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Table 1. Clinicopathological information of 92 ACC patients. 

varibles Number (%) 

Status  

Alive 58 (63.04) 

Dead 34 (36.96) 

Age (year) 47.16 ± 16.30 

Gender  

Female 60 (65.22) 

Male 32 (34.78) 

AJCC-T  

1 9 (9.78) 

2 49 (53.26) 

3 11 (11.96) 

4 21 (22.83) 

Unknown 2 (2.17) 

AJCC-N  

0 80 (86.96) 

1 10 (10.87) 

Unknown 2 (2.17) 

AJCC-M  

0 72 (78.26) 

1 18 (19.57) 

Unknown 2 (2.17) 

Stage  

Ⅰ 9 (9.78) 

Ⅱ 44 (47.83) 

Ⅲ 19 (20.65) 

Ⅳ 18 (19.57) 

Unknown 2 (2.17) 
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Figure 4. The correlation of TMB with clinical prognosis. (A) The distributed patterns of 
clinical features between two TMB groups. (B,C) Low TMB indicated a favorable 
prognosis. (D–F) Higher TMB levels were correlated to older age and advanced tumor 
stage and AJCC-T stage. (G–I) No significant correlation was observed between TMB 
and gender, AJCC-N stage, or AJCC-M stage. 
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3.3. Identification of DEGs correlated to TMB 

The heatmap showed that the levels of DEGs were generally lower in the low TMB group 
(Figure 5A). A total of 859 DEGs were determined by differential analysis for the following 
investigation (Table S2). To elucidate the potential biological functionality and pathways of DEGs, 
GO and KEGG enrichment analyses were performed. Nuclear division, DNA helicase activity, and 
microtubule binding were enriched in the GO category (Figure 5C; Table S3). Additionally, KEGG 
pathway enrichment analysis and the GSEA revealed that cell cycle, DNA replication, p53 signaling 
pathway, and pathways in cancer were enriched (Figure 5D,E; Tables S4 and S5). Owing to the fact 
that TMB was associated with the immune microenvironment, 48 immune-related genes were 
determined for the next analysis (Figure 5B; Table 2). 

 

Figure 5. Identification of DEGs correlated to TMB. (A) Heatmap of DEGs; (B) 
Identification of TMB-related immune genes; (C,D) GO and KEGG enrichment analysis 
of DEGs; (E) GSEA results of DEGs. 
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Table 2. The top 20 differential immune genes between two TMB groups. 

Gene ID Low High logFC pValue FDR 

BMP1 5.113 13.086 1.356 0.000 0.001 
C3 197.186 53.931 -1.870 0.000 0.001 
SLC40A1 83.375 25.418 -1.714 0.000 0.001 
BIRC5 2.330 9.782 2.070 0.000 0.001 
ARTN 0.274 0.627 1.194 0.000 0.002 
LTBP1 2.846 7.719 1.439 0.000 0.002 
NR4A3 2.341 7.089 1.599 0.000 0.003 
HGF 2.130 0.604 -1.819 0.000 0.005 
PDIA2 0.182 0.418 1.197 0.000 0.005 
QRFP 0.204 0.537 1.393 0.000 0.005 
CCL23 0.362 0.165 -1.136 0.000 0.006 
TMSB10 659.304 1438.088 1.125 0.000 0.007 
XCL2 0.504 0.188 -1.424 0.001 0.008 
IL20RB 0.259 2.611 3.333 0.001 0.008 
CYSLTR1 0.282 0.132 -1.099 0.001 0.008 
BMP8B 0.165 0.364 1.139 0.001 0.009 
PTGER3 2.808 0.487 -2.527 0.001 0.010 
LTF 0.755 0.084 -3.162 0.001 0.010 
PTGFR 3.012 1.084 -1.474 0.001 0.011 
CTF1 4.790 1.875 -1.353 0.001 0.011 

 

Figure 6. The detailed workflow of screening out six core TMB-related immune genes. 



7066 

Mathematical Biosciences and Engineering  Volume 19, Issue 7, 7055–7075. 

3.4. Identification of core genes and their relation to the immune microenvironment 

Survival analysis and Cox regression analysis were performed to identify core genes that were 
significantly correlated with survival outcomes. Six core genes were identified and the detailed 
workflow of screening was shown in Figure 6. We found ACC patients with higher expression levels 
of TMSB15A, MMP9, BIRC5, and LTBP1 had worse survival outcomes (Figure 7A–D), while 
patients with high expression levels of CCL14 and PTGFR had better prognosis (Figure 7E,F). The 
results of Cox regression analysis also indicated that the six core prognostic genes were significantly 
related to the survival outcomes in ACC patients (Figure 7G,H). To further assess the underlying 
relation of these core genes with immune infiltrates in ACC, multiple software was applied. It was 
found that the expression of the six core genes was robustly associated with the abundance of 
immune cell subtypes (Figure 8). 

 

Figure 7. Kaplan-Meier analysis and Cox regression analysis of six core prognostic 
genes. (A–D) Higher expression levels of TMSB15A, MMP9, BIRC5, and LTBP1 
indicated worse survival outcomes; (E,F) Higher expression levels of CCL14 and 
PTGFR suggested a better prognosis. (G,H) The forest maps of the hazard ratio and P 
value of the six core prognostic genes. 
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Figure 8. The relation between expression levels of the six core prognostic genes and 
immune cell subtypes. (A–F) Tumor-infiltrating immune cell analysis of TMSB15A, 
MMP9, BIRC5, LTBP1, CCL14, and PTGFR. 

3.5. Relationship between TMB and immune cells in ACC 

We evaluated the proportions of 22 immune cells in all ACC samples based on the 
CIBERSORT method with P < 0.05 (Table S6), which were visualized in the heatmap and box plot 
(Figure 9A,B). We could find memory resting CD4+ T cells, CD8+ T cells, and M2 macrophage are 
the predominant immune cell types, while activated dendritic cells and M0 macrophage showed high 
abundance in the high TMB group. The violin diagram showed that infiltration levels of naive B 
cells and activated NK cells were relatively higher in the low TMB group, while activated memory 
CD4+ T cells showed a higher expression level in the high TMB group (Figure 9C). 
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Figure 9. Relationship between TMB and immune cells. (A,B) The proportions of 22 
diverse immune cell types in all ACC samples were visualized in the heatmap and box plot. 
(C) The correlation of TMB levels with infiltration levels of diverse immune cell subtypes. 

3.6. Construction and assessment of TMBPS for ACC patients 

In view of the relationship between variants of TMB-related immune genes with poor prognosis 
and higher immune infiltration, we established a TMBPS comprising the above six core genes and 
assessed its predictive efficiency for ACC. Based on the Cox regression model, TMBPS was 
calculated as follows: TMBPS = (0.343290 × TMSB15A + 0.026519 × MMP9 + 0.075941 × BIRC5 
+ 0.109634 × LTBP1 − 0.798708 × CCL14 − 0.142566 × PTGFR) (Table S7). The relations among 
survival status, prognostic scores, and core gene expression based on the TMBPS were shown in 
Figure 10A. ROC curve was introduced and the robust predictive accuracy of TMBPS was illustrated, 
with AUC = 0.897, higher than that of any other clinical parameters (Figure 10B). In addition, 
survival analysis revealed that ACC patients with high TMBPS suffered from an unfavorable 
prognosis (Figure 10C). Similarly, the Cox analysis of the above clinical factors was employed to 
verify that TMBPS could be an independent and robust prognostic predictor for ACC (Figure 10D,E). 
In order to validate our results, GSE76019, GSE33371, and GSE10927 derived from the GEO 
database were applied to assess the effectiveness of ACC prediction by TMBPS (Figure 11). 
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Figure 10. Construction and assessment of TMBPS for ACC patients. (A) The relations 
among survival status, prognostic scores, and core gene expression; (B) ROC curve of 
the TMBPS. (C) Survival analysis curve of the TMBPS. (D,E) The Cox regression 
analysis of the TMBPS. 

4. Discussion 

Tumorigenesis is the result of the accumulation of genetic alterations in the DNA interacting 
with immune infiltrates [34]. It has been found that TIME paves a novel way for tumor progression 
and immune response. TILs have been determined as an emerging indicator that affects the prognosis 
and therapeutic response in various human cancers [35–37]. Although patients with locally 
progressive ACC generally have a high recurrence rate after radical resection, PD-L1 inhibitors 
could reactivate dormant TILs and a high PD-L1 expression level indicated a longer postoperative 
survival, which represented a promising strategy for ACC [38]. Nevertheless, the therapeutic 
strategies of ACC are still limited and effective biomarkers for immune responses are lacking. 

The effective biomarkers can help to identify patients whose immune system would respond so 
as to avoid waste of money and severe toxicities for non-responders. TMB has proven to be a novel 
biomarker to predict immune responses in various malignancies, such as prostate adenocarcinoma, 
urothelial carcinoma of the bladder, and lung cancer [15,39–40]. Luo et al. found that a higher TMB 
level indicated worse BCR-free survival and TMB was associated with the immune infiltrates in 
prostate cancer [15]. Jiang et al. showed that a combination of TMB, immune infiltrates, and PD-L1 
expression is feasible for the prediction of early-stage lung squamous cell carcinoma [41]. 
Nevertheless, there were few discussions about the role of TMB and its underlying connection to 
immune infiltrates in ACC. 

In this research, we comprehensively analyzed and visualized the landscape of mutation profiles 
of ACC patients. It was found that 75% of ACC patients showed various mutation forms, with 
missense mutations comprised of SNP and C > T mutations accounting for the most. The two most 
common mutated genes were TP53 and CTNNB1. It was shown that TP53 was a tumor suppressor 
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protein responding to different cellular stresses through regulating the expression of target genes, 
inducing cell cycle capture, apoptosis, senescence, and metabolism alterations [42,43]. CTNNB1 
was a protein regulating cell growth and adhesion between cells [44,45]. Analysis of the association 
between TMB level and survival outcomes indicated that ACC patients with high TMB suffered 
from a worse prognosis. The results demonstrated that higher TMB levels were closely associated 
with older age and advanced tumor stage and AJCC-T stage. Accordingly, TMB is an effective 
predictor that could provide valuable information for immunotherapy in various kinds of cancers, 
including ACC [46,47]. 

 

Figure 11. Dataset GSE76019, GSE33371, and GSE10927 were used to validate the 
effectiveness of ACC prediction by TMBPS. (A–C) The relation among survival status, 
prognostic scores, and core gene expression. (D–F) Kaplan-Meier survival analyses. (G–I) 
ROC analysis curves for three cohorts. 

To further elucidate the potential biological functionality and mechanisms of 859 DEGs 
between two TMB groups, we conducted differential analysis to single out TMB-related DEGs. GO 
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enrichment analysis showed that DEGs were primarily involved in cell mitosis. KEGG pathway 
enrichment analysis and GSEA revealed that DEGs were mainly correlated with cancer progression 
and immune cell response to tumors, such as DNA replication, cell mitosis, and cell cycle. DNA 
replication and cell mitosis were the fundamental biological processes in which dysregulation could 
cause genome instability [48]. The accumulative errors of DNA replication and cell mitosis could 
cause tumorigenesis, including ACC [49]. These functions were also correlated with the occurrence 
of cancer, the influence of the tumor microenvironment, and the differentiation and activation of 
immune cells. Given that the physiological process of cell mitosis demands the homeostasis of 
the cell cycle, its dysregulation would bring about the disorder of cell growth and the occurrence 
of cancer [50]. 

Survival analysis was performed and six core prognostic TMB-related immune genes in ACC were 
identified. CCL14 was a chemokine inducing the activation of immune cells and a potential prognostic 
biomarker and tumor suppressor via regulating the cell cycle and promoting apoptosis in hepatocellular 
carcinoma [51]. BIRC5, as an immune-related gene, was greatly related to multiple immune cell 
infiltrates in diverse cancers and could inhibit apoptosis and facilitate cell proliferation [52]. We found 
BIRC5 was greatly related to abundant immune cell subtypes. On the whole, expression levels of 
these core immune genes were correlated to the abundance of immune infiltrates, including 
neutrophil cells, macrophage, cancer-associated fibroblast, B cells, and T cells. 

We also analyzed the correlation between TMB level and immune infiltrates to reflect the status 
of the TIME in ACC. In this study, infiltration levels of naive B cells and activated NK cells in the 
low TMB group were higher, while activated memory CD4+ T cells showed a higher infiltration 
level in the high TMB group. The possible reason is that the increased amount of neoantigens caused 
by genomic mutation promoted the immune activation and recognition of memory CD4+ T cells. It 
has been shown that CD4+ TILs were extraordinarily associated with antigen processing, and the 
infiltration of memory T cells was involved in the prognosis of multiple malignancies [53–54]. 
Activated memory CD4+ T cells, which were stimulated by the proliferation of inactive ones, were 
able to release inflammatory cytokines, thereby promoting tumor growth and accelerating tumor 
metastasis [55]. These findings verified that immune cells played an extremely important role in 
antitumor immunity in ACC patients. The identification of effective immunological biomarkers can 
help to avoid immunotherapy resistance and improve the therapeutic effect, and would become a 
novel promising therapeutic strategy for ACC patients. 

Finally, a new risk score signature containing six core genes was established and its predictive 
value for ACC was assessed with AUC. It was found that ACC patients with high TMBPS had a poor 
prognosis than those with low TMBPS. Our results were validated in the other three independent 
ACC patient cohorts retrieved from the GEO database. Therefore, we confirmed the superiority and 
effectiveness of our risk signature for the diagnosis and treatment of ACC, and it was expected to be 
applied in clinical practice in the future. 

5. Conclusions 

In summary, we revealed a systematic landscape of TMB and identified a TMBPS combined 
with immune microenvironment infiltration in ACC. This paper will provide a reference for the 
development of ACC treatment strategies. 
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