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Abstract: This assessment aims at measuring the impact of different location mobility on the COVID-
19 pandemic. Data over time and over the 27 Brazilian federations in 5 regions provided by Google’s 
COVID-19 community mobility reports and classified by place categories (retail and recreation, 
grocery and pharmacy, parks, transit stations, workplaces, and residences) are autoregressed on the 
COVID-19 incidence in Brazil using generalized linear regressions to measure the aggregate dynamic 
impact of mobility on each socioeconomic category. The work provides a novel multicriteria approach 
for selecting the most appropriate estimation model in the context of this application. Estimations for 
the time gap between contagion and data disclosure for public authorities’ decision-making, 
estimations regarding the propagation rate, and the marginal mobility contribution for each place 
category are also provided. We report the pandemic evolution on the dimensions of cases and a 
geostatistical analysis evaluating the most critical cities in Brazil based on optimized hotspots with a 
brief discussion on the effects of population density and the carnival. 
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1. Introduction 

The current pandemic brought several uncertainties about social and economic prospects for many 
people due to public intervention policies [1]. Social distancing, lockdowns and quarantines became 
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part of our daily base routines because they are assumed to be the most efficient non-pharmaceutical 
interventions (NPIs) to reduce the exponential tendency for any epidemic growth when vaccines are a 
scarce resource. Nevertheless, many disagreements on the matter of the mobility potential impact are 
still ignited by civil authorities over the world. While limiting people’s mobility is a legit concern, 
especially justified by the economic downturns resulting from lockdowns, the lack of a solid argument 
and evidence counteract presidential speeches. However, they cannot prevent a biased public opinion 
on the subject. 

Preventing jeopardizing health systems is undoubtedly the primary goal for any public authority 
resorting to quarantines and other measures reducing people’s mobility. The current pandemic has 
ignited a response from the scientific community in basically all streams of research. Investigating the 
potential impact of different mobility dynamics is essential because public authorities’ actions and 
studies on non-pharmaceutical interventions often include mobility sanctions as the primary strategy. 
Such measures include active case detection and isolation of infected persons, maintaining social 
distance, closure of schools and universities and most businesses, working from home when possible, 
quarantining and monitoring close contacts, and disclosure of multimedia epidemic and protection 
information by governments [2]. 

NPIs, including border restrictions, quarantine, social distancing, and changes in population 
behavior were associated with reduced transmission of COVID-19 in Hong Kong, and are also likely 
to have substantially reduced influenza transmission in early February 2020 [3]. Leung et al. [4] 
showed that the reproduction number (Rt) decreased substantially when control measures were 
implemented in all analyzed cities and provinces of China. In Brazil, Nepomuceno et al. [5,6] applied 
data envelopment analysis for healthcare performance assessment from two different perspectives 
considering hospital technical and human resources. The authors reported a positive association of the 
most inefficient Brazilian states in preventing infections (São Paulo, Bahia, Rio Grande do Sul and 
Paraná) with low rates of social isolation. 

Brazil experienced peaks of 4211 and 4190 daily deaths on April 6 and April 8, 2021, and peaks 
of 115,041 daily cases (infections) on July 23, 2021 and 287,149 on February 3, 2022 (this last one 
resulted from the Omicron variant). Since June 2020, Brazil has been the second in the world in the 
number of COVID-19 deaths, above some of the most populated countries. One of the many reasons 
for the country’s drastic situation is the recurrent position by the Federal Government downgrading 
the benefits of state-level mobility interventions. Brazil is perhaps the only big nation, in terms of 
geography, population or economy, that still has a leader maintaining a strong position against vaccines 
and the most commonly non-pharmaceutical measures. According to authors of Reference [7], who 
investigated geographic location data from 60 million mobile phones combined with voting 
information of 2018 national elections, social distancing and quarantines are significantly reduced in 
pro-government localities after Brazil’s president dismissing the risks associated with the COVID-19 
Pandemic, emphatically advising people to rebel against state mobility interventions. 

Despite contrary and contradictory opinions by the federal government, most mobility sanctions 
and social distancing measures in Brazil started early, enforced by states and municipal authorities. 
From the third week of March 2020, many public policies were applied. Measures such as closing 
businesses, industries and services (considered non-essential), closing schools, universities and public 
places, gyms, theaters, cinemas, stadiums, limiting access to transport stations, and reinventing how 
typical workplaces operated. Nevertheless, except for very few moments in particular regions, the 
social isolation index has been beneath the expected. Brazil was declared the pandemic’s emerging 
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epicenter twice in May 2020 and March 2021, leading scholars to worry about a premature easing of 
restrictions effects on the number of COVID-19-related deaths [8]. 

The different interpretations of the current trade-off between economic development and the 
stability of the health systems can be attributed to a lack of feasible evaluations. From all the applied 
methodologies, generalized linear models (GLM) outstands among the approaches for determining 
associations of the COVID-19 and environmental, meteorological and ecological factors, including 
population density, temperature, solar radiation, air quality and meteorological variables [9–13]. Zhang 
et al. [14] employed a segmented Poisson model to analyze the available daily new cases data of the 
COVID-19 outbreaks in six countries, considering the governments’ interventions (stay-at-home 
advises/orders, lockdowns, quarantines and social distancing). Another interesting instance is found in 
References [15,16], which investigated the contagion dynamics of the COVID-19 using a Poisson 
model autoregressed on daily new observed cases.  

This work aims at evaluating the mobility impact on the pandemic over different mobility and 
socioeconomic categories. Section 2 is dedicated to details concerning the used dataset and the applied 
GLM and geostatistics methodologies. Sections 3–5 are reserved for the analysis, reporting how the 
most appropriate model was selected (based on a multiple criteria approach) and applied, discussing 
how the marginal contribution of each mobility category is coherent for the aggregate and first growth 
moments in Brazil. The spatial incidence in the most critical areas was investigated through optimized 
hot spots analysis in the fourth section, questioning some of the crisis’s potential determinants and 
government responses. The conclusion summarizes the main findings and contributions of the model 
development and analysis.  

2. Data and methods 

During the first wave of COVID-19 in Brazil, especially in the first three months, the testing and 
data curation limitations lead the country to an average time lag of three weeks from the initial 
contamination until health authorities disclose information. This lag was because it took from one to 
two weeks to manifest the most severe symptoms that would lead a person to get tested for COVID-19, 
and from one to two weeks for the viral testing results. This empirical evidence had significant 
statistical support in our assessment when we performed a series of modeling considering time lags 
of 1, 2 and 3 weeks for new cases and total cases provided by Brazil (2020) ministry of health 
epidemiological report. We evaluated the percentage mobility in the six place categories offered by the 
google community mobility reports [17]: retail and recreation, grocery and pharmacy, parks, transit 
stations, workplaces, and residences. Georeferenced data at the federative level were obtained from 
Cota [18] COVID-19 repository. 

The google mobility reports offer information on country and regions’ movement trends over 
different place categories. The data reports how visits or time spent (in the case of residences) varies 
compared to a baseline proxy for what would represent a typical value for that day of the week. The 
baseline day is the median value from the five weeks from January 3 to February 6, 2020, which is 
appropriate for our study (first COVID-19 case in Brazil reported on February 26 and most mobility 
interventions took place from mid-March). Some locations composing the Parks category are gardens, 
castles, forests, campsites and observation decks. Some areas composing Transit Stations are seaports, 
taxi rank, metropolitan stations, car hire agencies and motorway services. Residences are measured in 
terms of duration percent changes instead of visit percent changes because this is where people spend 
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much of the day. Box 1 presents all the variables considered in the analysis. 
After the first crucial pandemic months, most regions observed more efficient testing and data 

curation. For this reason, the analysis for the aggregate mobility impact considering the entire 2020 
was made on two weeks’ time lag instead of three, which provided a more appropriate fitting for all 
potential model candidates with additive and multiplicative interactions, different probability 
distribution families (Gaussian, Gamma, Poisson) and link functions (identity, inverse and log). 

Box 1. Variable definitions. 

We have conducted two analyses for measuring the mobility impact on the number of infections: 
the first regarding the entire year, and the second, and more specific, for the beginning of the pandemic. 
The choice for the most appropriate models was based on statistical support, parsimony and quality of 
data/parameters to the empirical knowledge. Models of the Poisson family with log links presenting 
three weeks’ time lag had a higher number of statistically significant variables and interactions 
(measured by the p-values) for the second analysis. Gaussian identity models with two weeks’ time lag 
had the higher parsimony for the first analysis. Parsimony, measured by the Akaike information 
criterion (AIC) [19], refers to the trade-off between representativeness and simplicity of a model. The 
third criterion is an assumption based on specialized knowledge to avoid poor quality inputs. We have 
combined these perspectives into a multicriteria selection approach. This is explained in detail in 
Subsection 3.1 (model selection). General linear models with interactions sustained the best adherence 
to these criteria. 

All daily-based data were aggregated per week by summing (the number of infections and 

Infection Variables: 

𝒀𝟏: New COVID-19 infections two weeks later; 

𝒀𝟐: Total COVID-19 infections two weeks later; 

𝒀𝟏.𝟑: New COVID-19 infections three weeks later; 

𝒀𝟐.𝟑: Total COVID-19 infections three weeks later; 

𝒚𝟏: New COVID-19 infections in the same week of the mobility (two weeks before); 

𝒚𝟐: Total COVID-19 infections in the same week of the mobility (two weeks before); 

Explanatory variables: 

𝒙𝟏: Mobility percent change in retail and recreation (from the baseline of February 2020); 

𝒙𝟐: Mobility percent change in grocery and pharmacy (from the baseline of February 2020);  

𝒙𝟑: Mobility percent change in parks (from the baseline of February 2020); 

𝒙𝟒: Mobility percent change in transit stations (from the baseline of February 2020); 

𝒙𝟓: Mobility percent change in workplaces (from the baseline of February 2020); 

𝒙𝟔: Mobility percent change in residential areas (from the baseline of February 2020); 

𝒙𝟕: Number of patients recovered 

Interactions: 

 𝒀𝟏𝒙𝟏; 𝒀𝟏𝒙𝟐; 𝒀𝟏𝒙𝟑; 𝒀𝟏𝒙𝟒; 𝒀𝟏𝒙𝟓; 𝒀𝟏𝒙𝟔: Interactions of new infections (2 weeks later) with the mobility; 

𝒀𝟐𝒙𝟏; 𝒀𝟐𝒙𝟐; 𝒀𝟐𝒙𝟑; 𝒀𝟐𝒙𝟒; 𝒀𝟐𝒙𝟓; 𝒀𝟐𝒙𝟔: Interactions of total infections (2 weeks later) with the mobility; 

𝒚𝟏𝒙𝟏; 𝒚𝟏𝒙𝟐; 𝒚𝟏𝒙𝟑; 𝒚𝟏𝒙𝟒; 𝒚𝟏𝒙𝟓; 𝒚𝟏𝒙𝟔: Interactions of new infections (2 weeks before) with the mobility; 

𝒚𝟐𝒙𝟏; 𝒚𝟐𝒙𝟐; 𝒚𝟐𝒙𝟑; 𝒚𝟐𝒙𝟒; 𝒚𝟐𝒙𝟓; 𝒚𝟐𝒙𝟔: Interactions of total infections (2 weeks before) with the mobility. 
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recoveries) or taking the arithmetic average for the mobilities percent change. The boxplot 
visualizations of Figure 1 and the information in Table 1 summarize the main descriptive statistics. 
The x-axis assigns one box for each place category (retail and recreation, grocery and pharmacy, parks, 
transit stations, workplaces, and residences). The y-axis measures the minimum, first quartile, median, 
third quartile, maximum values, and outliers. Notches at the left and right sides of the median line are 
used to investigate potential differences in distributions’ medians. When boxplots’ notches overlap, 
there is some evidence that the medians are equal. 

 

Figure 1. Boxplot visualizations for the mobility categories. 

Table 1. Descriptive statistics. 

Variable Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev. 

𝒀𝟏: New infections 0.000 1336 4122 6794 8328 79,086 9068.515 

𝒀𝟐: Total infections 0.000 9334 67,261 116,660 158,156 466,191 173,289.1

𝒙𝟏: Retail and recreation −81.29 −46.57 −26.86 −30.11 −15.00 13.71 20.742 

𝒙𝟐: Grocery and pharmacy −47.86 −6.286 6.857 5.895 17.85 51.714 17.024 

𝒙𝟑: Parks −82.43 −45.93 −27.50 −27.94 −11.18 36.50 23.191 

𝒙𝟒: Transit stations −80.43 −49.29 −29.79 −28.85 −12.61 131.43 26.223 

𝒙𝟓: Workplaces −58.85 −21.43 −95.000 −11.71 −0.428 208.571 15.473 

𝒙𝟔: Residential areas −8.857 6.857 9.714 10.23 13.86 25.857 4.871 

𝒙𝟕: Recovery cases 0.000 2930 49,837 99,108 137,026 287,986 153,204.4

Autoregressive models with exogenous determinants are common for public policy, laws and 
sanctions evaluations [20]. Following a similar approach, and based on the decision criteria for 
choosing the most appropriate model, the number of new coronavirus infections is autoregressed to 
the number of new cases preceding 3 weeks and regressed to the interaction of COVID-19 base (the 
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total number of cases up to the three weeks lag) with the place mobility variables for the analysis on 
the first growth. Formally: 

ln 𝜆 𝑋𝛽 ∴ 𝑦  𝑒  | 𝑦  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆  ∀ 𝑖 1, 2, 3, … , 𝑛                      (1) 

where, 𝑋𝛽  is the linear predictor ( 𝑏 ∏ 𝑏 𝑥  ∀ 𝑖 1, 2, 3, … , 𝑛 , with 120 multiplicative 

interactions, such that: 
𝑏  = coefficient for the effect of COVID-19 new cases 3 reported weeks before (the R0

+) 

𝑏  = coefficient for the effect of COVID-19 cases 3 reported weeks before (the R0) 
𝑏  = coefficient for the effect of retail and recreation mobility reported 3 weeks before 
𝑏  = coefficient for the effect of grocery and pharmacy mobility reported 3 weeks before 
𝑏  = coefficient for the effect of parks mobility reported 3 weeks before 
𝑏  = coefficient for the effect of transit stations mobility reported 3 weeks before 
𝑏  = coefficient for the effect of workplaces mobility reported 3 weeks before 
𝑏  = coefficient for the effect of residences mobility reported 3 weeks before 
Low mobility levels are expected to have a positive effect on reducing virus propagation 

considering the place categories. The log link function (𝑙𝑛 𝜆 ) in the Poisson GLM is appropriate in 
this modeling for keeping non-negative the projection λ when the mobility regressors X or coefficients 
β is expected to have negative values. Likewise, higher mobility is likely to contribute to increasing 
transmission. 

The week from March 14 was considered the reference for counting the initial seed of cases. This 
is the week that 15 of the 27 federations disclosed the first cases, and most of\the state-level mobility 
sanctions were first implemented. The initial seed of cases works as a baseline to control the empirical 
estimation of the autoregressive covariate in this dynamic relationship. In addition, it works to identify 
the first week of significant macro data to model the phenomenon. Some federations have cases prior 
to the designed initial week. The northern states of Pernambuco (2 cases on March 12), Rio Grande do 
Norte (1 case on March 13), Alagoas (1 case on March 08) and Bahia (1 case on March 06) are some 
instances. The bigger seed of initial cases is for São Paulo, which had their first case on February 26, 
before any other federation, counting 56 new cases along the weeks until March 14, and 340 new cases 
in the first week from March 14, resulting in a seed of 396 initial cases. 

3. Quantitative assessment 

This section reports the results and discussion regarding the predictive modeling and marginal 
contributions of location mobility changes on different increasing or decreasing pandemic scenarios, 
considering an overall estimation for the country and additional regional assessments. First, we select 
the most appropriate econometric models by developing a multicriteria analysis considering the 
number of significant covariates using ROC weights for p-value intervals. Among the options, the 
choice is made over AIC [19] and empirical reasoning and vetoes imposed by multicollinearity testing. 
The mobility marginal contribution of each sector is then estimated in three pandemic scenarios for 
2020 for each socioeconomic location at the state and national level. 

3.1. Model selection 

One of the primary goals in measuring the impact of some potential determinants on a dependent 
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occurrence is selecting the most appropriate model based on identifying relevant independent 
(predictor) variables [21]. For this purpose, we set 40 generalized linear models with multiplicative 
interactions as potential candidates among many family distributions and link functions to explain the 
relationship between mobility in different locations and the pandemic outbreak. According to [22], the 
advantage of this approach is removing an unnecessarily restrictive assumption on a normally 
distributed error and the capacity to model different sorts of relations between the dependent variable 
and predictors. Among the models, we selected the 32 candidates that required less cognitive effort to 
explain the measure of marginal contribution for the mobility covariates (the impact of mobility on the 
COVID-19 spread). 

On this set of 32 potential model candidates, we employed the multicriteria PROMETHEE 
(preference ranking organization method for enrichment evaluation) outranking [23] considering four 
significance intervals as criteria for the pairwise comparison: Criteria A: number of significant 
covariates with p-value varying in the interval from 0 to 0.001; Criteria B: number of significant 
covariates with p-value ranging in the interval from 0.001 to 0.01; Criteria C: number of significant 
covariates with p-value ranging in the interval from 0.01 to 0.05; and Criteria D: number of covariates 
with p-value ranging in the interval from 0.05 to 0.1. The PROMETHEE explores outranking relations 
by pairwise comparisons among models, and it provides a full rank of the candidates based on positive 
flows (score based on comparing models outranking other models) negative flows (score based on 
comparing models outranked by other models) and net flows (difference between positive and negative 
flows for a complete order). 

One of the main issues in this process is how to define appropriate weights for the evaluation 
criteria (significant p-value intervals). The surrogate weighting procedure is the simplest method, not 
requiring additional cognitive efforts from a decision-maker. They come from predefined rankings 
converted into numerical weights by surrogate functions [24,25]. According to Almeida et al. [26], the 
surrogate weighting procedure more appropriate for the PROMETHEE procedure is the ROC (rank 
order centroid) method of Barron [27]. Compared to other methods, ROC weights attribute a more 
significant emphasis on the criteria ranked higher in the ranking construction, which is appropriate for 
our model selection since we consider more important the models with higher significant variables in 
explaining changes in the pandemic outbreak. Consider 𝑅 𝑤 𝑤 𝑤 ⋯ 𝑤  a vector 
of weights for “k” models. The values for each rank position can be determined by: 

                                𝑤 ∑ , 𝑘 1,2, … . , 𝐿                                                    (2) 

From the 32 candidates, 16 have a positive net flow, which are ranked according to the AIC in 
Table 2. The BP p-value refers to the Breusch-Pagan test [28] for heteroskedasticity, considering the 
log transformation for the dependent variable. Because this multicriteria approach favors complex 
multivariate models, ranking the candidates based on AIC prevents a choice for an overfitting model, 
favoring the simplest yet most robust goodness of fit alternative. The first nine models are not 
significantly different in terms of AIC mean deviation. Despite a sizeable explanatory power, many 
models reported spurious correlations, multicollinearity, and aggregate data compensation bias (as 
defined by Nepomuceno and Costa [29]). For instance, models that considered the number of recovery 
cases reported a positive relation of this data regarding the spread of COVID-19 (models 17, 20, 21, 
23 and 24), or some models reporting a negative association of the number of new cases (models 11 
and 15) and total cases (model 4) with COVID-19 cases two weeks later (which would mean that more 
cases this week implies less propagation). 
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Table 2. Model candidates. 

The presence of multicollinearity means that two or more covariates are near perfect linear 
combinations of one another. It may imply in unstable or biased regression estimators, high standard 
errors or wide confidence intervals that may not reject the null hypothesis for the significance of 
variables, i.e., model parameters become indeterminate or problematic to estimate precisely. For 
testing multicollinearity in our models, we used variance inflation factor (VIF) diagnosis [30]. VIF 
measures how much variance is inflated from the expected true value due to correlations among the 
predictors. When VIF equals 1, no correlations among the predictors are observed. VIFs exceeding 10 
indicate evidence of multicollinearity requiring correction [30]. 

Table 3. Multicollinearity diagnostic. 

The VIF is a veto for choosing the most appropriate candidate in the model selection. The most 
appropriate model was model 13, reporting minimum correlation among predictors. Table 3 reports the 

Criteria A  B  C  D  Net Flow AIC BP P-value 

ROC Weights 0.5208 0.2708 0.1458 0.0625 

Model 2 7 0 0 0 0.1015 19,011.66 0.004306 

Model 21 7 0 0 1 0.164 19,020.83 0.006528 

Model 17 7 0 0 0 0.1015 19,021.72 0.004239 

Model 24 8 0 0 0 0.3031 19,061.39 0.216777 

Model 8 7 0 0 0 0.1015 19,068.6 0.137666 

Model 20 7 0 0 0 0.1015 19,083.3 0.199999 

Model 7 6 2 0 0 0.1653 19,188.64 0.053166 

Model 1 7 0 0 1 0.164 19,220.5 0.006641 

Model 23 6 1 1 1 0.2554 20,319.41 0.091411 

Model 4 8 0 0 0 0.3031 22,260.87 0.000582 

Model 18 7 1 0 0 0.3374 22,306.72 0.001029 

Model 12 8 0 0 0 0.3031 23,548.04 0.0000152 

Model 11 7 0 0 0 0.1015 25,899.05 0.009428 

Model 13 7 1 0 0 0.3374 25,924.29 0.001113 

Model 15 6 1 0 0 0.0517 26,996.51 0.002051 

Model 9 6 1 0 0 0.0517 28,975.32 0.000189 

Variables Description Tolerance VIF 

𝑦  New COVID-19 infections in the same week of the mobility 0.14639 6.9870 

𝑌 𝑥  Interactions of infections (2 weeks later) with percent change mobilities on  0.63853 1.5661 

𝑌 𝑥  Interactions of infections (2 weeks later) with  percent change  mobilities 0.30537 3.2747 

𝑌 𝑥  Interactions of infections (2 weeks later) with  percent change mobilities 0.12747 7.8446 

𝑌 𝑥  Interactions of infections (2 weeks later) with  percent change mobilities 0.26626 3.7557 

𝑌 𝑥  Interactions of infections (2 weeks later) with  percent change mobilities 0.24295 4.1161 



7040 

Mathematical Biosciences and Engineering  Volume 19, Issue 7, 7032–7054. 

VIFs and tolerance (variance percentage that cannot be accounted for by other predictors when the 
evaluated variable is regressed on the rest of the predictors in the model). Figure 2 illustrates the 
correlation matrix with a set of scattergrams between pairs of variables, excluding the variable 𝑌 𝑥  

reporting high multicollinearity. 

 

Figure 2. Correlation matrix and dispersions. 

3.2. Aggregate mobility impact 

Each model candidate was checked considering the empirical reasoning reported in the previous 
subsection. The most appropriate model (Model 13) has seven very high significant variables (criteria 
A), the highest positive net flow of 0.3374 and AIC scoring 26,452.66. Retail and recreation reports a 
significant multicollinearity (VIF = 20.593403, tolerance = 0.04855924). For informational purposes, 
it is highlighted in red in the summary of Table 4. The model reports residual standard error (RSE) 
equal to 28,020 on 1127 degrees of freedom and Adjusted R-squared of 0.9739. Table 4 summarizes 
the model, residuals, covariates and other relevant statistics. 
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Table 4. Summary of results (aggregate impact). 

Parameter Marginal  

Contribution 
Std. 

Error 
p-value Signf. 

Criteria 
Mean (X) Description 

𝛽  1059.2 1086.3 0.33 Not 

significant

— Intercept 

𝑅  1.7355 0.246110 <3.2e−12 Criteria A 86862.47 Marginal impact from the total 

COVID-19 Cases two weeks 

before (𝑦 )—the 𝑅 . 

𝛽  −0.0178 0.000068 <2e−16 Criteria A −30.11235 Marginal impact from the 

interaction between cases and 

mobility in retail and recreation 

(𝑌 𝑥 ) 

𝛽  0.03444 0.000328 <2e−16 Criteria A 5.895083 Marginal impact from the 

interaction between cases and 

mobility in groceries and 

pharmacies (𝑌 𝑥 ) 

𝛽  −0.00619 0.000300 <2e−16 Criteria A −27.93886 Marginal impact from the 

interaction between the cases 

and the mobility in parks two 

weeks before (𝑌 𝑥 ) 

𝛽  −0.01366 0.000610 <2e−16 Criteria A −28.84866 Marginal impact from the 

interaction between cases and 

mobility in transit stations (𝑌
𝑥 ) 

𝛽  −0.00929 0.000928 <2e−16 Criteria A −11.71315 Marginal impact from the 

interaction between cases and 

the mobility in workplaces (𝑌
𝑥 )

𝛽  −0.06828 0.016185 2.63e−05 Criteria A 10.23406 Marginal impact from the 

interaction between cases and 

mobility in residences (𝑌 𝑥 ) 

Note: Model 13: glm(formula = 𝑌  ~𝑦  + 𝑌 𝑥  + 𝑌 𝑥  + 𝑌 𝑥  + 𝑌 𝑥  + 𝑌 𝑥  ); Residuals: Min = −187800, 1st 

Quartile = −9118, Median = −1165, 3rdQuartile = 6739, Max = 210505 ; Residual standard error: 28020 on 1127 

degrees of freedom; Multiple R-squared: 0.974; Adjusted R-squared: 0.9739; F-statistic: 7037 on 6 and 1127 DF; p-

value: <2.2e−16; AIC = 26452.66; PROMETHEE Net Flow = 0.3374; Min VIF = 1.566095 (𝛽  ; Max VIF = 

7.844674 (𝛽 ). 

The estimated model has good explanatory power with the intercept as the only not significant 
parameter. The autoregressive parameter (R0) reporting 1.7355 means that, keeping all the mobility 
changes constant, 100 COVID-19 infections in the country two weeks before would produce about 
173.55 new cases on average, with 99% confidence. Of course, this generalization does not consider 
individual regional characteristics, but it helps understand the complete panorama. According to the 
marginal contributions, the information about the mean of covariates reported in the sixth column helps 
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interpret the relationship between the mobilities and COVID-19 cases. The mobility percentage change 
for retail and recreation, parks, transit stations and workplaces are negative for most of the year due to 
state-level mobility interventions and quarantine campaigns, which highly downward the overall mean 
to a negative value. For the mobility occurring in retail and recreation, one percent decrease in the 
negative mobility (one percent increase in mobility) provokes, on average, a positive response in the 
number of new COVID-19 cases in the amounts of 0.0178   𝑌 . For instance, during the last week of 
September in the state of Ceará, this number would be 0.0178*4633 = 82.46 new cases, keeping 
everything else constant. 

For the mobility occurring in parks, one percent increase in mobility (one percent decrease in the 
negative mobility) provokes, on average, a positive response of 0.00619  𝑌  new COVID-19. For 
instance, during the second week of August in the state of Pernambuco, this estimate would be 0.00619 

 7537 = 46.65 new cases, keeping everything else constant. For the mobility occurring in transit 
stations, one percent decrease in the negative mobility (one percent increase in mobility) provokes, on 
average, a positive response in the number of new COVID-19 cases in the amounts of 0.01366 * 𝑌 . 
For instance, during the last week of November in the state of Rio de Janeiro, this estimate would be 
0.01366  20293 = 277.20 new cases, keeping everything else constant. 

A slight (positive) change in mobility is observed for the groceries and pharmacies, which on 
average increased about 5.9% during the pandemic compared to one month before the first mobility 
restrictions. This can be attributed to the nature of those businesses (essential activities) which were 
not affected by the mobility sanctions and lockdowns. For the specific case of this mobility category, 
one percent increase in the mobility in groceries or pharmacies provokes, on average, a positive 
response in the number of COVID-19 new cases in the amounts of 0.000328  𝑌 . For instance, during 
the first week of May in the state of São Paulo, this number would be 0.000328  11456 = 3.75 new 
cases, keeping everything else constant. During the last week of December in the state of Minas Gerais 
(one of the states with the best response to the pandemic in terms of mortality rate), this estimate would 
be 0.000328  26666 = 8.74 new cases, keeping everything else constant. 

Increasing mobilities in workplaces provoke, on average, 0.00929  𝑌  new cases. For the last 
example in Minas Gerais, this represent 0.00929  26666 = 247.72 new cases. Residential areas are 
the only mobility category reporting a negative relation with the number of COVID-19 new infections. 
The same relation was verified for the vast majority of models during the selection phase. The mobility 
change in residential areas is negative related to the number of new cases in the amount of -0.06828  
𝑌 . This estimate means that, in the examples of Ceará, São Paulo, Rio de Janeiro, Pernambuco and 
Minas Gerais, for every one percent increase in the mobility to residences, the number of COVID-19 
cases would decrease in the amounts of 0.06828   4633 = 316.34, 0.06828  11456 = 782.21, 
0.06828    20293 = 1385.60, 0.06828  7537 = 514.62 and 0.06828  26666 = 1820.75 cases, 
respectively. 

3.3. Aggregate mobility impact on the first growth 

Table 5 reports the main results for the mobility impact during the first pandemic growth. The 
coefficient sign represents the overall data relation of that specific base or place category with COVID-
19 propagation (new cases). Two places categories exhibit a negative relation with COVID-19 (retail, 
recreation and workplaces). This can be interpreted as a spurious correlation problem: the same weeks 
an aggressive mobility reduction was observed in business, civic and cultural activities due to sanctions 
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aiming at closing malls, shops, commercial centers, theaters, stadiums, outdoor events, service units 
and public administrations coincide with the COVID-19 exponential increase in Brazil. We cannot 
attribute, however, this increase to the mobility reduction in these places. This leads to believe 
correlation does not imply causation for these categories considering Brazil as a whole. This prospect 
may not be true for smaller disaggregated data on regions, states or municipalities. 

Another evidence is the exponential coefficient for these places categories. The exponential 
coefficient (Exp. Coeff.) is a proxy for how much new cases respond, on average, to cases and to 
mobility changes three weeks before. The estimates for retail and recreation and workplaces are small 
(0.135 and 0.788, respectively) compared to other estimates such as transit stations (2.232) and 
residences (2.463), despite the very significant p-values. The very high exponential coefficient for 
Grocery and Pharmacy is another instance of spurious data correlation in this case. The same weeks 
supermarkets, grocery stores and pharmacies have experienced a considerable demand increase 
coinciding with the COVID-19 exponential increase in Brazil. Nevertheless, we have no additional 
evidence to attribute COVID-19 exponential increase to the mobility increase in these places, leading 
to believe correlation does not imply causation for this category either, considering Brazil as a whole. 

Because of the multiple interaction modeling structures, the exponential coefficients cannot be 
interpreted as additive predictors individually. Nevertheless, they provide a notion of the overall 
importance each base or place mobility has on new cases of COVID-19. We provide the marginal 
contribution estimates for a more empirical quantitative measure of the mobility impact. In this 
dynamic modeling, estimates for the R0, R0+ and for the mobility impact of each place category change 
along the time and along the regions and states. For each week and for each region, we have a different 
marginal contribution. The marginal contributions reported in Table 4 are estimations for the individual 
effect of each variable on the number of new coronavirus cases from May 9 to May 16, 2020. These 
are obtained by adding one unit change to the base of cases (new cases or total) or by adding 0.001% 
mobility change to the place category (retail and recreation, grocery and pharmacy, parks, transit 
stations, workplaces or residences), keeping everything else constant, them investigating the potential 
increase or decrease in the prediction for COVID-19. Statistical support is measured by the p-values. 

Table 5. Estimates for Brazil on the first growth. 

Note: glm(formula = 𝑌 ~𝑏 ∏ 𝑏 𝑥 ; Poisson (link = “log”); AIC: 14313; null dv.: 3229781 (173 df); res. dv.: 

12680 (45 df); Fisher SI: 6; mult. interact. 120; min. dvrs.: −22.392; max. dvrs.: 34.825; 1q. dvrs.: −3.702; 3q. dvrs: 

2.399; med. dvrs.: 0.018. ¹ Marginal contribution (Impact) in the cases from May 9 to May 16, 2020 (third week 

of May). ² Estimates for a marginal increment of one additional COVID-19 case and 0.001% additional mobility. 

Covariates Marginal 
contribution1,2 

Exp. (Coeff.) Coefficients P-values Signf. criteria 

COVID-19 (R0) 0.9026342  2.1831049 7.807e−01 <2e−16 Criteria A 
COVID-19 (R0

+) 7.49274 1.0020168  2.015e−03 <2e−16 Criteria A 
Retail & recreation 5.543848 0.1355574 −1.998e+00 <2e−16 Criteria A 
Grocery & pharmacy −1.600595 19.7734385 2.984e + 00 <2e−16 Criteria A 
Parks 0.1696293  1.1263827 1.190e−01 0.01271 Criteria C 
Transit stations 0.7903152 2.2323520 8.031e−01 4.03e−12 Criteria A 
Workplaces −3.774877 0.7883294 −2.378e−01 0.000103 Criteria A 
Residences 3.760099  2.4628843 9.013e−01 0.000437 Criteria A 
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Estimates for the R0 and R0
+ vary according to the week and region. For the third week of May 

we can assume each new case three weeks before was responsible, on average, for 7.49 new cases. The 
mobility increase in grocery and pharmacy and workplaces had a negative effect on new cases, whereas 
the mobility increase in retail & recreation, parks, transit stations and residences had a positive effect. 
The positive effect of mobility changes in residential areas can be attributed to the vulnerability in 
favelas and poor communities. Despite the pandemic, Baile funk parties, peladas (pick-up soccer 
games) and many other forms of social organization are reported in many peripheries and informal 
urban settlements across the country. 

Panel (a) Panel (b) 

Panel (c) Panel (d) 

Panel (e) Panel (f) 

Figure 3. Dynamic mobility impact by place category in Brazil (first growth). 
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The flexible scatterplots illustrate the mobility impact of each place category (retail and recreation, 
grocery and pharmacy, parks, transit stations, workplaces, residences) in the COVID-19 dissemination 
(new cases) in Brazil. They have different associations along the time depending on the number of 
confirmed cases (total). Taking the impact of retail and recreation as an example, the Poisson 
coefficient estimates an overall negative impact for this place category (see Table 5). However, the 
marginal contribution in the third week of May is positive because the number of cases 3 weeks before 
is 2167, and the retail and recreation mobility is between 60% and −40% (−57.66138 to be precise). 
This locates our estimation for the marginal contribution of retail and recreation mobility to the third 
frame of Figure 3 Panel (a), a positive effect of 5.5438 new cases for each 0.001% increase in mobility. 

According to the different regions (north, northeast, center west, southeast and south), some 
estimates are reported in Tables 6–10. Figures 4–8 illustrate the spatial concentration. When 
disaggregating the country data into small datasets, there is a lack of significant samples for each region 
on the first growth. Therefore, most estimation for the mobility impact and contagion does not have 
statistical support. For this reason, this information is omitted in the Tables, only reporting the 
significant mobility impacts. The most significant impacts are the mobility in workplaces for the 
southeast region, parks for the center-west, residential areas in the northeast and retail and recreation 
in the north region. The estimates refer to a 1% marginal change in all categories. 

 

Figure 4. North. 

Table 6. Estimates for the north region. 

Covariates Marginal contribution P-value 

COVID-19 (R0) 3.981363  <2e−16  

Retail & recreation 635.1778  <2e−16  

Note: AIC: 2411; Poisson (link = “log”); null dev.: 74461.6 on 40 df.; res. Dev.: 2049.2 on 18 df; fisher SI: 5. 
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Figure 5. Northeast. 

Table 7. Estimates for the northeast region. 

Covariates Marginal Contribution P-value 

COVID-19 (R0) 0.7959314 <2e−16 

Retail & recreation 27.84628 <2e−16 

Parks 11.64888 <2e−16 

Workplaces 183.5822 <2e−16 

Residences 301.5848 <2e−16 

Note: AIC: 585.69; Poisson (link = “log”); null dev.: 1.054e+06 on 58 df.; res. dev.: 2.921e−12 on 0 df; fisher SI: 

3. 

 

Figure 6. Central west. 



7047 

Mathematical Biosciences and Engineering  Volume 19, Issue 7, 7032–7054. 

Table 8. Estimates for the central-west region. 

Covariates Marginal Contribution P-value 

Parks 40.19183 0.0079 

Note: AIC: 243.31; Poisson (link = “log”); null dev.: 7514.92 on 25 df.; res. dev.: 16.98 on 2 df; fisher SI: 4. 

 

Figure 7. Southeast. 

Table 9. Estimates for the southeast region. 

Covariates Marginal Contribution P-value 

COVID-19 (R0) — — 

COVID-19 (R0
+) 1.291627  <2e−16 *** 

Parks 9.183066 <2e−16 *** 

Workplaces 80.36371 <2e−16 *** 

Note: AIC: 655.84; Poisson (link = “log”); null dev.: 113107.42 on 27 df.; res. dev.: 351.29 on 4 df; fisher SI: 4. 

 

Figure 8. South. 
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Table 10. Estimates for the south region. 

Covariates Marginal contribution P-value 

No significant covariate 

4. Geospatial analysis 

The most critical cities are evaluated using Optimized Hot Spots Analysis. This methodology 
offers statistics for each location indicating where cities with high or low COVID-19 cases cluster 
spatially [31]. The objective is to assess the COVID-19 intensity through cities. We question whether 
potential mobility contributions to eventual hot spots could indicate a spatial concentration of 
municipalities composing the input features aggregating the COVID-19 occurrences. A similar 
analysis can be accessed in References [29,32], investigating the spatial concentration of crime in 
Brazil’s urban spaces. In this case, the occurrences for each geographic location are the analyzed field. 
Figure 9 presents the visualization. 

 

Figure 9. COVID-19 Optimized hot spots in Brazil (first growth). 

The hot spot cluster for 99% confidence is composed of the metropolitan areas of the capitals 
Manaus in the north, Ceará in the northeast, São Paulo and Rio de Janeiro in the southeast. In addition 
to significant COVID-19 incidence, these cities are surrounded by other cities with high COVID-19 
incidence. These regions are the most probable responsible for the pandemic in the country. The impact 
on the health system is summed to a higher probability of contagion in these areas, which has made 
this significant spatial association critical and required urgent attention by the public authorities. Table 
11 reports regional and aggregate descriptive typologies for additional insights in the spatial analysis. 
The feature input type is Brazil’s municipalities (cities) containing COVID-19 infections per city as 
the analysis field. The number of valid inputs is 4965 with a maximum of 41451 infections in one 
single city in the southeast region, mean of 67.736, std. dev. equal to 781.06 and 66 outlier locations. 
The 99% confidence hot spots represent 6.76% of input features, highlighting the spatial concentration. 
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Table 11. Estimates and statistics for the spatial analysis. 

Note: *At 99% confidence. 

Panel (a): North 

 

Panel (b): Northeast Panel (c): South 

Panel (d): Southeast 

 

Panel (e): Central west 

 

Panel (f): Brazil 

Figure 10. P-value frequency distributions. 

The distances for geographic coordinates are analyzed using chordal distance in meters. Outliers 
were used to compute the optimal fixed distance band. There are 336 output features statistically 
significant based on false discovery rate correction for multiple testing and spatial dependence [33]. 
Figure 10 illustrates the distributions of optimized hot spots p-value frequencies, indicating the strength 
of spatial concentration per region. The p-values represent the statistical significance for whether or 
not to reject the null hypothesis that the observed high or low spatial clustering is different from a 
random distribution for the same features. High z-scores and small p-values for a feature indicate a 
spatial clustering of high COVID-19 infections. Low negative z-scores and small p-values indicate a 
spatial clustering of low COVID-19 cases. Higher p-values indicate no significant spatial clustering. 

Descriptive 

Statistics  
North  Northeast South Southeast Central West Brazil 

Cities 584 1898 787 1412 266 4965 

Hotspots features* 41 79 75 175 11 336 

Min. cases 1 1 1 1 1 1 

Max. cases 12317 18644 711 41451 5542 41451 

Total cases 65333 107939 14259 129531 9858 336311 

Mean 111,87 559.26 18.118 91.736 37.060 67.736 

Std. dev. 651,71 2385.2 62.635 225.67 345.75 781.062 

Mean Z-score 0,1227 0.0169 0.3124 0.2413 0.0684 0.0987 

Std. dev. Z-score 1,2170 1.1324 1.3373 1.4642 0.8758 1.38345 

Mean P-value 0,5200 0.6476 0.3767 0.6406 0.7292 0.62183 

Std. dev. P-value 0,2459 0.2574 0.3023 0.2592 0.2639 0.24533 

Higher spatial 

concentration 
Amazonas 

Pernambuco; 

Ceará 

Santa 

Catarina 

São Paulo; 

Rio de 

Janeiro 

Goiás; Distrito 

Federal 

São Paulo;

Rio de 

Janeiro 
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The region with smaller p-value distributions (below 0.05) is the South, reporting an average 0.3767 
p-value. 

We can see the regions reporting the most significant hot spots (north, northeast and southeast) 
undergo unregular frequency distributions, basically concentrating the pandemic in singular features. 
Some potential explanations are discussed ahead. Rio de Janeiro and São Paulo states have the second 
and third highest population density, and they have the fifth and second capitals with the highest 
population density. Ceará has the capital with the highest population density in Brazil. This information, 
combined with the airline hubs for international flights in these capitals, can explain, at least partially, 
the high initial incidence and fast spread of COVID-19. 

Another factor that may explain the critical scenario for those regions is related to the most famous 
Brazilian festival: the carnival. Table 12 reports the average percentage mobility 3 weeks prior to the 
first confirmed cases of community Transmission on each state in the hot spot cluster. Community 
transmission is characterized when authorities are unable to trace the source of the infection. The states 
of São Paulo (SP) and Rio de Janeiro (RJ) have the first community transmission officially reported 
on March 13. According to our specifications, the first case can be traced back to the last week of 
February during the carnival holidays. During the carnival week, all place categories in São Paulo and 
Rio de Janeiro had a negative mobility change, with an exemption on parks and residential areas which 
are the places concentrating street carnival and parades. 

Table 12. Average mobility (3 weeks prior to the first to community transmission). 

5. Conclusions 

Brazil’s COVID-19 response has been one of the most controversial in the world. If, on one hand, 
state governments and municipalities’ efforts follow international protocols and recommendations, on 
the other, there is a big question about the federal administration’s institutional preparedness, which 
constantly jeopardizes the prospects of mobility sanctions, social distancing, and quarantine campaigns. 
The results reported in this assessment aim at contributing to this discussion. In particular, reducing 
mobility in residential areas and retail places is a challenge local authorities should prioritize due to 
their high potential. Non-parametric governance models for prioritizing and allocating resources and 
benchmarking knowledge from local administrations with efficient mobility strategies can be an 
interesting avenue [34–36]. The absence of the state in favelas can make longer the trade-off between 
the economy and health. Unquarantine planning based on the individual impact of these place 
categories and the interaction with external localities can anticipate optimal responses for Brazilian 
communities to prevent drastic outcomes from the pandemic. For a more profound knowledge on this 
topic, please refer to this reference list with recent applications in Brazil [37–55]. 

UF Week n-3 Retail & 
Recreation 

Grocery & 
Pharmacy 

Parks Transit 
stations 

Workplaces Residences 

SP 4th Feb. 
(carnival) 

−9571 −1857 6286 −11,286 −12,571 4429 

RJ 4th Feb. 
(carnival) 

−13,857 −5714 32,286 −11,000 −27,143 5429 

CE 1st March −9571 1714 −29,571 −2,857 8143 1571 

AM 2nd March 2286 6857 1000 15,000 15,143 −1429 
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