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Abstract: Improving the effectiveness of target link importance assessment strategy has become an
important research direction within the field of complex networks today. The reasearch shows that
the link importance assessment strategy based on betweenness centrality is the current optimal so-
lution, but its high computational complexity makes it difficult to meet the application requirements
of large-scale networks. The k-core decomposition method,as a theoretical tool that can effectively
analyze and characterize the topological properties of complex networks and systems, has been in-
troduced to facilitate the generation of link importance assessment strategy and, based on this, a link
importance assessment indicator link shell has been developed. The strategy achieves better results in
numerical simulations. In this study, we incorporated topological overlap theory to further optimize the
assessment effect and propose a new link importance assessment indicator link topological shell called
t-shell. Simulations using real world networks and scale-free networks show that t-shell based target
link importance assessment strategies perform better than shell based strategies without increasing the
computational complexity; this can provide new ideas for the study of large-scale network destruction
strategies.
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1. Introduction

With the discovery of complex network properties such as scale-free, small worlds, and commu-
nity modules [1–3], network science has begun to become a unified cognitive framework for various
domains such as social groups, ecosystems, traffic operations and public opinion flow [4–7]. The com-
plex network structure of these domains makes it necessary to understand more about the structure and
dynamics of the system in order to recognize its regular features or promote its evolution. Real world
networks have rich network elements and complex system characteristics, and how to improve their
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robustness by effective means has become one of the research focuses in the field of network science.
In current research on complex networks, the focus is often on the protection and enhancement

of critical nodes, which have core structural properties and perform important functional tasks, fur-
thermore, their removal from the network can have a significant impact on the connectivity and per-
formance of the entire network. However, for a network or system, potential random failures and
deliberate damage can also occur on critical links. For example, during communication, the occlusion
of critical channels can result in ineffective dissemination of information; the disruption of key hydro-
gen bonds in the structure of a protein molecule can result in structural breakdown and changes in the
properties of the entire polymer; the failure of critical cables in power transmission can cause regional
power outages; the weather-related impassability of shipping lanes in the shipping system will cause
flight delays [8–11]. According to the current study, betweenness centrality is more effective than
other link importance assessment strategies, but it should be noted that betweenness centrality has a
high computational complexity (O(NM)). Hence, the computational complexity and time consump-
tion of the edge betweenness in large-scale networks may make it impossible to meet the application
requirements. Therefore, it is necessary to explore other link importance assessment strategies with rel-
atively low computational complexity in order to adapt to the trend of increasing size and complexity
of real networks. As a network hierarchical method, k-core decomposition can be applied to large-scale
networks due to its low computational complexity, as it is an important tool to analyze the hierarchical
structural characteristics of networks. To date, k-core methods have been applied in various fields such
as social network architecture analysis, epidemic infectious disease propagation trend prediction, and
Internet topology detection [12–14]. Meanwhile, Yilun [15] developed a theoretical framework based
on the generalized k-core (Gk-core) theory to further investigate the robustness of Gk-core against dif-
ferent types of damage, and they systematically analyzed the organizing principles of network system
robustness and stability. In the study described in [16], Sun proposed that the concept of link shell can
be obtained by introducing the k-shell values of link endpoints into the domain of link importance dis-
covery and provided three different methods for defining link shells, namely shell-max, shell-min and
shell-pro. It was found through experiments that the link shell as a new link importance assessment
strategy has a better damage effect in real networks. However, as a link importance measure, the link
shell suffers from a single source of link information and coarse differentiation of link importance. In
this study, we improved the link shell on topological overlap theory and developed the link t-shell as a
new reference indicator for link importance assessment strategies; the method, on the one hand, fuses
the local interaction information of near-neighboring links to increase the multiplicity of information
sources when a link evaluation is referenced and, on the other hand, optimizes the ranking granular-
ity to solve the problem of a large number of links being distributed in the same shell in traditional
link shell evaluation strategies. We also compared it with several commonly used link importance as-
sessment strategies and conducted numerical simulations using real networks and random networks to
explore the effectiveness of the related strategies.

2. Materials and methods

2.1. K-core decomposition algorithm with link shell

K-core decomposition is the classical decomposition method in graph theory [17]. The method
iteratively removes the network according to the node degree until all nodes are divided into a certain
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level (shell), and the decomposition process is as follows:
First, the number of neighboring nodes for all nodes is calculated as the node degree. Next, all

nodes with the node degree 1 and their links are removed; after this process, there will be no nodes
with only one neighbor node in the network, and the set of removed nodes is called 1-shell nodes.
After that, the node degree is recalculated and all nodes in the current network with a node degree of
2 and the associated links are removed in the same way; after this process, there will be no nodes with
only two neighbors in the network, and the set of removed nodes is called 2-shell nodes. Gradually
increase the k value and repeat this iterative deletion process until all nodes in the network are assigned
to a certain set of shell nodes. Define the KS value of a node to characterize the number of shell layers
in which the node resides.

Based on the concept of node shells, Sun [16] defined three shell based indicators. For link l(i, j),
let the node shells of Node i and Node j be shelli and shell j, respectively. Define the three shell-based
indicators shell-max, shell-min and shell-pro for the link, respectively, as follows:

shell-max = max
{

shell i, shell j

}
(2.1)

shell-min = min
{

shell i, shell j

}
(2.2)

shell-pro = shell i · shell j (2.3)
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Figure 1. Schematic representation of the k-core decomposition on a base network.

In Figure 1, let the link l(o, t) be an example. The shell values for Node o and Node t are KS (o) = 2
and KS (t) = 3, respectively, so we can get shell-max = 3, shell-min = 2 and shell-pro = 6. Similarly,
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the values of shell-max, shell-min and shell-pro for the link l(p, q) are 2, 2 and 4, respectively. In pre-
vious studies, shell based link importance assessment strategies based on the formation of link shells
were experimentally verified to be effective methods for disrupting large-scale systems with much
lower computational complexity than mesoscopic centrality. However, we can find two shortcomings
in the link shell indicator due to its derivation based on node shells; (a) The link shell is based only on
information about the topological location of links in the network, ignoring the effect of local interac-
tions between near-neighboring links. (b) The granularity of link ranking based on link shells is large,
and a large number of links are distributed in the same shell, it is not possible to specify the relative
removal order of links at the same layer, which leads to ambiguous decision-making during simulation
of damage and affects the effectiveness of network destruction. Therefore, this paper presents a new
link importance assessment strategies link t-shell for the above problems with the link shell.

2.2. New link importance assessment strategy link t-shell

Onnela [18] argued that the more common neighbors a node has at both ends of a link, the more
substitutable and less important is the link, and the weaker its connection strength, and the less im-
portant the link is. The essence of their research idea is the principle of minimum entropy, where
importance is assessed based on the amount of information contained in the link in question. Based on
this idea, a topological overlap algorithm was generated, which defined the topological overlap factor
TO as follows:

TO
(
Ei j

)
=

ni j(
ki − 1 + k j − 1 − ni j

) (2.4)

In Eq (2.4), ni j characterizes the number of common neighbors of Nodes i and j. The existence
of the common neighbors of Node i and Node j makes the following possible when link is blocked:
information can still be propagated through the path formed by the common neighbor nodes; the larger
the number of links that can be replaced, the lower the importance of the link is implied.

Figure 2. Schematic diagram of topological overlap and betweeness centrality.

In Figure 2(a), for the link l(d, e), the shared node union M={b, g} between Node d and Node e;
then when l(d, e) breaks, the path p(d, b, e) and path p(d, g, e) will take up the shortest path function
for information flow. In other words, the topological functions between them have overlap.

The topological overlap algorithm considers the effect of local nearest neighbor links on link
strength. However, there are limitations in the application scenario: when there are independent stray
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node pairs in the network, the denominator of the operation is 0. Therefore, this paper presents an im-
proved the topological overlap algorithm and introduces the enhanced topological overlap coefficient
called ETO as follows:

ETO
(
Ei j

)
=

ni j

(ki − 1) ∗
(
k j − 1

)
− ni j + α

(2.5)

where ni j also characterizes the number of common neighbors of Node i and Node j. The denominator
refines the granularity by using product aggregation, and the constant value α can prevent the undefined
case in the case of independent node pairs. Previous validation experiments have shown that adjusting
α within an appropriate range does not have a large impact on the assessment results, and 1 is chosen
here as the default value.

Because ETO can determine the link strength based on local information, the authors propose to
combine the link shell and ETO to obtain a new link importance assessment strategy with a new
ranking indicator called the link topological shell (labeled as t-shell), corresponding to three t-shell
based link indicators, as follows:

t-shell-max = shell-max ·
(
1 −

ETO
shell-max

)γ
(2.6)

t-shell-min = shell-min ·
(
1 −

ETO
shell-min

)γ
(2.7)

t-shell-pro = shell-pro ·
(
1 −

ETO
shell-pro

)γ
(2.8)

In Eqs (2.6)–(2.8), t-shell based indicators are based on the link shell, which provides information
on the location of links starting from the network hierarchy, and introduces link topology overlap coef-
ficients in combination with local link information characterized by ETO. γ is used as an influencing
factor to determine the degree of aggregation bias for both types of information with a full spectrum
of [0, 1]; the smaller the value of γ the weaker the guidance information provided by the topology bias
information during link evaluation, and when no subjective information bias exists, γ is set to 1.

2.3. Link importance assessment strategy

Most of the current methods for link importance assessment are based on the expansion of node
indicators, such as degree-pro, but it has been found that when removing links based on this method,
the cost of removing high product links is huge and the convergence rate is slow compared to removing
high node degrees; this is because only a significant number of high product links are removed from
the network, equivalent to the removal of the corresponding high node disruption effect. Betweenness
centrality is considered to be the most effective link importance assessment strategy, and Newman [19]
improved Freeman’s node betweenness centrality [20] to propose edge betweenness centrality. Edge
betweenness centrality is defined as the number of shortest paths between pairs of vertices running
along an edge, and if there is more than one shortest path between a pair of vertices, each path has
equal weight and the total path weight value is unitary. Edge betweenness centrality is defined as
follows:
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CB(e) =
∑
s,t∈V

σ(s, t | e)
σ(s, t)

(2.9)

In Figure 2(b), for the path p(b, c), its shortest path contains only one link, so the contribution in the
edge betweenness centrality calculation of l(b, c) is 1, while, for the shortest path p( f , c), its shortest
path contains three links, i.e., l( f , d), l(d, e) and l(e, c), respectively; at this time, the contribution of
p( f , c) in the edge betweenness centrality calculation of the link l(d, e) is 1/3.

Different link importance assessment strategies can be proposed based on different link evaluation
indicators. In addition to those based on an evaluation indicator, random strategies exist to remove links
from the network randomly. In this study, we aimed to develop a t-shell based strategy by improving the
shell based strategy and explore its effectiveness.Next, we conducted simulated numerical experiments
using real and random networks to verify the effectiveness of t-shell-based improvements and analyzed
and compared the effectiveness of several types of strategies.

3. Experimental simulation and numerical analysis

To verify the effectiveness of the new link strategy on complex networks, four real network systems
from different domains were used for simulated damage experiments. 1) US Air [21]: This dataset
illustrates the relationship of terminal extension connections in the U.S. airline network. 2) Email [21]:
A mail network formed by the interconnectedness of communication relationships between emails. 3)
Proteins [22]: This is a network of interactions between proteins in humans. 4) Facebook [23]: This
dataset describes Facebook’s social friendship network generated by user interaction behavior. The
basic network properties for the four real networks are shown in Table 1.

Table 1. Basic properties of the experimental networks.

Network N M CC sl-avg degree-max degree-avg KS -max Pinter Pco

USAir 332 2126 0.62 2.748 139 12.00 27 0.68 0.32
Email 906 12, 085 0.61 2.759 462 26.00 75 0.74 0.26
Proteins 2239 6452 0.04 3.843 314 5.76 21 0.81 0.19
Facebook 4039 88, 234 0.61 3.692 1045 43.69 115 0.54 0.46

Table 1 shows several important topological properties and the k-core decomposition results for the
four experimental networks. N and M characterize the number of nodes and the number of links of the
network, respectively; CC is the average clustering coefficient for the network; sl-avg characterizes the
average of the shortest paths between the nodes in the network; degree-max and degree-pro denote
the maximum and average values of node degrees in the network, respectively; Pinter indicates the
proportion of links with different shells at the two endpoints; Pco characterizes the percentage of links
with the same shell value at both end nodes.

3.1. Indicator ranking monotonicity

Ranking monotonicity is the primary method for measuring the granularity of the analysis of
assessment-type indicators. For a certain indicator, the higher the monotonicity of its ranking, the
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finer the granularity of the data evaluation and the higher the accuracy of the key elements’ identifi-
cation. In this paper, we use the ranking monotonicity indicator M proposed by Bae [24], which is
defined as follows:

M p(i) =

1 − ∑
iεI Ni (Ni − 1)

Np

(
Np − 1

) 
2

(3.1)

According to the research idea of ranking monotonicity, the set of candidate solutions is first se-
lected within the selection evaluation system, which, in this study, involves the selection of the set of
candidate links. In Eq (3.1), the link importance indicator is applied to the target network to obtain the
link importance score for each link in the network and the link importance ranking is obtained based
on the score. The candidate link sets are selected in descending order of link scores, and the ratio of
the candidate link set to the total link set is defined as p; Np denotes the size of the candidate link set.
The parameter I is the ranking vector for current importance assessment methods that quantifies the
resolution of different ranking methods and Ni is the number of links in the candidate set that have
the same score in the evaluation indicator. The monotonicity M(i) is evaluated in the range [0, 1].
The lower the ranking monotonicity of the link importance indicator, the worse the granularity of link
importance identification; conversely, having a higher ranking monotonicity means that the metric is
more accurate in identifying the importance of the link. In this study, we took p = 1.0, i.e., we chose all
links within the four real networks as the set of candidate links to maximize the calculation of indicator
monotonicity. The monotonicity calculation results for US Air, Email, Proteins, and FaceBook for a
total of four real networks are shown in Figure 3.

Figure 3. Monotonicity performance of different indicators on simulated networks.

Analysis of the monotonicity calculation results for the above link assessment indicators revealed
that the monotonicity of the ranking based on the t-shell indicators ranking method consistently outper-
formed the monotonicity of similar shell-based indicator ranking methods in the monotonicity ranking
within four different domain networks, demonstrating a more granular identification of the relative
importance of links. This ensures that the method is able to accurately assess links in more complex
network systems, demonstrating that the fusion of global network information with topological overlap
information can effectively support link importance assessment efforts.
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3.2. Damage simulation experiments on real-world networks

In the next experiments, eight different strategies were used, including a random damage (labeled as
random) and seven deliberate importance assessment strategies, i.e., betweenness strategies (labeled
as betweenness), three shell-based strategies (labeled as shell-min, shell-max, shell-pro) and three t −
shell-based strategies (labeled as t-shell-min, t-shell-max, t-shell-pro). Here, the maximum connection
component S was used to characterize the network connectivity after link deletion; the ratio of deleted
connections to total links in the network was characterized using D. Following deletion of links of
the same size, the smaller S indicates that the importance assessment strategy is more effective in
destroying nodes and links that still belong to the maximum component.

(a)USAir

(d)FaceBook

(b)Email

(c)Proteins

Figure 4. Numerical simulation schematics of link importance assessment strategy in real-
world networks.

For the US Air network, the simulated damage effect is shown in Figure 4(a), where the betweenness
importance assessment strategy shows the strongest damage in the network, while the shell-max dam-
age strategy effect is better than shell-min and shell-pro. However, the t-shell based importance assess-
ment strategy performed better than the shell based importance assessment strategy overall, proving
that it is easier to identify important links in combination with local link information and achieve a
better network deletion effect. For Email in Figure 4(b), the t-shell-max based importance assessment
strategy achieved a better cyber damage effect in all phases, and the maximum component size of the
network continuously decreased at a faster rate in the process of link deletion; it even outperformed
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the betweenness strategy in certain phases. In Figure 4(c), for Proteins, the t-shell-based indicators
consistently outperformed the shell based indicators on network deletion. For the Facebook network,
the t-shell-based strategy exhibited similar policy superiority; its simulated damage effect is shown in
Figure 4(d). The t-shell-max strategy was second only to the importance assessment strategy based
on betweenness centrality, and there was nearly double the improvement in damage compared to the
shell-based strategy; the difference in the robustness of different networks against these importance
assessment strategies depends mainly on the different linking methods of the networks.

In the numerical simulation experiments involving link damage based on the above eight strategies,
the dissimilar network connections were the main reason why the maximum component sizes of differ-
ent networks exhibited different shrinkage rates. We can observe that the link deletion simulation with
the betweenness strategy had particular advantages when applied to the Proteins network compared
to the other three networks. On the one hand, this is due to the fact that the Proteins network had the
smallest network average and low connectivity complexity. On the other hand, the clustering coeffi-
cient for the Proteins network (Min(CC){0.62, 0.61, 0.04, 0.61} ≥ 0.04) was the smallest among the
experimental networks; this means that there is no densely connected cluster of nodes formed locally in
the network. The higher average shortest path (Max(sl-avg){2.738, 2.759, 3.843, 3.692} ≥ 3.843) also
shows the weak connectivity of this network in terms of global connectivity. The above performance
means that the Proteins network does not form a more complete small world system like the other
three networks.

The robustness exhibited by the network against link damage is also related to the heterogeneity of
the links. According to the k-core decomposition method, there are two types of links in the network:
co-layer links and inter-layer links. The nodes at both ends of the co-layer link have the same shell
value and connect nodes with similar network locations; the nodes at both ends of the inter-layer link
have different shell values and then assume the connection function in different shell layers. The study
in [16] demonstrated that removing links connecting different layers in the network will accelerate
network collapse. We compared the percentage of inter-layer links in the total links in each network, as
follows: Pinter(Proteins) = 0.81] > [Pinter(Email) = 0.74] > [Pinter(US Air) = 0.68] > [Pinter(FaceBook)
= 0.54]. This is one of the reasons why the betweenness strategy achieved the best performance for the
Proteins network.

We need to note that the degree of aggregation of the local links in the network will affect how well
the t-shell indicators are optimized, unlike the shell indicators. This is because a higher degree of ag-
gregation of local links means that there is a greater likelihood of link topology overlap in the network,
which allows the t-shell indicators to gain more supporting information about the local characteristics
of the network and better refine the link importance identification accuracy; furthermore, the degree of
aggregation of the local links in the network can be characterized as the size of the average network
clustering coefficient.

3.3. Damage simulation experiments on scale-free network

To further verify the effectiveness of the t-shell-based strategy in link damage, further simulation
experiments were conducted using scale-free (labeled as SF) random networks. We generated four
scale-free random networks with an exponentially increasing average degree (degree-avg = {2, 4, 8,
16}) and found that tshell-max was the most destructive link importance assessment strategy. This is
because the t-shell-based strategy takes into account the link strength and delineates more clearly the
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(a)SF degree-avg=2 (b)SF degree-avg=4

(c)SF degree-avg=8 (d)SF degree-avg=16

Figure 5. Numerical simulation schematic of link importance assessment strategy in scale-
free networks.

order of destruction in the same layer of links.

In Figure 5, the numerical simulation results show that, as the average degree of nodes increases, it
will generate higher link complexity in the network, making the robustness against target link damage
higher in the case of removing the same proportion of links. Additionally, the critical network links
in the scale-free random networks have a close correlation, so they performed better in the process
of removing the top links; furthermore, the smaller the network average, the greater the role of these
critical links.

The experimental results from link-directed damage on real networks with scale-free random net-
works show that betweenness is indeed the most effective strategy to date for damaging complex net-
works at the link level. However, in the case of large-scale network applications, the betweenness-
based link importance assessment may not meet the application requirements due to its high computa-
tional complexity; the shell-based indicator proposed by Sun is considered as an effective alternative
to destroy large-scale networks due to its much lower computational complexity and better destructive
effect than the betweenness method. Compared with shell-based indicators, the proposed t-shell-based
indicators combined with topological overlap information offer more accurate identification granularity
and a better network-breaking effect without changing the computational complexity; this can provide
new ideas for large-scale network destruction strategies.
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4. Conclusions

In this study, we incorporated the topological overlap theory to improve the shell-based indicator
and developed a new target link importance assessment indicator called the link topological shell (t-
shell). The effectiveness of various importance assessment strategies was compared by performing
numerical simulation experiments within real networks and scale-free random networks. The experi-
mental results show that the improved t-shell based indicator, which was obtained by combining link
global location information and local link strength information, has a better network destruction effect
but the same computational complexity as the shell-based indicator. Therefore, t-shell based strategies
can provide new ideas for crippling large-scale networks and systems, meaning that the approach can
be targeted to guide the protection and hardening of critical links in the network, thus building systems
with higher robustness.

The networks used in the above experiments all have the characteristics of a powerless and di-
rectionless network, but t-shell based indicators can also be extended to more application scenarios.
Examples include weighted networks, directed networks, multilayer networks, network of network
(NON), etc [25–28]. However, the indicators must be adjusted accordingly to meet the application
requirements of relevant scenarios. Most of the current targeted network importance assessment strate-
gies assess the robustness of the target network based on how the giant components change during the
network damage. However, when it comes to specific application scenarios, more tailored robustness
assessment tools are often needed, such as the Gk-core structure, which is an ideal structure to reflect
the impact of virus or epidemic propagation on network resilience [29]. Meanwhile, new damage
unit-based network metrics such as the generalized k-core [15] and node link visualization [30] have
been proposed, and as a next step we will continue to investigate how we can rely on new damage
units and indicators to assess the network robustness of more diverse network systems and explore the
distribution patterns of key components, which we consider to be very valuable.
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