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Abstract: In this paper, using the fractional integral with respect to the ¥ function and the W-Hilfer
fractional derivative, we consider the Volterra fractional equations. Considering the Gauss Hypergeo-
metric function as a control function, we introduce the concept of the Hyers-Ulam-Rassias-Kummer
stability of this fractional equations and study existence, uniqueness, and an approximation for two
classes of fractional Volterra integro-differential and fractional Volterra integral. We apply the Cadariu-
Radu method derived from the Diaz-Margolis alternative fixed point theorem. After proving each of
the main theorems, we provide an applied example of each of the results obtained.
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1. Introduction

Fractional calculus is of particular importance due to its many applications in various fields, includ-
ing issues related to the effects of memory, engineering, physics, and medicine. Hence, one of the
most important topics studied by scientists is fractional calculus and its application [1-4]. There are
so many definitions of fractional operators today that we believe more general fractional operators like
Y-Hilfer are more useful to study, see [5,6]. Given that solutions of fractional differential equations
better evaluate the results in different fields, they are therefore useful in modeling various phenomena.
The first studies to investigate the stability of equations were conducted by Ulam in 1940 and after
him, Hyers and Rassias researched in this field. In general, many authors have proposed and proved
the existence, uniqueness, and Ulam-Hyers stability of the solution of fractional differential equations
using several methods.

For example, in 2017, Benchohra and Lazreg investigated the existence of a unique solution and the
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stability of the following fractional differential equations

HDT(6) = w(C, p(0)," D p(L)),
é(1) = ¢y,

where “D7¢(¢) is the Hadamard fractional derivative of order 0 < 7 <1, w: JXRXR — Risa
given function, ¢; € Randt € J =[1,T], T > 0. Also, Sousa and Oliveira considered the following
fractional Volterra integro-differential equation,

{H@T,K,wg(@ = w(l, g(0) + [ M(¢, 1, 2(0)d),
I,780) = ¢,

which is defined using the Hilfer fractional derivative, and invastigate the stability of Hyers-Ulam and
Hyers-Ulam Rassias for this equation. In this equation, £ € J = [0, T'], where w(¢, u) is a continuous
function with respect to the variables € and g on J X R and M(¥, J, g({)) is continuous with respect to
¢, j, gonJ X R xR and Ié:yg(O) with 0 <y < 1 is W-Riemann-Liouville fractional integral.

Utilizing the continuous functions ¢ : [0,L] - Y, M : [0,L] X [0,L] XY = Y, w: [0,L] XY =Y,
that Y is a Banach’s space and also W-Hilfer fractional derivative HZ);;’“'qu(f) that0 <7< 1,0<k <1
and AL (L, j) = W' ()P —¥( 7)"! that the function W(¢) is an increasing and positive function with
a continuous derivative, we define two equations of the fractional Volterra Integro-differential and the
fractional Volterra integral as follows

DG (0 = w(t, ¢(0) + f: M(C, j, ¢(1)d, (1.1)

and

1 4
&) = w(l, p(0)) + — f AL, DML, j, 6()d]. (1.2)
I'(t) Jo

In this paper, we consider the Gauss Hypergeometric function as a control function and stabilize
the fractional equations with this control function, which we call the Kummer control function and
apply the Cadariu-Radu method derived from the Diaz-Margolis alternative fixed point theorem to
investigate the existence, uniqueness of solutions for fractional Eqs (1.1) and (1.2). We have two
methods for investigating the solution of fractional differential equations: the Picard method and the
Cadariu-Radu method. Picard’s method which uses the Banach fixed point it shows only the existence
of a unique solution. But Cadariu-Radu can be shown both existence of a unique solution and stability.

In the second section, we present the basic definitions and theorems. In the third section, we in-
vestigate the uniqueness and Hyers-Ulam-Rassias-Kummer stability of Eq (1.1), and at the end of this
section, we provide a numerical example to illustrate main results. In the fourth section, we show the
existence of a unique solution and the stability of Eq (1.2) with a numerical example.

2. Preliminaries

We provide some definitions of the Gauss hypergeometric function, fractional integrals, and deriva-
tives.
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Definition 2.1 (see [7]). Let |[¢| < 1 and consider the generic parameters p, o, ¢. We define the Kummer
function by the infinite sum (that is convergent)

R AR O) i Lo + k(o + k) £
(S kK TEI)&  Ts+k k'

Now, we present the concept of the Hyers-Ulam-Rassias-Kummer stability of Eqs (1.1) and (1.2).

zFl(p,a;s*;é’):Z ®
k=0

Definition 2.2 (see [8—10]). Suppose that ,F(p, 0;¢; €) is the Kummer function in which ¢ € [0, L].
We say that Eq (1.1) has the Hyers-Ulam-Rassias-Kummer stability property if the following inequality
holds for the differentiable function ¢(¢)

¢
D5 $(6) — w(t, (6)) - f M(¢, j, ¢(D)d)| < 2F1(p, 0563 ), 2.1)
0
then, there exists a solution () of Eq (1.1) such that for some P > 0,
DG p(l) = DT HO| +16(6) — HO| < P2 Fi(p, o 63).

Definition 2.3 (see [8—10]). Suppose that ,F(p, 0; ¢; €) is the Kummer function in which ¢ € [0, L]. If
the following inequality holds for the differentiable function ¢(¢)

1 ¢
lp(£) — w(l, $(0)) — o f Ay(€, DML, 1, 9(N)d )l < 2F1(p, 0735 63 0), (2.2)
0
then, there exists a solution () of Eq (1.2) such that for some P > 0

lp(€) — IO < PLF(p, 065 0),
then we say that Eq (1.2) is Hyers-Ulam-Rassias-Kummer stable, [11-13].

In the sequel, we present the fractional integral and the fractional derivative for more details and
application we refer to [1-4].

Definition 2.4. The left-sided fractional integral of a function 6 with respect to a function ¥(¢{) on
interval [a, b] for T > 0 is defined by

. 1 ¢
7o) = e f Ay (L, pO(pdy, (2.3)

that the function W(¢) is an increasing and positive function with a continuous derivative on (a, b).
Also, the AL(Z, 7) function used in the upper integral is AL({, ) := V'()(¥(€) — ¥( )™, We can
define the right-sided fractional integral in a similar way.

Definition 2.5. Consider the functions 6,¥ € C"[a,b] where n — 1 < 7 < n and n € N, the left-sided
Y-Hilfer fractional derivative of a function 6 of order 7 on [a, b] and for 0 < x < 1 is defined by

H 7.F k(n—1);¥ (1-k)(n—1);¥
DO =17 (——)I+ 0(6). 2.4
o 0O =1, w(£)de) e © 24)

wherein W is an increasing function and ¥'(£) # 0. We can define the right-sided ‘P-Hilfer fractional
derivative in a similar way.
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Theorem 2.6 (see [4]). Let 0 € C'[a,b], T > 0and 0 < k < 1, we have
7,V 77, _
HppetIitoce) = 0(0).

Definition 2.7. Let D be a nonempty set, and let 6 : D x D — [0, co] be a mapping such that for all
D,e,c €D,

1) 6(d,e) =0 > Dd=rc¢;
(i) 6(d, ) = d(e, d);
(>iii) 6(d,e) < (b, ¢) + (¢, e).

Then (D, ¢) is called a generalized metric space (g.m.s., for short).

Now, we present an alternative fixed point theorem ( [32,33]). In the alternative fixed point theorem,
an unbounded state occurs for the meter, but we consider the bounded state.

Theorem 2.8 (Diaz-Margolis Theorem). Consider Y # (0 with the complete [0, oo]-valued metric 6
and also consider the self map L on Y satisfy

6(Ly, L1) < ké(t,y), k<1

where k < 1 is a Lipschitz constant. Assume that y € Y, so in this situation either §(L™y, L™'y) = oo,
forallm € N, or §(L™y, L™1y) < oo, for all m > my. If 5(L™y, L™y) < oo, the following conditions
apply to us simultaneously

(1) the fixed point t* of L is the convergence point of the sequence {L"y};
(2) inthe set V ={t € Y | 6(L™y,t) < oo}, t* is the unique fixed point of L;
(3) (1 —k)d(t,t*) < 6(t, Lt) for everyt € Y.

3. Fractional Volterra integro-differential equations

This section is devoted to a class of fractional Volterra integro-differential equations [14—16]. We
stabilize the mentioned equation by a Kummer function and apply the Cddariu-Radu Method to guar-
antee the existence of a unique solution of Eq (1.1). Our results improve and generalize the results
of [17], see also [3,18-26].

Theorem 3.1. Consider the positive constants E, E| and E, such that 0 < E\+(E|+E>,+E,E)E < 1. Also
consider the Banach space Y, the continuous functions w : [0,L] XY — Y, M : [0,L] X [0, L] XY = Y
and »F; : R*%[0, L] — (0, ) forall j,¢ € [0, L] and ¢, € Y and assume that the following conditions
hold

(1) lw(l,¢) — w(t.0) < Eil¢ — 0,
2) IM(L. . $() = ML 1. 9| < Erlg - 0,
3) s [ AL ) 2Fi(p. 0763 )dg < E 2 Fi(p, 07363 0).

If 0 :[0,L] — Y be a differentiable function satisfying (2.1), then Eq (1.1) has a unique solution
Oy : [0, L] — Y. Therefore, we have

DT 0(0) T DT 0,0 + 10() — 65(£)]
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< I1+E
- 1—E1+(E1+E2+E2E)E

2Fi(p, 0563 0),

and this means that Eq (1.1), has Hyers-Ulam-Rassias-Kummer stability property.
Proof. At the first, we define the set

W ={¢:[0,L] - Y, ¢is differentiable}
and on this set, consider the mapping 6 : W X W — [0, co] as follows

(¢, ) = inf{P € [0, 0o] : ["DFEYp(0) = DFETI(O)| + |p(£) — 9(0)| (3.1)
< P,F(p,0;¢:¢),¢ €[0,L]}.

We show that (W, 9) is [0, co]-valued complete metric space. Therefore, for functions ¢, 9 € W if we
have 6(¢, 1) > 6(¢, v) + (v, #), then there exists £, € [0, L] such that

D5 p(lo) =" DGEYI(Lo)| + p(Eo) — Do)
> (6(¢,v) + 6(v, D)) 2 F1(p, 073 63 Lo).

according to the definition 3.1, we have

DG p(Lo) = DT I + Ip(Lo) = F(Lo)
> DG (L) =" D V(o) + |¢(Lo) — V(o))
+ " D5 (L) =" DI (L) + V(Lo) — D (Lo)l,

which is a contradiction.
In (W, 6), we consider a Cauchy sequence {¢,}. Then for every € > 0, we can find N, € N, such that
forall m,n > N, and € € [0, L], we have

DT $,(0) = DF (O] + 19(€) — ¢ < £ 2F1(p, 773 63 0). (3.2)

Due to the continuity of the function , F';, on the compact interval [0, L], the sequence {¢,} is uniformly
convergent to differentiable function ¢ € W and the sequence {# Z)g’f;‘yqbn} also 1s uniformly convergent
to {# Z)g’f;q’(ﬁ}. Therefore when m — oo for £ € [0, L] and for € > 0, we can find N, € N, such that if
n > N, we have

DT ¢, (0) = DF (O] + 16,(0) — $(O)] < € 2F1(p, 05 53 0).

Thus 6(¢,, ¢) < €. Therefore, we have proved that the space (W, ¢) is a [0, co]-valued complete metric
space.
Now, we define the operator Q : W — W as follows

QB(0) = T w(t, ¢(6)) + T, Sfy[ j: MU, j, ¢())d |, (3.3)
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and show that € is a contraction operator. For this purpose, suppose that ¢, p € W, Py, € [0, co] and
0(¢, ) < Pyy. Then

DG G(6) = DFHO] +1(L) = IO)| < Pyy 2F1(p, 7563 0),
for all £ € [0, L]. Using conditions (1) and (2) in the hypothesis, we have
D5 (Qap(€) — QIO + 1Qp(€) — QI(0)]
¢
< |w(, ¢(£)) — w(l, HO)| + f IM(Z, 5, #(1)) — M(C, J,9())Id
0
¢
+ T3 (€, p(0)) — w(t, 9(O))| + | T gf‘[ f (M(Z, J, 6(p) — M(L, 5, 9())) |dJl
0
< Elg(6) =3O + Er f lp()) — Iy
0
¢
+ I5Y(Elg(0) — 9(0))) + Igfp[f Er|p(6) - ﬁ(f)ldj]

0

¢
S E Py Fi(p,0:6:0) +E2P¢0f 2F1(P,0';S';])d]+E1P¢ﬂfg;+lF 2Fi(p, 05 650)

0
¢
+ BT Pa [ i i
0
<[E1 + (Ey + E) + ESE)ENPyy 2 Fi(p, 07563 0).
Or equivalent

0(Qp, Q) < [E} + (Er + Ey + ELE)E]0(, V). (3.4)

From 0 < E, + (E, + E| + E,E)E < 1, we can conclude that € is a contractions mapping.
In the sequel, consider the function # € W and use the inequality (2.1), then we have

IHDST;W(QH({’) = 0(0)] +1Q6(6) — 6(0)|
= |w(¢, 0(6)) + f M(¢, J,0()dy =" Dg’f;%(f)l
0
+ |7 (T,i\yw(f, o) + 1 S\P[ f; M(¢, J, 9(]))61]] — 6(0)|
4
< Fi(p,056:0) + Ifgfyw(f, o(t)) + I(T)iw[f M(, J, 9(]))61]] - 0(0)|
0
< +E)Fi(p,0;6;0).
Thus,
0(Q0,0) <1+E<o0, E<1. 3.5

Now all the conditions for the alternative Theorem 2.8 hold. Then
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e The mapping Q has a fixed point like 6. It means Q6, = 6, or equivalently

00(€) = I3 (w(L, 60(0)) + T Sfy[ f: M(, J,60(1))d ] |. (3.6)

e The fixed point 6 is unique in the set W* = {{# € W : 6(Q6, ) < oo}.
e With respect to the continuity of the functions w, M and the differentiability of the function 6, by
taking the W-Hilfer fractional derivative of Eq (3.6) and also utilizing Theorem 2.8, we have

HDI00(0) = w(€, 6y(0)) + f M(, j,00(1))d), (3.7)
0
then, by Eq (3.5), we get
1
0(0,0)) < o(90, 6
©.80) < [E, + (E, + E; + E,E)E] (026, 6)
1+ F

< .
11— [E, + (E2 +FE| + EzE)E]

Thus, Eq (1.1) has Hyers-Ulam-Rassias-Kummer stability property.
Now, we prove W* = W to show the fixed point of mapping € is unique in W. Put

1+FE

F = ,
1-[E,+(E, + E| + EE)E]

and consider the differentiable function d, which holds in Eq (3.7) and 6 € W, then we have 6(6,d) < F
and

4
DA = w(L, d(0) + fo M(C, j,d(n)d). (3.8)

We show that d is a fixed point of Q and d € W*. From Eq (3.8), we have Qd = d.
Now, we show 6(€26,d) < co. By 6(8,d) < F and Eq (3.8), we get

DY (QA(L) — d(6))] + 1Q6(0) — d(0)]

£ £
~ w(l,000) + fo ML, 1, 60)d) — w(t. () - fo ML, 1, d()d)]

{
|ritaao+ | [ o)

L
- Iy¥uct o) - 13 fo M, d(]))d]]'
{
< (L, 60)) - (£, d(0)] + fo M, 1,600)) = M(, 1, d)Id
L
I, 00 ~ ot deo) + 1757 fo M, 1,60)) = M(6, 7, d)d)

A
< E0(0) - d(O)] + E» fo 60) - d()ld,
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Figure 1. Diagram of the solution of the fractional Volterra integro-differential Eq (3.9).

4
+ E\T5N(10(6) - d(O)] + EzJT)fP( f 16()) = d(])ldj)
0
< [E\ + (E, + Ey + E;E)EF,

which implies that
0(Q6,d) < [E, + (E, + Ey + E>E)E]F < oo.

O
Now, we provide an example to illustrate Theorem 3.1.
Example 3.2. Consider the following fractional Volterra integro-differential equation
¢
11 1
3 # u(l) = 1 00/1(5) sin(u(f)) — 2¢ + f 200 cos(£ + () sin(u())d j, (3.9)

where u is a differentiable function. Define w : [0,L] X Y — Y by w({,u) = ﬁ,u sin(u) — 2¢ and
M:[0,L] XY XY — Y by M((, j,u) = ﬁ,u sin(,u) cos( + ) that a, b, L > 0 and u(j) = j>. Consider
the positive coefficients E = 10’E1 = 1(1)0’E2 = 200 such that 0 < E; + (E; + E, + E,E)E < 1 and for
continuous functions w, M, , F; we have

(1) lw(, 1) — w(€, o)l = |5 O,USIH(IJ) € — T5Ho sin(/lo)+2ff| < |og1Ike = pol
(2) IM(Z, J, ,U) M(, J. ,Uo)| = |5e5H Sln(u) cos(£ + J) = 5a5to sin(o) cos(€ + I < |z5llu — pol,

£
3) == [ Al 28 1) 2Filp, 063 dy < 15 2 F1(p, 075 63 0).
I'(3) JO

If the following inequality holds for the differentiable function 6

11y 1 |
"D o) - EO(@ sin(6(£)) + 2¢ — f 200 cos(f + )O(y) sin(8(1)d | < 2F1(p, 065 0),

and E, = |-%-| and E, = ||, Theorem 3.1 implies that, there is a solution 6, such that

100 100"

e 0, is the fixed point of the operator €, which is defined as follows

[V |
QO(0) = 1 5£ (——=

100 90 sin(6y) — 2¢) + Ig+ f ——0 sin(6p) cos(€ + j)dj|.

200
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e The fixed point 6, is unique.
e 0, satisfies in Eq (3.9).

5(6.60) < 1+E
2T CE + (B, + Ey + BE)E’
or
DT a6 =1 DIy (0)] + 16(6) — 6o(£)]

< 1+FE Fip 0
L0363 0),

“1-E +(E +E, + EB,EE ! s

where E; + (E, + E; + E2E)E = 5L and Ik ~ 1.112. Then Eq (3.9) is Hyers-Ulam-

20000 1-E1+(E\+E2+EXE)E
Rassias-Kummer stable.

4. Fractional Volterra integral equation

This section is devoted to a class of fractional Volterra integral equations [14-16]. We stabilize
the mentioned equation by a Kummer function and apply the Cddariu-Radu Method to guarantee the
existence of a unique solution of Eq (1.2). Our results improve and generalize the results of [17].

Theorem 4.1. Consider the positive constants E, E, and E, such that 0 < (E| + E,E) < 1. On Banach
space Y, consider the continuous functions w : [0,L] XY — Y, M : [0,L] X [0,L] XY — Y and
»F) : R3x[0,L] — (0,00), for all j,¢ € [0,L] and ¢, € Y and assume that the following conditions
are true for them

4 w(t, @) = w(l, )| < Eil¢ - I,
(5) IM(L, 1,¢) = M(C, J,9)| < Exl¢p — 9,

£
©) 75 Jy AW D) 2Fi(p, 0553 )y < EF\(p, 03 63 0).

If 0 : [0,L] — Y be a differentiable function satisfying (2.2), then Eq (1.2) has a unique solution
6y : [0, L] = Y. Thus, we have

1
16() — Gp(0)] < m 2Fi(p, o5 650). 4.1)

and this means that Eq (1.2) has Hyers-Ulam-Rassias-Kummer stability property.
Proof. We define the set W as follows

W ={¢:[0,L] - Y : ¢is continuous},
Also, we define 6 : W X W — [0, o] as follows
0(¢, ) = inf{P € [0, 0] : |p(£) — HO)| < P 2F1(p,06; ), € €0, L]}

Similar to the argument of the previous theorem, we can easily show that the space (W, 9) is a [0, oo]-
valued complete metric space. Since the equation is integral, we consider the functions continuously

Mathematical Biosciences and Engineering Volume 19, Issue 7, 6536-6550.
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and define the meter on the set of these functions. In Theorem 3.1, since we have a fractional differential
integral equation, we consider the differentiable functions and define the meter on this set of functions.
Now, we define the mapping Q : W — W by

1 £
QG(0)) = (b, §(0)) + —— f AL, DML, 1, 6,
@ Jo

and show that € is a contraction operator. Suppose that for ¢, € W, 6(¢,?) < Py that Pyy > 0, then
we have

lp(£) = FHO| < Pyo 2F1(p, 07563 ),
for all £ € [0, L]. By conditions (4) and (5), we have

1€((€)) — QW) < |w(l, $(£)) — w(C, F(D))]

{
+ @ Js AL, PIMUL, 1, 6() — ML, J, 9l
| A
< Eilg(6) - 9Ol + Ezm fo Ay(L, Ple()) = F(ldy

P¢ﬂE2 ! T
SE1P¢192F1(P,0';§‘;5)+TT) AL, ) 2 Fi(p, 0565 dj
0

S EPyy oF((p,056;0) + 2Py Fi(p, 07,6, O FE
< (Ei + ESE)Pyy o Fi(p, 07563 0),

and so
0(Qp, Q) < (E + ELE)0(¢, D).

Since 0 < (E; + E»E) < 1, then Q is a contraction mapping. In the sequel, considering the function
6 € W and utilizing the inequality (2.2), we get

0(€20,0) <1 < oco. 4.2)

Now, all the conditions of Theorem 2.8 hold. Then

e The mapping Q has a fixed point named by 6,. It means Q68, = 6, or equivalently
1 4
0o(€) = w(l, 6(0)) + ) AL, DML, 1, 60())d ). (4.3)
0

e The fixed point 6 is unique in the set W* = {{} € W(Q8,J) < oo}.
e By Eq (4.2) and Theorem (2.8), we get

1
50,0) =< ———— 5(Q0.) < ——— .
©, 60) 1—(E1+E2E)( ) 1 - (E, + E;E)

Thus, Eq (1.2) is Hyers-Ulam-Rassias-Kummer stable.
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Now, we prove W* = W to show the fixed point of mapping € is unique in W. Consider another
continuous function d that satisfying

1 T
d(6) = w(t,d(0)) + ) f: Ay(€, DML, J,d(n)d).

In the following, we show that d is a fixed point of Q and d € W*. From Eq (4.3) we have, Qd = d.
Now, we show 0(£20,d) < co. From

< - 0
6(6,d) < 1 —(E, + E,E)’

and conditions (4), (5) and (6), we get

1Q6(6) — d(0)|
4

1
= lw(£,6(0)) - o J, Ay(L, PMUL, 1, d())d ) = w(t, d())

4

1 T
1
< |w(t, 0(6)) — w(t,d(6))] + m AL, DIM(E, 7,6() — ML, j,d()ld;
E,
< E{|6(6) — d(O)| + — AW, DO —d(pldy

I'(7)
< E Py 2F1(,0,0',§‘,€)+E2P9dEzF1(P,0';S‘;5)

< (E) + E,E)0(6,d) 2 F (p, 0563 0)

(E\ + EXE)
—  Fi(p,0:6;0),
_1—(E1+E2E)2 1o, 056;0)

which implies that 6(Q6, d) < oo. O

Example 4.2. Consider the following fractional Volterra integral equation

1 1 (0 1())
0) = Ve + —u(t) - fAzf, dj, 4.4
o 0040 71 Jy SO F= D (44)

where in y is a continuous function. Define w : [0,L] X Y — Y by w({, u(f)) = Ve + ﬁ,u(f), and
M:[0,L] XY XY — Y by M(, j,u()) = \"/(Tfl that L > 0 and u(j) = j>. Consider the positive
=J

coefficients E, E, E», such that 0 < E; + E,E < 1 and for continuous functions w, M, , F; we have

(4) |(,()(€, /J(f)) - (,()(f ﬂO(f))I - I \/_ ¢+ 100;“ \/_ 1()()/'[0| 100 |/~l ,Llo|,
5) IM(¢, J, M(¢, j, = =
(5) IM(, M(J)) (€. J, oDl = | \/— \/—I \/—l,u Hol,

(6) 5 ) 8460 2F1(p, 05630y < 55 2F (0,063 )
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Figure 2. Diagram of the solution of the fractional Volterra integral Eq (4.4).

If the following inequality holds for the differentiable function 6

1 ) .
16(6) — Ve - 1—009(5) + fo \/{Tjdjl <,Fi(p,0,¢;0)
1

and E£; = l%w and E, = Ny = ﬁ. Theorem (4.1) implies that there is a unique solution 6, such that

e 0, is the fixed point of the operator 2, which is defined as follows

6o(y)
t—

dj.

1 1 ()
Q) = ﬁ+meo<f)—@ fo ALt )

e The fixed point 6 is unique.
e 0, satisfies in Eq (4.4).
[ ]

1

50,00) < ——————,
(6, 60) 1 - (E, + E;E)

or

1
0) = 0p(0)| £ ———————=—2Fi(p,0;¢; ),
6(6) 0()|‘1—(E1+E2E)2 1o, 05630)

where E) + E>E = 55 and 1=zt ~ 1.011, which implies that Equation (4.4) has Hyers-Ulam-

Rassias-Kummer stability property.

5. Concluding remarks

Given that fractional differential equations are used in a variety of fields, including physics, chem-
istry, economics, medicine, and engineering, many authors have inspected these equations in recent
years. Researchers have done a lot of research on the stability of fractional equations, including frac-
tional differential equations [8,27-30]. We applied the concept of the Hyers-Ulam-Rassias-Kummer
stability of fractional equations to investigate existence, uniqueness, and an approximation with the op-
timum errors for two classes of fractional Volterra integro-differential and fractional Volterra integral
via the Cddariu-Radu method derived from the Diaz-Margolis alternative fixed point theorem.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 6536-6550.
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