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Abstract: Since the COVID-19 outbreak began in early 2020, it has spread rapidly and threatened
public health worldwide. Vaccination is an effective way to control the epidemic. In this paper, we
model a S AIM equation. Our model involves vaccination and the time delay for people to change
their willingness to be vaccinated, which is influenced by media coverage. Second, we theoretically
analyze the existence and stability of the equilibria of our model. Then, we study the existence of Hopf
bifurcation related to the two equilibria and obtain the normal form near the Hopf bifurcating critical
point. Third, numerical simulations based two groups of values for model parameters are carried out
to verify our theoretical analysis and assess features such as stable equilibria and periodic solutions.
To ensure the appropriateness of model parameters, we conduct a mathematical analysis of official
data. Next, we study the effect of the media influence rate and attenuation rate of media coverage
on vaccination and epidemic control. The analysis results are consistent with real-world conditions.
Finally, we present conclusions and suggestions related to the impact of media coverage on vaccination
and epidemic control.

Keywords: COVID-19 epidemic; media coverage; vaccination; time-delay; Hopf bifurcation; normal
form; multiple time scales method

1. Introduction

A new viral infection, COVID-19 (Coronavirus Disease 2019) emerged in early 2020 and attracted
widespread attention. The virus spread around the world at a very high speed and many studies have
been carried out examining different epidemic patterns of COVID-19 based on official data [1–3].
There are many routes through which COVID-19 can spread, and it is possible that the virus may
mutate at any time [4]. That is why the epidemic is difficult to control and was designated as a global
pandemic by the World Health Organization (WHO). According to statistics from the WHO, more than
482 million people have been diagnosed with COVID-19, and more than 6 million people have died
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due to this disease as of March 30, 2022. The situation remains severe even now. Therefore, many
scholars are looking for ways to contain the epidemic.

Many epidemic models of COVID-19 have been developed [5–9]. Studying the effects of factors
such as incubation periods and vaccines on the spread of COVID-19 by analyzing the dynamic
property of the system has been an important area of research. Abdy et al. [10] constructed a
COVID-19 S IR Model with fuzzy parameters, taking into account vaccination, treatment, compliance
with health protocols, viral load, and other factors. Their simulation results showed that differences in
coronavirus loads would also cause differences in the transmission of COVID-19. Likewise, the
factors of vaccination and compliance with health protocols had the same effect in slowing or
stopping the transmission of COVID-19 in Indonesia. In the work of Wang et al. [11], a S VEIR
epidemic model with media impact, age-dependent vaccination and latency was proposed, where the
efficacy of vaccines depended on the time since vaccination.

Clearly, vaccines play a vital role in controlling infectious diseases. For COVID-19, a specific
vaccine, which significantly reduces the risk of COVID-19 infection, has already been developed and
has attracted much attention. In reference [12], Olorunsaiye et al. found that the global differences
in the rates of immunization with the COVID-19 vaccine resulted in different levels of COVID-19
immunity in different countries. Based on the study of Anderson et al. [13] and the epidemic data
available so far, we found that only a small number of people in Western developed countries have
been immunized after paying a heavy toll of death due to COVID-19 infection, and they have had
to use mass vaccination to achieve herd immunity. Therefore, it is necessary to study the effects of
vaccines in models of COVID-19. Zhai et al. [14] studied vaccination control in an epidemic model
with time delay and applied it to COVID-19.

These studies all point to the importance of vaccination against COVID-19. The development of
COVID-19 also highlights the need to increase public awareness of disease prevention and promote
proper understanding of vaccination. Vaccination rates are related to public opinion [15, 16]. In
reference [15], Yang et al. show that communication channels are one of the basic factors affecting
the level of COVID-19 vaccination awareness in society. Agaba et al. [16] studied vaccination in a
time-delay epidemic model with consciousness. Their model accounted for the contribution of global
information campaigns to overall awareness, direct contact between uninformed and informed
individuals, and reported cases of infection.

Many studies have shown that media coverage is an effective way to raise awareness of the
epidemic and increase people’s willingness to be vaccinated. In the study of Kiss et al. [17] in 2010, a
model was developed to study whether some people became consciously susceptible and others
became unconsciously susceptible after recovering from the disease. They showed that if the
dissemination of information is fast enough, infection will be eradicated. When this is not possible,
information transmission has an important effect on reducing the prevalence of the infection. In
reference [18], Kar et al. established a S EIR model, analyzed the existence and stability of the
disease-free equilibrium point of the model, and found that the system had the phenomenon of
backward bifurcation, which considered the two important control measures of treatment and media
coverage. Obviously, media coverage can affect the psychology of people and, thus, control the
spread of infectious diseases.

According to the characteristics of the COVID-19 epidemic, time delay plays an important role in
the epidemic models studied. Liu et al. [19] developed a differential equation with time delay to assess
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the impact of the incubation period on the epidemiological dynamics of COVID-19 before an infected
person was able to transmit the infection to others. In reference [20–23], it showed that the model
with the time delay could better describe the epidemic trend of infectious diseases. In some cases, the
original stable equilibrium became unstable and destroyed the stability of endemic disease equilibrium.

COVID-19 is an infectious disease that is not completely controlled and, therefore, has great
research significance. Considering the effectiveness of vaccines, studying the impact of media
coverage on people’s willingness to get vaccinated against COVID-19 is key for analyzing the role of
media in controlling the spread of COVID-19. Therefore, the main objectives of this paper include
constructing a COVID-19 vaccination willingness model in the context of media coverage and
analyzing the stability of the model and the existence and stability of Hopf bifurcation.

The rest of the content is arranged as follows. In Section 2, we establish a model based on the
characteristics of media coverage and COVID-19 transmission. In Section 3, we analyse the existence
and stability of equilibria and the existence of Hopf bifurcation for models with time delay. In
Section 4, we derive the normal form of the Hopf bifurcation of the above model and analyse the
stability of the periodic solution of the bifurcation. In Section 5, we present numerical simulations to
verify the correctness of our analysis. Finally, the conclusion is drawn in Section 6.

2. Mathematical modeling

Media coverage has an impact on epidemic prevention and control. In reference [24], Misra et al.
studied the time delay of media broadcasting and established the following model:

dX
dt
=A − βXY − λX

M
k + M

− dX + νY + λ0Xm,

dY
dt
=βXY − νY − αY − dY,

dXm

dt
=λX

M
k + M

− dXm − λ0Xm,

dM
dt
=µY (t − τ) − µ0M,

(2.1)

where X, Y , and Xm denote the numbers of susceptible, infected and conscious people, respectively,
and M denotes the number of people affected by media coverage. A = X + Xm + Y is the number of
total population individuals. τ is the time delay of the media coverage effect. Misra et al. [24] analyzed
the Hopf bifurcation of their model and concluded that although awareness programs cannot eradicate
infection, they help in controlling the prevalence of disease.

People who are susceptible to COVID-19 can become infected, and vaccination is one of the
effective ways to reduce the likelihood of the susceptible population becoming infected. We will
improve the system (2.1) based on the work of Misra et al. [24] and assume that the country has
sufficient vaccine resources. We study the influence of media coverage on vaccination and COVID-19
epidemic control.

We divide the people into three groups. One group includes susceptible people who do not have
antibodies in their bodies (S ); that is, they have not received the vaccine. Another group includes
people who have antibodies (A). The third group includes infected people (I). Most people from A
obtain antibodies through vaccination (S → A). We assume these people are influenced by media
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because they need to be informed about vaccines through media coverage. The remaining people in A
were infected and developed antibodies after recovering since the vaccine is an inactivated virus [25]
(I → A). Both S and A are likely to suffer from COVID-19 after contact with infected people and
become infected people I. First, this is because current vaccines reduce the infection rate but do not
impart complete immunity. Second, recovered people can be reinfected [26] (see Figure 1).

Figure 1. S AIM Model diagram.

As shown in Figure 1, we present a differential equation model with a time delay, and the
relationships among the four populations are obtained. The solid line represents the flow relationship
among the non-antibody population S , the antibody population A and the infected population I. The
dotted line indicates that cabin (M) does not participate in the population flow, but it is affected by
cabin I and affects the conversion rate from S to A. In this model, it is clear that people with
antibodies are less likely to be infected, that is, the proportion of A converting to I is less than that of
S , which means α < β. Some infected people die of the disease, while others are cured after treatment
and have antibodies. We define the cure rate as ν. After τ days since the epidemic was reported by the
media, people realized the seriousness of the epidemic. We assume the people who don’t exhibit
vaccination willingness at the beginning, but accept the idea of vaccination after being influenced by
the media are (M). Media broadcast has an attenuation rate µ0. The number of people who follow the
media will influence the vaccination rate with an influence coefficient λ0. This is consistent with the
fact that the greater the number of people who pay attention to the news and think it is necessary to
get vaccinated is, the higher the vaccination rate, converting S to A. Thus, we construct the following
model: 

dS (t)
dt
=B − βS (t) I (t) − dS (t) − λ0M (t) S (t) ,

dA (t)
dt
=λ0M (t) S (t) − dA (t) − αA (t) I (t) + νI (t) ,

dI (t)
dt
=βS (t) I (t) + αA (t) I (t) − νI (t) − (c + d) I (t) ,

dM (t)
dt

=µI (t − τ) − µ0M (t) ,

(2.2)

where B, β, d, λ0, α, ν, c, µ, µ0 are positive parameters; S , A, I, M are variables; and τ is the time
delay for people to change their willingness to vaccinate. It is influenced by media coverage of the
epidemic. The specific descriptions are given in Table 1.
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Table 1. Descriptions of variables and parameters in the model (2.2).

Symbol Description
S Number of susceptible people without antibodies
A Number of susceptible people with antibodies
I Number of infected people
M Number of people who are influenced by the media and accept the idea of vaccination
B Natural increase rate of population
β Transition rate from S to I
λ0 Transition rate from S to A
α Transition rate from A to I
ν Transition rate from I to A, the cure rate of infected people
d Natural death rate of population
c National case fatality rate of COVID-19
µ Media influence rate
µ0 Attenuation rate of media coverage
τ Time-delay for people to change their willingness to vaccinate

3. Stability analysis of equilibria and the existence of Hopf bifurcation

In this section, the system (2.2) is considered. Clearly, the system (2.2) has two equilibria:

P1 =

(B
d
, 0, 0, 0

)
, P2 = (S ∗, A∗, I∗,M∗), (3.1)

where S ∗ = B
βI∗+d+ξI∗ , A∗ = B

d −
B

βI∗+d+ξI∗ −
c+d

d I∗, M∗ = µ

µ0
I∗,

I∗ = −[(c+d)αd−(αB−(ν+c+d)d)(β+ξ)]
2(c+d)α(β+ξ) +

√
[(c+d)αd−(αB−(ν+c+d)d)(β+ξ)]2

−4(c+d)α(β+ξ)[(ν+c+d)d2−Bdβ]
2(c+d)α(β+ξ) , with ξ = λ0µ

µ0
.

It is straightforward to find that the basic regeneration number of the system (2.2) is

R0 =
βB

d (ν + c + d)
.

When R0 < 1, there is only one semitrivial equilibrium P1 =
(

B
d , 0, 0, 0

)
. Transferring the

equilibrium P1 to the origin and linearizing the surrounding system (2.2), we obtain the characteristic
equation of the linearized system as follows:

(λ + d)2
(
λ −
βB
d
+ ν + c + d

)
(λ + µ0) = 0. (3.2)

The characteristic equation Eq (3.2) of equilibrium P1 is independent of τ. Equation (3.2) has four
roots: λ1 = λ2 = −d, λ3 =

βB
d − ν − c − d, λ4 = −µ0. Thus the equilibrium P1 is locally asymptotically

stable for any τ ≥ 0 due to d > 0, µ0 > 0,R0 < 1.
When R0 = 1, there is also only one semitrivial equilibrium P1 =

(
B
d , 0, 0, 0

)
. The Eq (3.2) has a

root: λ = 0. Therefore, the equilibrium P1 undergoes a fixed point bifurcation.
When R0 > 1, the equilibrium P1 is unstable, and the other equilibrium P2=(S ∗, A∗, I∗,M∗) for the

system (2.2) exists and is positive.
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Similarly, transferring the equilibrium P2 = (S ∗, A∗, I∗,M∗) to the origin and linearizing the
system (2.2) around it, we obtain the characteristic equation of the linearized system as follows:

e−λτ (A1λ + B1) + λ4 +C1λ
3 + D1λ

2 + E1λ + F1 = 0, (3.3)

where

A1 = µ (−αλ0I∗S ∗ + λ0βS ∗I∗) ,

B1 = µ
[
(−αλ0I∗S ∗) (βI∗ + d + λ0M∗) + λ2

0αS ∗I∗ + λ0βS ∗I∗ (d + αI∗)
]
,

C1 = µ0 + βI∗ + 3d + λ0M∗ + c + ν + αI∗ − βS ∗ − αA∗,

D1 = (βI∗ + d + λ0M∗) (µ0 + d + αI∗ − βS ∗ − αA∗ + ν + c + d)

+ (−βS ∗ − αA∗ + ν + c + d) (µ0 + d + αI∗) + µ0 (d + αI∗) + αI∗ (αA∗ − ν) + β2S ∗I∗,

E1 =µ0
[
(βI∗ + d + λ0M∗) (d + αI∗ − βS ∗ − αA∗ + ν + c + d)

+ (d + αI∗) (−βS ∗ − αA∗ + ν + c + d) + αI∗ (αA∗ − ν) + β2S ∗I∗
]

+ (βI∗ + d + λ0M∗)
[
(d + αI∗) (−βS ∗ − αA∗ + ν + c + d) + αI∗ (αA∗ − ν)

]
+ β2S ∗I∗ (d + αI∗) + βαλ0S ∗I∗M∗,

F1 =µ0
[
(βI∗ + d + λ0M∗)

[
(d + αI∗) (−βS ∗ − αA∗ + ν + c + d) + αI∗ (αA∗ − ν)

]
+βαλ0S ∗I∗M∗ + β2S ∗I∗ (d + αI∗)

]
.

When τ = 0, Eq (3.3) becomes

λ4 +C1λ
3 + D1λ

2 + (A1 + E1) λ + B1 + F1 = 0. (3.4)

We consider the following assumption obtained by the Routh-Hurwitz criterion:
(H1) C1 > 0, C1D1−A1−E1 > 0, C1 [D1 (A1 + E1) −C1 (B1 + F1)]− (A1 + E1)2 > 0, B1+F1 > 0.

Under the assumption (H1), all the roots of Eq (3.4) have negative real parts, and the equilibrium
P2 = (S ∗, A∗, I∗,M∗) is locally asymptotically stable when τ = 0.

When τ > 0, we try to discuss the existence of Hopf bifurcation. We assume that λ = iω (ω > 0)
is a pure imaginary root of Eq (3.3). Substituting it into Eq (3.3) and separating the real and imaginary
parts, we obtain: {

C1ω
3 − E1ω = A1ω cos (ωτ) − B1 sin (ωτ) ,

−ω4 + D1ω
2 − F1 = B1 cos (ωτ) + A1ω sin (ωτ) .

(3.5)

Eq (3.5) derives the following: sin (ωτ) = −A1ω
5+(A1D1−B1C1)ω3−(A1F1−B1E1)ω

A2
1ω

2+B2
1

,

cos (ωτ) = (A1C1−B1)ω4+(B1D1−A1E1)ω2−B1F1
A2

1ω
2+B2

1
.

(3.6)

Adding the square of the two equations in Eq (3.5), letting z = ω2, we obtain

h (z) = z4 + c3z3 + c2z2 + c1z + c0 = 0, (3.7)

where c3 = C2
1 − 2D1, c2 = 2F1 − 2C1E1 + D2

1, c1 = E2
1 − 2D1F1 − A2

1, c0 = F2
1 − B2

1.
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We hypothesize that Eq (3.7) has k( k = 1, 2, 3, 4) positive roots and denote them as z1 < z2 < z3 <

z4. Substituting ωk =
√

zk ( k = 1, 2, 3, 4) into Eq (3.6), we obtain the expression of τ:

τ
( j)
k =

 1
ωk

[arccos(Pk) + 2 jπ], Qk ≥ 0,
1
ωk

[2π − arccos(Pk) + 2 jπ], Qk < 0, k = 1, 2, 3, 4, j = 0, 1, 2, · · · ,
(3.8)

where

Qk = sin(ωkτ
( j)
k ) =

−A1ω
5
k + (A1D1 − B1C1)ω3

k − (A1F1 − B1E1)ωk

A2
1ω

2
k + B2

1

,

Pk = cos(ωkτ
( j)
k ) =

(A1C1 − B1)ω4
k + (B1D1 − A1E1)ω2

k − B1F1

A2
1ω

2
k + B2

1

.

Lemma 3.1. If R0 > 1 and (H1) holds, when τ = τ( j)
k ( k = 1, 2, 3, 4; j = 0, 1, 2, · · · ), then Eq (3.3)

has a pair of pure imaginary roots ±iωk, and all the other roots of Eq (3.3) have nonzero real parts.

Furthermore, let λ(τ) = α(τ)+ iω(τ) be the root of Eq (3.3) satisfying α(τ( j)
k ) = 0, ω(τ( j)

k ) = ωk ( k =
1, 2, 3, 4; j = 0, 1, 2, · · · ).

Lemma 3.2. If R0 > 1 and (H1) holds, and zk = ω
2
k , h′(zk) , 0, where h′(z) is the derivative of h(z)

with respect to z. Then, we have the following transversality condition:
Re( dτ

dλ )
∣∣∣∣τ=τ( j)

k
= Re( dλ

dτ )
−1
∣∣∣∣τ=τ( j)

k
=

h′(zk)
A2

1zk+B2
1
, 0, k = 1, 2, 3, 4, j = 0, 1, 2, · · · .

Theorem 3.1. Considering system (2.2), we draw the following conclusions.
(1) If R0 < 1 holds, there is only one semitrivial equilibrium P1 for the system (2.2), and it is locally

asymptotically stable for any τ ≥ 0.
(2) If R0 = 1 holds, the only semitrivial equilibrium P1 undergoes a fixed point bifurcation.
(3) If R0 > 1 holds, the equilibrium P1 is unstable, and the other equilibrium P2=(S ∗, A∗, I∗,M∗) for

the system (2.2) exists and is positive. When (H1) holds as well, the equilibrium P2 of the system (2.2)
undergoes Hopf bifurcation at τ = τ( j)

k ( k = 1, 2, 3, 4; j = 0, 1, 2, · · · ), where τ( j)
k is given by Eq (3.8),

and
(a) If h(z) has one positive root z1, then when τ ∈ [0, τ(0)

1 ), the equilibrium P2 is locally
asymptotically stable and unstable when τ > τ(0)

1 .
(b) If h(z) has two positive roots z1 and z2, we suppose z1 < z2; then, h′(z1) < 0, h′(z2) > 0; note that

τ(0)
1 > τ

(0)
2 . Then, ∃ m ∈ N makes 0 < τ(0)

2 < τ
(0)
1 < τ

(1)
2 < τ

(1)
1 < · · · < τ

(m−1)
1 < τ(m)

2 < τ(m+1)
2 . When

τ ∈ [0, τ(0)
2 ) ∪

m⋃
l=1

(τ(l−1)
1 , τ(l)

2 ), the equilibrium P2 of the system (2.2) is locally asymptotically stable, and

when τ ∈
m−1⋃
l=0

(τ(l)
2 , τ

(l)
1 ) ∪ (τ(m)

2 ,+∞), the equilibrium P2 is unstable.

(c) If h(z) has three or four positive roots, the phenomenon of stability switching similar to the case
of (b) will occur.

4. Normal form of Hopf bifurcation

In this section, we derive the normal form of Hopf bifurcation for the system (2.2) by using the
multiple time scales method. To reflect the actual situation, we focus on the delay in people formulating
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ideas about COVID-19 vaccination and study the impact of the delay on epidemic control. Therefore,
we consider the time-delay τ as a bifurcation parameter. Let τ=τc + ετε, where τc is the critical value
of Hopf bifurcation given in Eq (3.8), τε is the disturbance parameter, and ε is the dimensionless scale
parameter. When τ=τc, the characteristic Eq (3.3) has eigenvalue λ = iω(k) ( k = 1, 2, 3, 4), at which
system (2.2) undergoes a Hopf bifurcation at equilibrium P2 = (S ∗, A∗, I∗,M∗).

System (2.2) can be written as Ẋ(t) = A2X(t) + B2X(t − τ) + F[X(t), X(t − τ)], we let t → t/τ, then
the system (2.2) turns to

Ẋ = τA2X + B2τX (t − 1) + τF (X, X (t − 1)) , (4.1)

where X(t) = (S , A, I,M)T, X(t − 1) = (S (t − 1), A(t − 1), I(t − 1),M(t − 1))T,

A2
∆
=


a11 0 a13 a14

a21 a22 a23 a24

a31 a32 a33 0
0 0 0 a44

 =

−βI∗ − d − λ0M∗ 0 −βS ∗ −λ0S ∗

λ0M∗ −d − αI∗ −αA∗ + ν λ0S ∗

βI∗ αI∗ βS ∗ + αA∗ − ν − c − d 0
0 0 0 −µ0

 ,

B2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 µ 0

 , F (X (t) , X (t − 1)) ∆=


FS

FA

FI

FM

 =

−βS I − λ0MS
λ0MS − αAI
βS I + αAI

0

 .
We suppose h is the eigenvector of the linear operator corresponding to the eigenvalue iω(k)τ of

Eq (4.1) for equilibrium P2, and h∗ is the normalized eigenvector of the adjoint operator of the linear
operator corresponding to the eigenvalue −iω(k)τ and satisfies ⟨h∗, h⟩ = h∗

T
h = 1. By simple

calculation, we obtain:

h =


h1

h2

h3

h4

 =


−βS ∗(iω(k)+µ0)−iω(k)µτS ∗e−iω(k)τ

(iω(k)+µ0)(−iω(k)+βI∗+d+λ0 M∗)
β2S ∗(iω(k)+µ0)+iω(k)τµβS ∗e−iω(k)τ

(iω(k)+µ0)(iω(k)+βI∗+d+λ0 M∗)α +
[iω(k)−(βS ∗+αA∗−ν−c−d)]

αI∗

1
µe−iω(k)τ

iω(k)+µ0


,

h∗ = d


h∗1
h∗2
h∗3
h∗4

 = d



λ0αM∗I∗+βI∗(−iω(k)+d+αI∗)
(−iω(k)+d+αI∗)(−iω(k)+βI∗+d+λ0 M∗)

αI∗

−iω(k)+(d+αI∗)
1

(−λ0S ∗)[λ0αM∗I∗+βI∗[−iω(k)+(d+αI∗)]]
(−iω(k)+µ0)(−iω(k)+d+αI∗)[−iω(k)+(βI∗+d+λ0 M∗)] +

λ0αS ∗I∗

(−iω(k)+µ0)(−iω(k)+d+αI∗)


.

(4.2)

where d = 1

h1h∗1+h2h∗2+h3h∗3+h4h∗4
.

We suppose the solution of Eq (4.1) is as follows:

X(t) = X(T0,T1,T2, · · · ) =
∞∑

k=1

εkXk(T0,T1,T2, · · · ), (4.3)
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where X(T0,T1,T2, · · · ) = [S (T0,T1,T2, · · · ), A(T0,T1,T2, · · · ), I(T0,T1,T2, · · · ),M(T0,T1,T2, · · · )]T,

Xk(T0,T1,T2, · · · ) = [S k(T0,T1,T2, · · · ), Ak(T0,T1,T2, · · · ), Ik(T0,T1,T2, · · · ),Mk(T0,T1,T2, · · · )]T.

The derivative with respect to t is transformed:
d
dt
=
∂

∂T0
+ ε
∂

∂T1
+ ε2 ∂

∂T2
+ · · · = D0 + εD1 + ε

2D2 + · · · ,

where Di =
∂
∂Ti

, i = 0, 1, 2, · · · .
Note that

Xi = (S i, Ai, Ii,Mi)T = Xi

(
t, εt, ε2t, · · ·

)
,

Xi1 = (S i, Ai, Ii,Mi)T = Xi

(
t − 1, εt, ε2t, · · ·

)
, i = 1, 2, · · ·.

Then, we obtain

Ẋ (t) = εD0X1 + ε
2D1X1 + ε

3D2X1 + ε
2D0X2 + ε

3D1X2 + ε
3D0X3 + · · ·. (4.4)

Using a Taylor series expansion of X (t − 1), we obtain that

X (t − 1) = εX11 + ε
2 (X21 − D1X11) + ε3 (X31 − D1X21 − D2X11) + · · ·, (4.5)

where Xi1 = Xi (T0 − 1,T1,T2, · · ·) , i = 1, 2, 3, · · ·.
As we stated, τ is the bifurcation parameter, and τ = τc + ετε. Substituting Eqs (4.3)–(4.5) into Eq

(4.1) and balancing the coefficients before ε on both sides of the equation, the following expression is
obtained:



D0S 1 − τc (a11S 1 + a13I1 + a14M1) = 0,

D0A1 − τc (a21S 1 + a22A1 + a23I1 + a24M1) = 0,

D0I1 − τc (a31S 1 + a32A1 + a33I1) = 0,

D0M1 − τc (a44M1 + µI11) = 0.

(4.6)

Thus, Eq (4.6) has the following solution form:

X1(T1,T2,T3, · · · ) = G(T1,T2,T3, · · · )eiω(k)τc T0h + Ḡ(T1,T2,T3, · · · )e−iω(k)τcT0 h̄. (4.7)

The expression of the coefficient before ε2 is as follows:

D0S 2 − τc (a11S 2 + a13I2 + a14M2)
= −D1S k1 − τc (βS 1I1 + λ0S 1M1) + τε (a11S 1 + a13I1 + a14M1) ,

D0A2 − τc (a21S 2 + a22A2 + a23I2 + a24M2)
= −D1A1 + τε (a21S 1 + a22A1 + a23I1 + a24M1) + τc (−αA1I1 + λ0S 1M1) ,

D0I2 − τc (a31S 2 + a32A2 + a33I2)
= −D1I1 + τc (βS 1I1 + αA1I1) + τε (a31S 1 + a32A1 + a33I1) ,

D0M2 − τc (a44M2 + µI21)
= −D1M1 − µτcD1I11 + τε (a44M1 + µI11) .

(4.8)
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Substituting Eq (4.7) into the right-hand side of Eq (4.8), and the coefficient vector of eiω(k)τcT0 is denoted
by m1. According to the solvability condition ⟨h∗,m1⟩ = 0, the expression of ∂G

∂T1
is obtained as follows:

∂G
∂T1
= NkτεG, (4.9)

where Nk =
iω(k)

1+µh3h∗4e−iω(k)τc d
, k = 1, 2, 3, 4.

Since τε is a disturbance parameter, we only consider its effect on the linear part. It has little effect
on the high order, so it can be ignored. Therefore, we ignore the part containing τε in the higher order.
We suppose the solutions of Eq (4.8) are given as follows:

S 2 = g1e2iω(k)τcT0G2 + ḡ1e−2iω(k)τcT0Ḡ2 + l1GḠ,
A2 = g2e2iω(k)τcT0G2 + ḡ2e−2iω(k)τcT0Ḡ2 + l2GḠ,
I2 = g3e2iω(k)τcT0G2 + ḡ3e−2iω(k)τcT0Ḡ2 + l3GḠ,
M2 = g4e2iω(k)τcT0G2 + ḡ4e−2iω(k)τcT0Ḡ2 + l4GḠ,

(4.10)

where


g1

g2

g3

g4

 =

2iω(k) + βI∗ + d + λ0M∗ 0 βS ∗ λ0S ∗

−λ0M∗ 2iω(k) + d + αI∗ αA∗ − ν −λ0S ∗

−βI∗ −αI∗ 2iω(k) − βS ∗ − αA∗ + ν + c + d 0
0 0 −µe−2iω(k)τc 2iω(k) + µ0


−1 

b1

b2

b3

b4

 ,


l1

l2

l3

l4

 =

βI∗ + d + λ0M∗ 0 βS ∗ λ0S ∗

−λ0M∗ d + αI∗ αA∗ − ν −λ0S ∗

−βI∗ −αI∗ −βS ∗ − αA∗ + ν + c + d 0
0 0 −µ µ0


−1 

c1

c2

c3

c4

 ,
(4.11)

with h1, h2, h3, h4 are given in Eq (4.2) and


b1

b2

b3

b4

 =

−βh1h3 − λ0h1h4

−αh2h3 + λ0h1h4

βh1h3 + αh2h3

0

 ,


c1

c2

c3

c4

 =

−βh1h3 − βh1h3 − λ0h1h4 − λ0h4h1

λ0h1h4 + λ0h4h1 − αh2h3 − αh3h2

βh1h3 + βh1h3 + αh2h3 + αh3h2

0

 .
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The expression of the coefficient before ε3 is:

D0S 3 − τc (a11S 3 + a13I3 + a14M3)
= −D2S 1 − D1S 2 − τc (βS 2I1 + βS 1I2 + λ0S 1M2 + λ0S 2M1)
+τε (a11S 2 + a13I2 + a14M2 − βS 1I1 − λ0S 1M1) ,

D0A3 − τc (a21S 3 + a22A3 + a23I3 + a24M3)
= −D2A1 − D1A2 + τc (−αA1I2 − αA2I1 + λ0S 1M2 + λ0S 2M2)
+τε (a21S 2 + a22A2 + a23I2 + a24M2 − αA1I1 + λ0S 1M1) ,

D0I3 − τc (a31S 3 + a32A3 + a33I3)
= −D2I1 − D1I2 + τc (βS 1I2 + αA1I2 + βS 2I1 + αA2I1)
+τε (a31S 2 + a32A2 + a33I2 + βS 1I1 + αA1I1) ,

D0M3 − τc (a44M3 + µI31)
= −D2M1 − D1M2 − τc (µD1I21 + µD2I11) + τε (a44M2 + µI21 − µD1I11) .

(4.12)

Substitute Eqs (4.6), (4.10) and (4.11) into the right-hand side of Eq (4.12), and the coefficient
vector of eiω(k)τcT0 is denoted by m2. According to the solvability condition ⟨h∗,m2⟩ = 0, the expression
of ∂G
∂T2

can be obtained as follows:

∂G
∂T2
= MkNkτcG2Ḡ, (4.13)

where

Mk =
1

iω(k)

{[
−β (l1h3 + g1h3 + l3h1 + g3h1) − λ0 (l1h4 + g1h4 + l4h1 + g4h1)

]
h∗1

+
[
−α (l2h3 + g2h3 + l3h2 + g3h2) + λ0 (l1h4 + g1h4 + l4h1 + g4h1)

]
h∗2

+
[
β (l1h3 + g1h3 + l3h1 + g3h1) + α (l2h3 + g2h3 + l3h2 + g3h2)

]
h∗3},

with hk given in Eq (4.2), gk, lk given in Eq (4.11), and Nk given in Eq (4.9).
Let G → G/ε; then, the deduced third-order normal form of Hopf bifurcation of system (2.2) is:

Ġ = NkτεG + MkNkτcG2Ḡ, (4.14)

where Nk is given in Eq (4.9), and Mk is given in Eq (4.13).
Substituting G = reiθ into Eq (4.14), the following normal form of Hopf bifurcation in polar

coordinates is obtained: {
ṙ = Re(Nk)τεr + Re(MkNk)τcr3,

θ̇ = Im(Nk)τε + Im(MkNk)τcr2.
(4.15)

According to the normal form of Hopf bifurcation in polar coordinates, we only need to consider
the first equation in system (4.15). Thus, the following theorem holds:

Theorem 4.1. For the system (4.15), when Re(Nk)τε
Re(MkNk)τc

< 0 , there is a semitrivial fixed point r =√
−

Re(Nk)τε
Re(MkNk)τc

, and system (2.2) has periodic solution.
(1) If Re(Nk)τε < 0, then the periodic solution reduced on the center manifold is unstable.
(2) If Re(Nk)τε > 0, then the periodic solution reduced on the center manifold is stable.
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5. Numerical simulations

In this section, we carry out numerical simulations to verify our theoretical analysis. Then, we
study two important parameters, that is, the media influence rate µ and attenuation rate of media µ0,
and simulate the impact of these two parameters on the time required for people to be willing to
vaccinate. Finally, we explore the influence of timely media coverage and the propaganda efforts of
media coverage on the epidemic, and we propose reasonable suggestions for effectively controlling the
COVID-19 epidemic.

5.1. Determination of parameter values

Based on official statistics (https : //github.com/CS S EGIS andData/COVID − 19; https :
//voice.baidu.com/act/newpneumonia/newpneumonia/? f rom = osaripc3#tab4), we obtain data on
national case fatality rates and cure rates for different countries. To ensure that the data can relect the
average, we retain representative data and eliminate outliers. Finally, we screen the death rates due to
disease for 29 countries and cure rates for 30 countries. According to the data, we generate bar charts,
which are presented in Figures 2 and 3.
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0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

National death rates due to disease: c

Figure 2. Values of national case fatality rates c in 29 countries.
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0.6

0.8

1

1.2

The cure rates of COVID-19: v

Figure 3. Values of cure rates v in 30 countries.

Figure 2 shows the national case fatality rates of these countries are mostly in the range of 0.001 to
0.002, so we calculate the mean value 0.0016 and choose it as the value of c. Cure rates v are almost at
the same level through the red dotted line in Figure 3, so we calculate the average rate for 30 countries
and set 0.861 as the value of v. To find the value of the natural mortality rate d, we select population
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data from the National Bureau of Statistics (http : //www.stats.gov.cn/enGliS H/) over the last 20
years and obtain a relatively stable natural mortality rate d = 0.00707.

Based on the above consideration and values, we take two groups of parameters as follows:
(1) B = 28, β = 0.00021, d = 0.00707, λ0 = 0.00073, µ = 100, µ0 = 0.25, v = 0.861, c =

0.0016, α = 0.000051;
(2) B = 28, β = 0.00816, d = 0.00707, λ0 = 0.00051, µ = 100, µ0 = 0.25, v = 0.861, c =

0.0016, α = 0.00011.

5.2. The numerical simulations

First, we show the simulation results under the first group of parameters (1):
B = 28, β = 0.00021, d = 0.00707, λ0 = 0.00073,
µ = 100, µ0 = 0.25, v = 0.861, c = 0.0016, α = 0.000051.

It is easy to find that the basic regeneration number of the system (2.2) R0 =
βB

d(ν+c+d) < 1, so there is

only one semitrivial equilibrium P1 =
(
S ∗1, A

∗
1, I
∗
1,M

∗
1

)
= (3960.39, 0, 0, 0) of system (2.2) according to

expression (3.1). The equilibrium P1 is locally asymptotically stable for any τ ≥ 0 by Theorem 3.1.
This means that P1 is a disease-free equilibrium.

For the initial values [4000,10,10,10], we choose τ = 0 and τ = 5 for the simulations. Clearly, the
equilibrium P1 is locally asymptotically stable, as shown in Figure 4.
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Figure 4. Equilibrium P1 of the system (2.2) is locally asymptotically stable, (a) the solution
for τ = 0, (b) the solution for τ = 5.

When τ = 0, the solution is shown in Figure 4(a). Although there are fluctuations in 0–500 days, it
tends to be stable after the 500th day. There will be no infected people, and the COVID-19 epidemic
will be eliminated completely. This means that in this case, people pay attention to media reports
regarding the epidemic and the epidemic will not develop, which verifies our theoretical analysis.

When τ = 5, people’s willingness to be vaccinated will change after 5 days of media coverage.
It represents the situation in which people are unable to pay timely attention to news reported by the
media and they do not want to get vaccinated immediately. As we can see in Figure 4(b), compared
with τ = 0, it takes a bit longer for equilibrium P1 to stabilize. However, eventually, there will be no
infected people, and the disease will still disappear in this case.

Remark 1: According to the numerical simulations of parameters (1), we find that for any τ ≥ 0,
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the equilibrium P1 of the system (2.2) is locally asymptotically stable, and the COVID-19 epidemic is
completely eliminated. The smaller τ is, the faster the equilibrium stabilizes. This suggests that the
influence of media on people’s willingness to vaccinate does not change the stability of the disease-
free equilibrium, and no matter how long it takes people to accept the idea of vaccination after viewing
media coverage, the disease will eventually disappear. However, the less time it takes for people to
change their vaccination intentions after viewing media coverage, the more it helps to contain the
epidemic. This corresponds to the actual situation.

For the group of parameters (2):
B = 28, β = 0.00861, d = 0.00707, λ0 = 0.00051,

µ = 100, µ0 = 0.25, v = 0.861, c = 0.0016, α = 0.00011,
we find that R0 > 1 and (H1) hold. Then, we calculate the equilibria
P1 =

(
S ∗1, A

∗
1, I
∗
1,M

∗
1

)
= (3960.39, 0, 0, 0) and P2 =

(
S ∗2, A

∗
2, I
∗
2,M

∗
2

)
= (53.96, 3903.48, 2.41, 965.06) by

expression (3.1). Due to Theorem 3.1, the equilibrium P1 is unstable for any τ ≥ 0, and P2 is locally
asymptotically stable when τ = 0. Substituting parameters (2) into Eq (3.6), we obtain
τ(0)

1 = 1.4448, sin (ω1τ) = 0.3680, cos (ω1τ) = 0.9298 by MATLAB. We know that P2 is locally
asymptotically stable for any 0 < τ < τ(0)

1 = 1.4448 and unstable for any τ > τ(0)
1 = 1.4448. Then, we

calculate the normal form of Hopf bifurcation and obtain Re (Nk) > 0,Re (MkNk) < 0 from Eq (4.15).
The periodic solution is stable when τε > 0 according to Theorem 4.1.

When τ = 0, it means that as soon as the media report the situation of the epidemic, it will receive
widespread attention from the public, and many people will change their willingness to vaccinate. We
choose the initial values [100,3000,10,1000], and the equilibrium is locally asymptotically stable, as
shown in Figure 5.
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Figure 5. When τ = 0, equilibrium P2 of the system (2.2) is locally asymptotically stable.

As seen in Figure 5, although there are fluctuations of S , I,M in 0–100 days, it tends to be stable
after the 100th day. In contrast, A tends to stabilize more slowly. This suggests that although the
epidemic has almost stabilized and the number of infected people has stopped rising, people still want
to protect themselves by getting vaccinated. Therefore, the number of people with antibodies continues
to rise until a long time after the epidemic has stabilized. The number of people with antibodies
is significantly greater than that of people who do not have antibodies, as shown in Figure 5. This
means that in this case, the efficiency with which people consistently monitor the epidemic situation is
meaningful, but this situation is under perfect conditions. Considering that it takes a certain amount of
time for people to pay attention to media coverage, this situation is basically impossible.
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When τ = 1 ∈
(
0, τ(0)

1

)
with τ(0)

1 = 1.4448, which means that people respond to media reports of
the epidemic one day later, we still choose the initial values [100,3000,10,1000], and the solution of
numerical simulations is shown in Figure 6.

Figure 6. When τ = 1, equilibrium P2 of the system (2.2) is locally asymptotically stable.

In Figure 6, we find that equilibrium P2 is also locally asymptotically stable. The fluctuation in the
first 400 days is obvious, but it gradually stabilizes after the 400th day, and the disease can also be
controlled. Although its regional stability speed is significantly less than when τ = 0, it will still reach
stability in a short time. That is, if people respond to the epidemic and become willing to vaccinate
within 1 day after receiving media reports, the rate of vaccination will increase to effectively control
the epidemic.

Through the analysis of Hopf bifurcation, we obtain that when τ > τ(0)
1 = 1.4448, which means

that people respond to media reports of the epidemic after τ days later, the equilibrium P2 is unstable.
Since Re (Nk) > 0,Re (MkNk) < 0, τε > 0, system (2.2) has a forward periodic solution, and the
bifurcating periodic solutions near τ(0)

1 are locally asymptotically stable. We still choose the initial
values [100,3000,10,1000], and the solution of the numerical simulations when τ = 2 is shown in
Figure 7.

Figure 7. When τ = 2, there exists a stable periodic solution near equilibrium P2 of the
system (2.2).
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In Figure 7, we find that the bifurcating periodic solution is stable, which verifies our theoretical
analysis. In fact, with the development of the epidemic, more people will be vaccinated, so the number
of A tends to increase. On the other hand, people without antibodies and infected people will be largely
affected whether the epidemic is severe or not, so periodic solutions of S and I fluctuate with the change
in epidemic.

To study the situation in which people do not pay attention to the media and change their willingness
to vaccinate in time, we carry out the numerical simulations when τ = 10 with the same initial values
[100,3000,10,1000] in Figure 8.

Figure 8. When τ = 10, there exists a stable periodic solution near equilibrium P2 of the
system (2.2).

Figure 8 shows that when τ = 10, the periodic solution of the system (2.2) is stable as well.
However, compared with the situation of τ = 2, the periodic solutions exhibite larger fluctuations and
longer periods. In fact, the longer it takes people to change their willingness after media reports, the
longer the epidemic is temporarily contained and the worse the situation is, which is consistent with
our simulation results.

Remark 2: According to the numerical simulations of parameters (2), we can obtain the following:
when 0 < τ < τ(0)

1 = 1.4448, the equilibrium P2 of the system (2.2) is locally asymptotically stable,
and the shorter the time that people spend changing their willingness, the better the epidemic can be
controlled. However, if τ > τ(0)

1 = 1.4448, the equilibrium P2 will be unstable. This means that under
this group of parameters, if people do not respond to the epidemic situation within 1.5 days after the
media report, the impact and timeliness of the media will be diminished. Therefore, the epidemic will
be difficult to control. However, for any τ in the small neighborhood of τ > τ(0)

1 = 1.4448, the system
(2.2) has a stable periodic solution, indicating that the timeliness and influence of media reports are not
the main factors for the development of the epidemic. Under the circumstance that the governments
of various countries take measures such as isolation treatment for the epidemic, there will not be a
large-scale outbreak. However, we still hope to avoid this situation to effectively control the epidemic
and prevent recurrence.

Then, we simulate the change in time that people required to respond to media under different
media influence intensities µ and attenuation rates of media µ0 (see Figure 9). The media’s influence
intensity µ here means that if the number of cases in a region exceeds a certain threshold, the media
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coverage may result in a larger number of susceptibles becoming conscious. We find that when
µ ∈ [40, 1000] , µ0 ∈ [0.065, 0.8] and other parameters remain unchanged, the stability of the Hopf
bifurcation is similar to the situation under the group of parameters (2). Moreover, we choose µ
changes within [40,600] and µ0 = 0.05, 0.15, 0.25, 0.35 specifically (see Figure 10).

Figure 9. Critical time delay τ(0)
1 with respect to media influence rate µ and attenuation rate µ0.
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Figure 10. Critical time delay τ(0)
1 with respect to media influence rate µ for different

attenuation rates µ0.

According to Figures 9 and 10, we can clearly see the following:
(1) τ(0)

1 decreases as µ increases when the other parameters are fixed. This is consistent with the
fact that when the media influence µ increases, it indicates that the epidemic is very serious, or the
government attaches importance to the epidemic, so the media propaganda is increased. This requires
people to respond to media coverage in a shorter time and develop a desire to be vaccinated to increase
vaccination rates and achieve herd immunity to control the spread of the disease.

(2) τ(0)
1 decreases when µ0 decreases from 0.35 to 0.05 and the other parameters are fixed. In fact,

people are most alert when they first receive media reports about the severity of the epidemic and think
it is necessary to be vaccinated. However, there is an attenuation rate of media µ0, and the attenuation
rate will be smaller if most people still believe that vaccination is needed to control the epidemic after
they have calmed down. This means that the epidemic is serious, so the time needed for people to
respond to the epidemic is shorter, which means that τ(0)

1 is smaller.
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5.3. Analysis of simulations

Based on the above numerical simulations, we draw the following conclusions.
(i) For the first group of parameters (1), we find that for any τ ≥ 0, the equilibrium P1 of the

system (2.2) is locally asymptotically stable, and the COVID-19 epidemic will be completely
eliminated. For the second group of parameters (2), the disease-free equilibrium P1 is unstable, and
although the epidemic may stabilize, it will not disappear. Therefore, we compare the two groups of
parameters and find that the first group had low rates of infection and a high rate of vaccination. This
suggests that if we can strengthen self-protection, such as wearing masks and other precautions to
reduce the risk of infection, develop our vaccine, make it effective enough, and vaccinate the majority
of people, then the COVID-19 epidemic will disappear completely. This corresponds to reality.

(ii) Through the simulations of parameters (2), we find that people’s willingness to vaccinate will
be improved and the epidemic will be effectively controlled if people respond to the epidemic situation
and change their vaccination willingness within τ(0)

1 days after the media reported. The shorter the time
that people spend changing their mind, the better the epidemic can be controlled. While the impact
and timeliness of the media is diminished, people’s willingness to be vaccinated will be even harder
to change, and the epidemic will be difficult to control if the time people respond to media reports is
larger than the critical time delay.

(iii) When the media influence intensity µ increases or the attenuation rate of media µ0 decreases,
this shows that the epidemic is very serious, and the government and the media attach great importance
to it. Therefore, people need to react to media coverage in a shorter time. Therefore, to keep the
epidemic under control, the media needs to step up their propaganda efforts according to the changes
in the epidemic and make sure that people can respond within τ(0)

1 .
(iv) Considering the limitations of the actual epidemic situation and the numerical simulations we

have performed, we can better apply the model to real life.
Case 1: Since the vaccine is so new, it is unknown whether it will cause side effects many years

later, so people may have doubts about the efficacy and safety of the COVID-19 vaccine. This means
that people may be hesitant to get vaccinated. In this case, people may be initially motivated to be
vaccinated by the media but become reluctant to be vaccinated after a while. This means that the
impact factor of vaccination rate λ0 decreases. According to the analysis of (i), when λ0 decreases, the
disease-free equilibrium will be unstable, and the epidemic will always exist, although it may become
stable. This shows that vaccine hesitancy can have a negative effect on controlling the epidemic.
Therefore, to effectively control the epidemic, people need to understand the COVID-19 vaccine. We
recommend that the government use the media to disseminate more reports on the protective effects
of vaccines and the importance of vaccination in the current situation and put forward policies that
benefit the vaccinated population to guide people to dispel their fears about vaccines and actively get
vaccinated against COVID-19.

Case 2: There is false information in media reports about the epidemic in this case. This causes
the media attenuation rate µ0 to increase. That’s because people are less willing to get vaccinated
when they learn the epidemic is not as serious as reported. Therefore, the time needed for people to
respond to the epidemic is longer, which is consistent with our analysis in (iii). However, we advise
the media to ensure the accuracy of information so that people have a more accurate understanding of
the epidemic situation, avoiding too little attention or too much attention, causing panic.

Case 3: The government can take preventive measures in a timely manner. For example, when an
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infected person is identified, he or she is isolated immediately, or the government requires people to
reduce social activities, wear masks when going out and other precautions. This means that in this
case, the infection rates α and β will decrease. Then, the disease-free equilibrium may be stable, which
means that these measures have a positive impact on epidemic control based on analysis (i). Thus, we
consider it necessary for the government to take timely measures and advise people to strictly abide by
relevant government measures and regulations.

6. Conclusions

In this paper, considering vaccination and the characteristics of the COVID-19 epidemic, we have
constructed a new S AIM model with a time delay for people to change their vaccination willingness,
which is influenced by news reported in the media. We have studied the stability of the equilibria and
the existence of Hopf bifurcation. Then, we have analyzed the stability and bifurcating direction of
the Hopf bifurcating periodic solution by calculating the normal form with the multiple time scales
method.

Based on the observed data, we have carried out numerical simulations. First, the change in the
epidemic situation has been simulated through two groups of parameters to verify the theoretical
analysis results. We have found that when media coverage is more effective and the vaccination rate
will increase as people respond to the epidemic within the critical time τ after the media report, the
epidemic will be effectively controlled. The shorter the time it takes for people to change their
vaccination willingness, the better the epidemic can be controlled. Next, we have simulated the
impact of media coverage and conclude that if media propaganda is increased and the attenuation rate
decreases, that is, the epidemic is serious, this requires people to respond to media coverage in a
shorter time and develop a desire to be vaccinated to increase vaccination rates and gain herd
immunity to control the spread of the disease. In our analysis, we consider the limitations of the
actual epidemic situation to better apply our model to the real-world conditions.

We also highlight the influence of the media based on our model; that is, to keep the epidemic under
control and prevent a sustained outbreak, the media needs to step up or down their propaganda efforts
according to the changes in the epidemic and ensure that people can respond within a critical time.
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