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Abstract: In real-life experiments, collecting complete data is time-, finance-, and resources- 

consuming as stated by statisticians and analysts. Their goal was to compromise between the total time 

of testing, the number of units under scrutiny, and the expenditures paid through a censoring scheme. 

Comparing failure-censored schemes (Type-II and Progressive Type-II) to Time-censored schemes 

(Type-I), it’s worth noting that the former is time-consuming and is no more suitable to be applied in 

real-life situations. This is the reason why the Type-I adaptive progressive hybrid censoring scheme 

has exceeded other failure-censored types; Time-censored types enable analysts to accomplish their 

trials and experiments in a shorter time and with higher efficiency. In this paper, the parameters of the 

inverse Weibull distribution are estimated under the Type-I adaptive progressive hybrid censoring 

scheme (Type -I APHCS) based on competing risks data. The model parameters are estimated using 

maximum likelihood estimation and Bayesian estimation methods. Further, we examine the asymptotic 

confidence intervals and bootstrap confidence intervals for the unknown model parameters. Monte 

Carlo simulations are carried out to compare the performance of the suggested estimation methods 

under Type-I APHCS. Moreover, Markov Chain Monte Carlo by applying Metropolis-Hasting 

algorithm under the square error of loss function is used to compute Bayes estimates and related to the 

highest posterior density. Finally, two data sets are studied to illustrate the introduced methods of 

inference. Based on our results, we can conclude that the Bayesian estimation outperforms the 

maximum likelihood estimation for estimating the inverse Weibull parameters under Type -I APHCS. 
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Abbreviations: BE(s): Bayes estimate(s)\estimator(s); ML: Maximum likelihood; MLE(s): Maximum 

likelihood estimate(s)\estimator(s); Type-I APHCS: Type-I adaptive progressive hybrid censoring 

scheme; Type -II APHCS: Type-II adaptive progressive hybrid censoring scheme; PCS: Progressive 

censoring scheme; HPD: Highest posterior density; MC: Monte Carlo; MCMC: Markov Chain Monte 

Carlo; MH: Metropolis-Hastings; IWD: Inverse Weibull distribution; pdf: Probability density function; 

cdf: Cumulative density function; hrf: Hazard rate function; sf: Survival function; i.i.d: Independent 

and identically distributed; IP(s): Informative prior(s); Non-IP: Non-informative prior; CI(s): 

Confidence interval(s); Asy-CI: Asymptotic confidence interval; St.E: Standard error; MSE: Mean 

squared-error; AILs: Average interval lengths; CPs: Coverage probabilities 

1. Introduction  

Statistical inference for the life products requires placing some units of the product under test to 

get more information about the life testing experiments to get the complete data, there are many 

situations where observed data are censored in nature. Different censoring schemes are widely used in 

practice to make a life testing experiment be more time and cost--effective. Type-I and Type-II 

censoring schemes are popular censoring schemes. The experimental duration is set in a Type-I 

censoring scheme, but the number of reported losses is a random variable. Conversely, in a Type-II 

censoring system, the duration of the trial is random while the number of reported losses is constant. 

However, none of these two censoring schemes any experimental unit can be withdrawn during the 

experiment. The PCS allows the withdrawal of some experimental units during the experiment. The 

combination of Type-I and Type-II censoring schemes is known as a hybrid censoring scheme. 

Different PCS have been suggested in the literature. The most popular one is the progressive Type-I. 

They are as follows: supposing 𝑛 identical units are tested; in the traditional Type-I censoring system, 

the experiment continues until a set time has passed 𝜏. In the traditional Type-II censoring technique, 

the experiment is ended after a predefined number of failures 𝑚 < 𝑛. Reference [1] created the Type-

I hybrid censoring system, which is a combination of Type-I and Type-II censoring systems and has 

been widely utilized in the literature. The life test experiment is ended at a random moment in a mixed 

censoring strategy. The life test experiment is stopped at a random time 𝜏∗ = 𝑚𝑖𝑛(𝑦𝑚:𝑚:𝑛, 𝜏) under 

the hybrid censoring system. Reference [2] suggested a novel hybrid censoring strategy to end the 

𝜏∗ = 𝑚𝑎𝑥(𝑦𝑚:𝑚:𝑛, 𝜏). Type-II hybrid censoring is the name of this hybrid censoring technique. One of 

the disadvantages of these approaches is that they prevent the units from being removed from the 

experiment at any time other than the end. To address this issue, a broader censoring system known as 

progressive Type-II censoring is employed. 

The next is a description of the progressive Type-II censoring scheme is: during a life-testing 

experiment, consider an experiment in which 𝑛 units are placed with 𝑚 units required to fail. Units 

𝑦1:𝑚:𝑛, 𝑅1 are randomly taken from the remaining 𝑛 − 1 surviving units when the first failure occurs. 

Similarly, when the second failure 𝑦2:𝑚:𝑛, 𝑅2  occurs, 𝑛 − 2 − 𝑅1  units are withdrawn at random 

from the surviving units, and so on. At the time of the 𝑚 − 𝑡ℎ failure 𝑦𝑚:𝑚:𝑛 all remaining 𝑛 −𝑚 −
𝑅1 − 𝑅2−. . . −𝑅𝑚−1 units are eliminated when the system fails. Prior the study, the progressively 

censoring technique 𝑅1, 𝑅2, . . . , 𝑅𝑚was fixed and set. A Type-I PHC system, which is a combination 
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of Type-II progressive and hybrid Type-I censoring systems, was investigated by references [3,4]. In 

this experiment,𝑛 identical units are tested using a predetermined progressive filtering technique 

𝑅1, 𝑅2, . . . , 𝑅𝑚, and the experiment is stopped at a random period 𝜏∗ = 𝑚𝑖𝑛(𝑦𝑚:𝑚:𝑛, 𝜏). If the 𝑚 − 𝑡ℎ 

failure occurs before the time point 𝜏, the experiment ends at that time point if the failure happens 

before the time point 𝑦𝑚:𝑚:𝑛. Alternatively, assume the 𝑚 − 𝑡ℎ failure does not happen before time 

point 𝜏 and only 𝐽 failures happen before the time point 𝜏, the experiment concludes at the time point 

𝜏 when all the remaining units are removed. Reference [5] showed a Type-II PHC method, in which 

the experiment ends at time 𝜏∗ = 𝑚𝑎𝑥(𝑦𝑚:𝑚:𝑛, 𝜏). Reference [6] suggested a Type-II APHC system, 

within which the number of failures m  and the related progressive method is provided, but the units 

are not deleted as the experiment advances time 𝜏. For an all-inclusive survey of the literature on 

hybrid censoring, see Reference [7]. Because of the short time, it takes to create a product, reliability 

testing has to be undertaken under stern time limitations, which makes failure censored systems out of 

date in many goods fields. Reference [8] presents Type-I APHCS that assurances the finish of the 

lifetime testing experiment at a predetermined time which outcomes in higher estimate competence. 

The following is a description of the Type-I APHCS (see Reference [8]): Assume 𝑛 similar units 

are tested using a progressive censoring scheme 𝑅1, 𝑅2, . . . , 𝑅𝑚, 1 ≤ 𝑚 ≤ 𝑛, and the test concludes at 

a certain point 𝜏 , where 𝜏 ∈ (0,∞)  and integers 𝑅𝑖 ’s are prefixed. At the time of the first failure 

𝑦1:𝑚:𝑛, 𝑅1 of the remaining units are randomly removed. Similarly, at the time of the second failure 

𝑦2:𝑚:𝑛, 𝑅2 of the remaining units are randomly removed and so on. Let 𝐽 denote the number of failures 

that happen before time 𝜏. If the 𝑚 − 𝑡ℎ failure 𝑦𝑚:𝑚:𝑛 happens before time 𝜏 (𝑖. 𝑒. , 𝑦𝑚:𝑚:𝑛 < 𝜏), 

the process will not stop, but continue on observing failures without any further withdrawals until 

reach time 𝜏 . Then, at time 𝜏  all remaining units 𝑅𝐽
∗ = 𝑛 − 𝐽 − ∑ 𝑅𝑖

𝐽
𝑖=1   are eliminated, and the 

project is halted. The PCS in this case will become 𝑅1, 𝑅2, . . . , 𝑅𝑚, 𝑅𝑚+1, . . . , 𝑅𝐽, where 𝑅𝑚 = 𝑅𝑚+1 =

. . . = 𝑅𝐽 = 0 . Otherwise, the process when 𝑦𝑚:𝑚:𝑛 > 𝜏  will have a PCS as 𝑅1, 𝑅2, . . . , 𝑅𝐽 . Type-I 

APHCS is useful when time is the primary consideration in the test and the test must be terminated at a set 

time irrespective of the amount of failures. Additionally, clarifications may be found in references [8–18]. 

 

Figure 1. Schematic representation of Type-I APHCS. 

In reliability analysis, an item's failure might be attributed to multiple causes at the same time. 

These “causes” are competing for control of the experimental unit’s failure. This issue is known to as 

competing risks model in the statistical literature. The data used in the study of competing risks consists 

of a failure time and the reason of failure. It's possible to presume that the causes of failure are either 

independent or dependent. For further information about this see [19–23]. 
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The primary goal of this research is to examine the competing risk model in the context of a 

Type-I APHCS. We’ll also suppose that the lifetimes of the competing hazards have independent 

IWD. We derive the MLEs, approximate CIs, and two distinct bootstrap CIs; additionally, we used 

MCMC approaches, to be able to derive BEs for squared error functions and credible intervals using 

gamma priors. 

The following is how the rest of the paper is structured: The IWD is introduced as a failure 

model in Section II. The ML inference of unknown parameters is discussed in Section III. Section 

IV includes two parametric bootstrap CIs and an approximation CI for unknown parameters. Section 

V investigates the Bayesian estimation approach using the MH algorithm and the gamma distribution 

as a prior distribution for the unknown parameters. In Section VI, the theoretical results are 

illustrated using a simulated study and real data. Finally, Section VII contains the conclusions. Tables 

can be found in the appendix. 

2. The IW distribution: as a failure time model Materials and methods 

Due to the Weibull distribution’s inability to match data with non-monotone and unimodal hazard 

rate functions, the IWD is a much more suitable model than the Weibull distribution. Depending on 

the shape parameter’s value, the IWD’s hrf can decrease or increase. The IWD’s pdf, cdf, sf and hrf 

for single variable 𝑦, are shown as follows, respectively    

𝑓(𝑦; 𝜂, 𝜑) = 𝜂𝜑𝑦−(𝜑+1) 𝑒𝑥𝑝(−𝜂𝑦−𝜑) ; 𝑦, 𝜂, 𝜑 > 0                 (1) 

            𝐹(𝑦; 𝜂, 𝜑) = 𝑒𝑥𝑝(−𝜂𝑦−𝜑) ; 𝑦, 𝜂, 𝜑 > 0                       (2) 

         𝐹̄(𝑦; 𝜂, 𝜑) = 1 − 𝑒𝑥𝑝(−𝜂𝑦−𝜑)                          (3) 

and 

         ℎ(𝑦; 𝜂, 𝜑) = 𝜂𝜑𝑦−(𝜑+1)(𝑒𝜂𝑦
−𝜑
− 1)

−1
                      (4)  

where 𝜂 and 𝜑 are the distribution's scale and shape parameters, respectively. 

 The IWD can be used to show a wide range of data, including the time it takes for an insulating 

fluid to break down under constant tension, as well as the degradation of mechanical parts like pistons 

and crankshafts in diesel engines. References [24–27] have all done extensive work on the IWD. For 

further information on the modifications of the IW distribution, read reference [28]. Moreover, other 

articles have looked at IWD under various censoring schemes see references [29–33]. 

3. ML estimation  

In reliability analysis, an item's failure might be attributed to multiple causes at the same time. To 

failure this experiment unit, these causes are competing for them. Given a lifetime experiment with 

𝑛 ∈ 𝑁 identical units, in which the lifetimes are described by i.i.d random variables 𝑌1, 𝑌2, . . . , 𝑌𝑛. Put 

the assumption that there are just two causes of failure without losing generality. We have 𝑌1 =

𝑚𝑖𝑛(𝑌1𝑖 , 𝑌2𝑖) for 𝑖 = 1,2, . . . , 𝑛, where 𝑌𝑘𝑖, 𝑘 = 1,2 denotes the 𝑖𝑡ℎ unit's latent failure time under 

the kth  cause of failure. The latent failure times are assumed to be 𝑌1𝑖  and 𝑌2𝑖 are independent, and 

the pairs (𝑌1𝑖 , 𝑌2𝑖) are i.i.d. Assume the failure times are distributed according to IWD with different 

scale and shape parameters (𝜂𝑘, 𝜑𝑘 , 𝑘 = 1,2), with the sf 𝐹̄𝑘 and hrf ℎ𝑘 already having form 
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𝐹̄𝑘 = [1 − 𝑒𝑥𝑝(−𝜂𝑘𝑦
−𝜑𝑘)], ℎ

𝑘
= 𝜂𝑘𝜑𝑘𝑦

−(𝜑𝑘+1)(𝑒𝜂𝑘𝑦
𝜑𝑘 − 1)

−1
; 𝑦, 𝜂𝑘 , 𝜑𝑘 > 0, 𝑘 = 1,2    (5) 

We have the following observation under Type-I APHCS under competing risks data: 

(𝑌1:𝑚:𝑛, 𝛿1, 𝑅1), . . . , (𝑌𝑚−1:𝑚:𝑛, 𝛿𝑚, 𝑅𝑚−1), (𝑌𝑚:𝑚:𝑛, 𝛿𝑚, 0), . . . , (𝑌𝐽:𝑚:𝑛, 𝛿𝐽, 0), (𝜏, 𝑅𝐽
∗) 

where, 𝛿𝑖 is the indicator indicating the reason for failure, 𝐽 is the number of failures prior to time 𝜏, 

and 𝑅𝐽
∗ is the number of units residual at the time point 𝜏 with 𝑅𝑚 = 𝑅𝑚+1, . . . , 𝑅𝐽 = 0. Let 𝛿𝑖 ∈ (1,2). 

Here, 𝛿𝑖 = 𝑘, 𝑘 = 1,2 means the unit 𝑖 has failed due to cause 𝑘. Further, we define 

𝐼1(𝛿𝑖 = 1) = {
1,    𝛿𝑖 = 1
0     𝑒𝑙𝑠𝑒

 and 𝐼2(𝛿𝑖 = 2) = {
1,    𝛿𝑖 = 2
0     𝑒𝑙𝑠𝑒

 

Thus, the random variables 𝐽1 = ∑ 𝐼1(𝛿𝑖 = 1)
𝐽
𝑖=1   and 𝐽2 = ∑ 𝐼2(𝛿𝑖 = 2)

𝐽
𝑖=1   show the number of 

failures due to the first and the second cause of failures, respectively. For a specific censoring scheme, 

𝑅1, 𝑅2, . . . , 𝑅𝑚−1, 0, . . . ,0, 𝑅𝐽
∗, the observed data's (𝑥1, 𝛿1), . . . , (𝜏, 𝑅𝐽

∗) then, the likelihood function is 

given by 

𝐿 = 𝐶𝐽∏{[𝑓1(𝑦𝑖)𝐹̄2(𝑦𝑖)]
𝐼(𝛿𝑖=1)[𝑓2(𝑦𝑖)𝐹̄1(𝑦𝑖)]

𝐼(𝛿𝑖=2)[𝐹̄1(𝑦𝑖)𝐹̄2(𝑦𝑖)]
𝑅𝑖}[𝐹̄1(𝜏)𝐹̄2(𝜏)]

𝑅𝐽
∗

𝐽

𝑖=1

 

where 𝑦𝑖 = 𝑦𝑖:𝑚:𝑛 to simplify the notation, 𝐶𝐽 = ∏ 𝛾𝑖
𝐽
𝑖=1  with 𝛾𝑖 = 𝑚 − 𝑖 + 1 − ∑ 𝑅𝑗

𝑚
𝑖=1 . Appling the 

identity𝑓𝑘 = ℎ𝑘𝐹̄𝑘, The likelihood function can also be written as 

   𝐿 = 𝐶𝐽∏ {[ℎ1(𝑦𝑖)]
𝐼(𝛿𝑖=1)[ℎ2(𝑦𝑖)]

𝐼(𝛿𝑖=2)[𝐹̄1(𝑦𝑖)𝐹̄2(𝑦𝑖)]
1+𝑅𝑖}[𝐹̄1(𝜏)𝐹̄2(𝜏)]

𝑅𝐽
∗𝐽

𝑖=1       (6) 

In the presence of Type-I APHC with competing risks data (6) and from the life time distribution (5), 

then, ignoring the constant, the likelihood function of the observed data can be written as: 

          𝐿(𝜙|𝑥̱) ∝ ∏ (𝜂𝑘𝜑𝑘)
𝐽𝑘2

𝑘=1 𝜓𝑘𝑖[∏ (𝑊1𝑖𝑊2𝑖)
(1+𝑅𝑖)𝐽

𝑖=1 ][𝑆1𝑆2]
𝑅𝐽
∗
              (7) 

where 𝑈𝑘𝑖 = (𝑒
𝜂𝑘𝑦𝑖

−𝜑𝑘
− 1) , 𝜓𝑘𝑖 = (∏ 𝑦𝑖

−(𝜑𝑘+1)𝐽𝑘
𝑖=1 ) [∏ 𝑈𝑘𝑖

−1𝐽𝑘
𝑖=1 ] , 𝑊𝑘𝑖 = [1 − 𝑒𝑥𝑝(−𝜂𝑘𝑦𝑖

−𝜑𝑘)] , 

𝑦𝑖 = 𝑦(𝑖) , 𝑘 = 1,2 , 𝑆𝑘 = [1 − 𝑒𝑥𝑝(−𝜂𝑘𝜏
−𝜑𝑘)]  and 𝐿(𝜙|𝑦̱) = 𝐿(𝜂1, 𝜂2, 𝜑1, 𝜑2|𝑦̱)  for simplicity of 

notation 𝐽1 = ∑ 𝐼(𝛿𝑖 = 1)
𝐽1
𝑖=1  and 𝐽2 = ∑ 𝐼(𝛿𝑖 = 2)

𝐽2
𝑖=1  describe the number of the failures due to the 

first and the second cause of the failures, respectively. Using the likelihood function of the natural 

logarithm 𝑙 = 𝑙𝑛 𝐿 (𝜙) in Eq (7), we obtain 

( ) ( )
1 1 2 2

1 1 1 1 1 1 2 2 2 2 2 2

1 1 1 1

ln ln 1 ln ln ln ln 1 ln ln
J J J J

i i i i

i i i i

l J J y U J J y U     
= = = =

 + − + − + + − + −     

         ( )( ) ( )*

1 2 1 2

1

1 ln ln ln ln
J

i i i J

i

R W W R S S
=

+ + + + +                   (8) 
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The first order derivatives of Eq (8) with respect to 𝜂𝑘, 𝜑𝑘, 𝑘 = 1,2 are given respectively by 

𝜕𝑙

𝜕𝜑𝑘
=

𝐽𝑘

𝜑𝑘
−∑ 𝑙𝑛 𝑦𝑖

𝐽𝑘
𝑖=1 + 𝜂𝑘 ∑ 𝑉𝑘𝑖 𝑙𝑛(𝑦𝑖)

𝐽𝑘
𝑖=1 − 𝜂𝑘 ∑ (1 + 𝑅𝑖)𝑄𝑘𝑖 𝑙𝑛(𝑦𝑖)

𝐽
𝑖=1 − 𝜂𝑘𝑅𝐽

∗𝐸𝑘 𝑙𝑛(𝜏)  (9) 

𝜕𝑙

𝜕𝜂𝑘
=

𝐽𝑘

𝜂𝑘
− ∑ 𝑉𝑘𝑖

𝐽𝑘
𝑖=1 + ∑ (1 + 𝑅𝑖)𝑄𝑘𝑖

𝐽
𝑖=1 + 𝑅𝐽

∗𝐸𝑘                 (10) 

where, ( ) 1expk k

ki i k i kiV y y U
 − − −= , ( ) 1expk k

ki i k i kiQ y y W
 − − −= − , ( ) 1expk k

ki k kE S
   − − −= −  and 1,2k = .  

The MLE of ,k k   and 1,2k =  can be obtained by equating the first derivatives in Eqs (9) and (10) 

to zero. As far as it seems, there is no closed form answer to the system of nonlinear Eqs (9) and (10) 

in ,k k   where 1,2k = . So, a numerical approach is wanted for competing the MLE of ,k k   where 

1,2k = .  

The asymptotic variance covariance matrix of the MLEs of ( ),k k  =  and 1,2k =  are given by 

the elements that are the negative expectation values of the second derivatives of logarithms of the 

likelihood functions. Cohen found that by substituting expected values with MLEs, the approximate 

variance covariance matrix could be calculated—see reference [34]. Now, the approximate sample 

information matrix should now be as follows 

                 𝐼(𝜙̂) = −

[
 
 
 
 
 
 
 

𝜕2𝑙

𝜕𝜂1
2 0

𝜕2𝑙

𝜕𝜂1𝜕𝜑1
0

0
𝜕2𝑙

𝜕𝜂2
2 0

𝜕2𝑙

𝜕𝜂2𝜕𝜑2

𝜕2𝑙

𝜕𝜑1𝜕𝜂1
0

𝜕2𝑙

𝜕𝜑1
2 0

0
𝜕2𝑙

𝜕𝜑2𝜕𝜂2
0

𝜕2𝑙

𝜕𝜑2
2 ]
 
 
 
 
 
 
 

(𝜂𝑘=𝜂̂𝑘,𝜑𝑘=𝜑̂𝑘)

     (11) 

where 1,2k =  and the elements of 4 × 4 matrix ( )I   can be obtained as follows:  

( ) ( )
2

2 2 * * 2

2 2
1 1 1 1

1 1
k k

k k k

J J J J
k

i ki ki i i ki i ki J k J k

i i i ik k

Jl
y V V R y Q R Q R E R E  

 

− − −

= = = =


= − − + − + − + − −


    , 

( ) ( ) ( ) ( ) ( )
2

2 2 2 22 2 2 2

2 2
1 1 1 1

ln ln ln 1 ln
k k k

k k

J J J J
k

k i ki i k ki i k ki i k i i ki i

i i i ik k

Jl
y V y V y V y R y Q y    

 

− −

= = = =


= − − − + − +


     

( ) ( ) ( ) ( ) ( )
2 2 22 2 2 *

1 1

1 ln 1 ln lnk

J J

k i ki i k i ki i k J k

i i

R Q y R Q y R E
    −

= =

+ + − + −   

( ) ( )
2 2* 2 * 2ln lnk J k k J kR E R E   + − , 

and 

( ) ( ) ( ) ( ) ( ) ( )
2

2 * 2

1 1 1 1

ln ln ln 1 ln ln
k k k

k k

J J J J

k i ki i ki i k ki i k i i ki i k J k

i i i ik k

l
x V y V y V y R y Q y R E     

 

− −

= = = =


= + − + + +

 
     

( ) ( ) ( ) ( ) ( ) ( )2 * *

1 1

1 ln 1 ln ln lnk

J J

i ki i k i ki i k J k J k

i i

R Q y R Q y R E R E
    −

= =

− + + + + −  . 
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Now, we calculate the relative risk rates, 𝜋1 and 𝜋2 due to case 1 and 2, respectively. The relative 

risk related to case 1 is calculated as follows: 

            ( ) ( ) ( )1 1 2 1 2
0

i ip Y Y f y F y dy


=  =   

                            ( ) ( ) ( )2

1 1 2
0 0

expf y dy f y y dy
 

−= − −   

therefore,   

            ( ) ( )1 1 2
1

1 1 1 1 2
0

1 expy y y dy
     

 − + − − = − − +
                    (12) 

Once 𝜋1 is computed, we determine 𝜋2 using the relation 𝜋2 = 1 − 𝜋1 

( ) ( )1 1 2
1

2 1 1 1 2
0

expy y y dy
     

 − + − − = − +
   

We must apply a numerical methodology to solve the integral on the right side of Eq (12) because it 

has no analytical solution. The MLE of the relative risk rates 𝜋1  and 𝜋2  can be calculated by 

substituting the MLE of 𝜂𝑘, 𝜑𝑘 and 𝑘 = 1,2 in according to the MLE's invariance property Eq (12). 

4. Confidence interval 

In this section, Different CIs are suggested. The asymptotic distribution of 𝜂𝑘, 𝜑𝑘, 𝑘 = 1,2 and 

two separate bootstrap CIs are used in one. 

4.1. Asy-CI 

The asymptotic distribution of the MLEs of the components of the vector of  𝜙 = (𝜂𝑘 , 𝜑𝑘) and 

𝑘 = 1,2  is being used to derive the approximate CIs for both the parameters. The asymptotic 

distribution of the MLEs of the parameters is known as 

(𝜙̂ − 𝜙) → 𝑁4 (0, 𝐼
−1(𝜙̂)) 

where 𝐼(𝜙) is a matrix of Fisher information. When certain regularity constraints are met, the two-

sided 100(1 − 𝛾)%, 0 < 𝛾 < 1, asymptotic CIs for the unknown parameters 𝜙 = (𝜂𝑘 , 𝜑𝑘) and 𝑘 = 1,2 

can be obtained as 

                           𝜙̂ ± 𝑍𝛾
2

√𝑉𝑎𝑟(𝜙̂) 

where 𝑉𝑎𝑟(𝜙̂) is the element of the main diagonal of 𝐼−1(𝜙̂) and 𝑍𝛾
2
 is the 100(1 − 𝛾)% standard 

normal percentile. 

4.2. Bootstrap CI  

Here, we construct two parametric bootstrap CIs for 𝜂𝑘, 𝜑𝑘, 𝑘 = 1,2 as  
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4.2.1. Percentile bootstrap (Boot-P) CI  

1) Calculate the MLE of 𝜙 = (𝜂𝑘, 𝜑𝑘) and 𝑘 = 1,2 under Type-I APHCS competing risks data. 

2) Generated a bootstrap sample using 𝜂𝑘, 𝜑𝑘, 𝑘 = 1,2 to obtain the bootstrap estimate of 𝜂𝑘 say  

   𝜂̂𝑘
𝑏 , 𝜑𝑘 say 𝜑̂𝑘

𝑏 and 𝑘 = 1,2 using the bootstrap sample. 

3) Step (2) is repeated B times to have (𝜂𝑘
𝑏(1)

, 𝜂𝑘
𝑏(2)

, . . . , 𝜂𝑘
𝑏(𝐵)

) and (𝜑𝑘
𝑏(1)

, 𝜑𝑘
𝑏(2)

, . . . , 𝜑𝑘
𝑏(𝐵)

).        

4) By arranging (𝜂𝑘
𝑏(1)

, 𝜂𝑘
𝑏(2)

, . . . , 𝜂𝑘
𝑏(𝐵)

), (𝜑𝑘
𝑏(1)

, 𝜑𝑘
𝑏(2)

, . . . , 𝜑𝑘
𝑏(𝐵)

) in ascending order as  

   (𝜂𝑘
𝑏[1]

, 𝜂𝑘
𝑏[2]

, . . . , 𝜂𝑘
𝑏[𝐵]

) and (𝜑𝑘
𝑏[1]

, 𝜑𝑘
𝑏[2]

, . . . , 𝜑𝑘
𝑏[𝐵]

).  

A two side 100(1 − 𝛾)%  percentile bootstrap CI for 𝜂𝑘, 𝜑𝑘  and 𝑘 = 1,2  is given by 

{𝜂̂
𝑘

𝑏[𝐵
𝛾

2
]
, 𝜂̂
𝑘

𝑏[𝐵(1−
𝛾

2
)]
} and (𝜑̂

𝑘

𝑏[𝐵
𝛾

2
]
, 𝜑̂

𝑘

𝑏[𝐵(1−
𝛾

2
)]
). 

4.2.2. Bootstrap-t CI  

1) The same as in Boot-p steps (1-2). 

2) Calculate the t-statistic of 𝜙 = (𝜂𝑘 , 𝜑𝑘)  and 𝑘 = 1,2  as 𝑇 =
(𝜙̂𝑘

𝑏−𝜙̂𝑘)

√𝑉𝑎𝑟(𝜙̂𝑘
𝑏)

  where ( )ˆb

kVar    is 

asymptotic variances of 𝜙̂𝑘
𝑏 and it can be obtained using the Fisher information matrix. 

3) Step 2–3 are repeated 𝐵 times and obtain 𝑇(1), 𝑇(2), . . . , 𝑇(𝐵). 

4) By arranging 𝑇(1), 𝑇(2), . . . , 𝑇(𝐵) in ascending order as 𝑇[1], 𝑇[2], . . . , 𝑇[𝐵]. 

5) A two side 100(1 − 𝛾)% percentile bootstrap-t CI for 𝜂𝑘, 𝜑𝑘 and 𝑘 = 1,2 is given by 

  {𝜂̂𝑘 + 𝑇𝑘
[𝐵
𝛾

2
]
√𝑉𝑎𝑟(𝜂̂𝑘), 𝜂̂𝑘 + 𝑇𝑘

[𝐵(1−
𝛾

2
)]
√𝑉𝑎𝑟(𝜂̂𝑘)}, and {𝜑̂𝑘 + 𝑇𝑘

[𝐵
𝛾

2
]
√𝑉𝑎𝑟(𝜑̂𝑘), 𝜑̂𝑘 + 𝑇𝑘

[𝐵(1−
𝛾

2
)]
√𝑉𝑎𝑟(𝜑̂𝑘)}. 

5. Bayesian estimation 

In this section,  based on competing risks data, the BE utilizing square error loss functions are 

obtain based on a Type-I APHCS under the assumption independently distributed with gamma prior 

distribution with known parameters 𝜂𝑘 , 𝜑𝑘 where 𝑘 = 1,2 of the IWD as  

𝜋𝑘(𝜂𝑘) ∝ 𝜂𝑘
𝑎𝑘−1 𝑒𝑥𝑝(−𝜂𝑘𝑏𝑘) , 𝜂𝑘, 𝑎𝑘 , 𝑏𝑘 > 0, 𝑘 = 1,2,  

and 

      𝜋𝑘(𝜑𝑘) ∝ 𝜑𝑘
𝑐𝑘−1 𝑒𝑥𝑝(−𝜑𝑘𝑑𝑘) , 𝜑𝑘 , 𝑐𝑘, 𝑑𝑘 > 0, 𝑘 = 1,2. 

where the hyper-parameters 𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘 , 𝑑𝑘  and 𝑘 = 1,2  are chosen based on prior knowledge of the 

unknown parameters. Then we can write the jointly prior densities of 𝜂𝑘 , 𝜑𝑘 and 𝑘 = 1,2 as  

  𝜋𝑘(𝜂𝑘, 𝜑𝑘) ∝ 𝜂𝑘
𝑎𝑘−1𝜑𝑘

𝑐𝑘−1 𝑒𝑥𝑝[−(𝜂𝑘𝑏𝑘 + 𝜑𝑘𝑑𝑘)] , 𝜂𝑘 , 𝜑𝑘 , 𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘 , 𝑑𝑘 > 0, 𝑘 = 1,2          (13) 

when the IPs are taken into account, the hyper-parameter elicitation will be chosen. The MLEs of 

𝜂𝑘, 𝜑𝑘 and 𝑘 = 1,2 will be used to generate these IPs. Equal the mean and variance of (𝜂̂𝑘
𝑞
, 𝜑̂𝑘

𝑞
) with 

the mean and variance of the priors under consideration (Gamma priors), where 𝑘 = 1,2  and 𝑞 =
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1,2, . . . , 𝑁, here 𝑁 is really the number of samples from the IWD that are available. Thus, when the 

mean and variance of 𝜂̂𝑘
𝑞
 and 𝜑̂𝑘

𝑞
 are equal to the mean and variance of gamma priors, one can obtain 

(see reference [35]) 

1

𝑁
∑ 𝜂̂𝑘

𝑞𝑁
𝑞=1 =

𝑎𝑘

𝑏𝑘
 & 

1

𝑁−1
∑ (𝜂̂𝑘

𝑞
−

1

𝑁
∑ 𝜂̂𝑘

𝑞𝑁
𝑞=1 )𝑁

𝑞=1

2
=

𝑎𝑘

𝑏𝑘
2 

1

𝑁
∑ 𝜑̂𝑘

𝑞
=

𝑐𝑘

𝑑𝑘

𝑁
𝑞=1  & 

1

𝑁−1
∑ (𝜑̂𝑘

𝑞
−

1

𝑁
∑ 𝜑̂𝑘

𝑞𝑁
𝑞=1 )𝑁

𝑞=1

2
=

𝑐𝑘

𝑑𝑘
2 

The estimated hyper-parameters now have the following forms after solving the about equations  

𝑎𝑘 =
(
1

𝑁
∑ 𝜂̂𝑘

𝑞𝑁
𝑞=1 )

2

1

𝑁−1
∑ (𝜂̂𝑘

𝑞
−
1

𝑁
∑ 𝜂̂𝑘

𝑞𝑁
𝑞=1 )𝑁

𝑞=1

2, 𝑏𝑘 =
(
1

𝑁
∑ 𝜂̂𝑘

𝑞𝑁
𝑞=1 )

2

1

𝑁−1
∑ (𝜂̂𝑘

𝑞
−
1

𝑁
∑ 𝜂̂𝑘

𝑞𝑁
𝑞=1 )𝑁

𝑞=1

2, 

𝑐𝑘 =
(
1

𝑁
∑ 𝜑̂𝑘

𝑞𝑁
𝑞=1 )

2

1

𝑁−1
∑ (𝜑̂𝑘

𝑞
−
1

𝑁
∑ 𝜑̂𝑘

𝑞𝑁
𝑞=1 )𝑁

𝑞=1

2  and 𝑑𝑘 =
(
1

𝑁
∑ 𝜑̂𝑘

𝑞𝑁
𝑞=1 )

2

1

𝑁−1
∑ (𝜑̂𝑘

𝑞
−
1

𝑁
∑ 𝜑̂𝑘

𝑞𝑁
𝑞=1 )𝑁

𝑞=1

2. 

For the observed data 𝒚 acquired from a life test experiment's Type-I APHCS with two independent IW 

(𝜂1, 𝜑1) and IW (𝜂2, 𝜑2) and given the likelihood function in Eq (7) and prior distribution in Eq (13). 

The corresponding posterior density of 𝜙 = (𝜂𝑘, 𝜑𝑘) and 𝑘 = 1,2 is given by 

𝜋(𝜙|𝑥̱) ∝ 𝐿(𝜙|𝑥̱). 𝑔(𝜂1, 𝜑2, 𝜂1, 𝜑2).  

The posterior density function is given by 

 𝜋(𝜙|𝑦̱) = ∏ 𝜂𝑘
𝐽𝑘+𝑎𝑘−1𝜑𝑘

𝐽𝑘+𝑐𝑘−12
𝑘=1 𝑒𝑥𝑝[−(𝜂𝑘𝑏𝑘 + 𝜑𝑘𝑑𝑘)]𝜔𝑘𝑖(𝜙); 𝑎𝑘, 𝑏𝑘, 𝑐𝑘 , 𝑑𝑘, 𝜂𝑘 , 𝜑𝑘, (14) 

where 𝜔𝑘𝑖(𝜙) = 𝜓𝑘𝑖[∏ (𝑊1𝑖𝑊2𝑖)
(1+𝑅𝑖)𝐽

𝑖=1 ][𝑆1𝑆2]
𝑅𝐽
∗
. 

The conditional posterior densities of 𝜙 = (𝜂𝑘 , 𝜑𝑘) and 𝑘 = 1,2 are as follows 

( ) ( ) ( ) ( )
( )

( )
*1

1 1 1
1 11 1 1

1 1
1

1 1 1 1 1

1 1

exp 1 1 1
i J

i i

J J R R
y yJ a

i i

y b e e e
        

− − −− +
−+ − −

= =

   
 − − − −   

  
  ,                  

𝜋2(𝜂2|𝑦̱) ∝ 𝜂2
𝐽2+𝑎2−1 𝑒𝑥𝑝(−𝜂2𝑏2) [∏ (𝑒𝜂2𝑦𝑖

−𝜑2
− 1)

−1
𝐽2
𝑖=1 ] [∏ (1 − 𝑒−𝜂2𝑦𝑖

−𝜑2
)
(1+𝑅𝑖)𝐽

𝑖=1 ] (1 − 𝑒−𝜂2𝜏
−𝜑2
)
𝑅𝐽
∗

,               

( ) ( ) ( ) ( ) ( )
( )

( )
*1 1

1 1 1
1 1 11 1 1

1 1
11

3 1 1 1 1

1 1 1

exp 1 1 1
i J

i i

J J J R R
y yJ c

i

i i i

y d y e e e
         

− − −− +
− + −+ − −

= = =

     
 − − − −    

    
   ,      

( ) ( ) ( ) ( ) ( )
( )

( )
*2 2

2 2 2
2 2 22 2 2

1 1
11

4 2 2 2 2

1 1 1

exp 1 1 1
i J

i i

J J J R R
y yJ c

i

i i i

y d y e e e
         

− − −− +
− + −+ − −

= = =

     
 − − − −    

    
    

As a result, we use the MH method to generate according to the above distribution see reference [36]. 

Readers can consult reference [37] for more information on how to implement the MH algorithm. We 

started also with MLEs to drive the Gibbs sampler algorithm. We then choose samples from different 

complete conditionals in the runs, using very latest readings of all other conditioning variables, unless 
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a consistent pattern of convergence was seen. While, the BEs of any function say 𝑔(𝜂1, 𝜑1, 𝜂2, 𝜑2) 

based on Type-I APHCS with competing risks under square error loss functions; denoted by 𝑔̃(𝜂𝑘, 𝜑𝑘) 

can be studied through the following equation as 

  𝑔̃(𝜂1, 𝜑1, 𝜂2, 𝜑2) = ∫ ∫ ∫ ∫ 𝑔(𝜂1, 𝜑1, 𝜂2, 𝜑2)𝜋(𝜙|𝑦̱)𝑑𝜂1𝑑𝜂2𝑑𝜑1𝑑𝜑2
∞

0

∞

0

∞

0

∞

0
       (15) 

Closed form of equations cannot be used for obtaining the ratio of the four integrals demonstrated 

in Eq (15). Therefore, we recommend the MCMC method to reach an approximated value of the BEs 

of 𝜂𝑘, 𝜑𝑘, 𝑘 = 1,2 . Using MH algorithm, this technique can generate a posterior sample. Several 

authors state that MCMC is a computer-based sampling technique that enables a user to indicate and 

define a distribution regardless of its mathematical characteristics obtained by random sampling 

values—see reference [38]. Working with posterior distributions, it is more profitable to use MCMC 

rather than using analytic examination which is very hard to work with. The MCMC makes it easy for 

the user to reach rough values of posterior distributions which is cannot be easily measured using a 

computer (like posteriors means and its random samples). Using the MCMC technique, samples are:  
1) Start with a wild preliminary guess: a single value that could be derived from the distribution.  

2) Using this preliminary assumption, generate a series of new samples. Two steps are created as 

a result of each new sample: 

• Proposal: the most recent sample is disturbed with a small random perturbation to 

provide a proposal for the new sample. 

• Acceptance: a novel suggestion will be either approved as a new sample or rejected (in 

which case the old sample is retained). There are several methods for introducing 

random noise into the system to generate ideas, as well as numerous methods for 

approving and refusing them, such as Gibbs sampling and the MH algorithm. 

5.1. MH algorithm 

A proposing distribution and also a preliminary value of 𝜙 = (𝜂𝑘 , 𝜑𝑘) and 𝑘 = 1,2 must always 

be defined in order to conduct the MH method for the IWD. A multivariate normal distribution can be 

used to represent the proposal distribution as 

𝑞({𝜂𝑘
′
𝑘
, 𝜑𝑘

′ }|{𝜂𝑘, 𝜑𝑘}) ≡ 𝑁4({𝜂𝑘 , 𝜑𝑘}|𝑆{𝜂𝑘,𝜑𝑘}) 

where 𝑆{𝜆𝑘,𝛽𝑘} represents the variance-covariance matrix, it is possible to acquire negative observations, 

which is undesirable. For starting values, the MLE may be used as 𝜙 = (𝜂𝑘, 𝜑𝑘) and 𝑘 = 1, 2, that is 

{𝜂𝑘
(0)
, 𝜑𝑘

(0)
} = {𝜂̂𝑘 , 𝜑̂𝑘}. The selection of  𝑆{𝜂𝑘,𝜑𝑘} is considered to be the asymptotic variance-covariance 

matrix 𝐼−1{𝜂̂𝑘 , 𝜑̂𝑘}, where 𝐼{. } is an abbreviation for Fisher information matrix. It is worth noting that 

the choice of 𝑆{𝜂𝑘,𝜑𝑘} is a critical issue in the MH algorithm, as the acceptance is dependent on it. The 

steps of the MH method for drawing a sample from the posterior density Eq (14) are as follows 

Step 1. Set initial value of 𝜙 as 𝜙(0) = {𝜂̂1, 𝜑̂1, 𝜂̂2, 𝜑̂2}. 

Step 2. For 𝑖 = 1,2, . . . , 𝑀 the following steps are repeating: 

a) Set 𝜙 = 𝜙(𝑖−1). 

b) Generate a new candidate parameter value 𝜍 from 𝑁4(𝑙𝑛 𝜙 , 𝑆𝜙). 
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c) Set 𝜙′ = 𝑒𝑥𝑝(𝜍). 

d) Calculate 𝜁 =
𝜋(𝜙′|𝑦)

𝜋(𝜙|𝑦)
, where 𝜋(. ) is the posterior density in Eq (14). 

e) Generate a sample 𝑢 from the uniform distribution 𝑈(0,1). 

f) Accept or reject the new candidate 𝜙′ 

{
𝐼𝑓  𝑢 ≤ 𝜁     𝑠𝑒𝑡  𝜙(𝑖) = 𝜙′

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  𝑠𝑒𝑡  𝜙(𝑖) = 𝜙′.
 

Finally, part of the initial samples taken from the posterior density's random samples of size 𝑀 can 

be discarded (burn-in), and the surviving samples may be utilized to compute BEs. More specifically, 

Eq (14) can be calculated as 

                 𝑔̃𝑀𝐻(𝜂𝑘 , 𝜑𝑘) =
1

𝑀−𝑙𝜁
∑ 𝑔(𝜂1𝑖 , 𝜑1𝑖 , 𝜂2𝑖 , 𝜑2𝑖)
𝑀
𝑖=𝑙𝜁

                  (16) 

where 𝑙𝜁 defines the number of burn-in samples. 

5.2. HPD 

In this subsection, for 𝑘 = 1,2, one can unutilized method of reference [39] to construct the HPD 

credible intervals for 𝜂𝑘 and 𝜑𝑘 of the IWD under Type-I APHCS with competing risks data using 

the samples drawn from suggested MH algorithm in the previous subsection. Let 𝜂𝑘
𝛾
 and 𝜑𝑘

𝛾
 be the 

𝛾𝑡ℎ quantile of 𝜂𝑘 and 𝜑𝑘, respectively, that is, 

{𝜂𝑘
𝛾
, 𝜑𝑘

𝛾
} = 𝑖𝑛𝑓[{𝜂𝑘 , 𝜑𝑘}: 𝛱({𝜂𝑘 , 𝜑𝑘}|𝑦) ≥ 𝛾], 

where 0 < 𝛾 < 1 and 𝛱(. ) is the posterior distribution function of the unknown parameters 𝜂𝑘 , 𝜑𝑘 

and 𝑘 = 1,2 . Notice that for a given 𝜂𝑘
∗ , 𝜑𝑘

∗   and 𝑘 = 1,2 , a simulation consistent estimator of 

𝜋(𝜂𝑘 , 𝜑𝑘|𝑦) can be evaluated as 

𝛱(𝜂𝑘
∗ , 𝜑𝑘

∗ |𝑦) =
1

𝑀−𝑙𝜁
∑ 𝐼{𝜂𝑘,𝜑𝑘}≤(𝜂𝑘

∗ ,𝜑𝑘
∗ )

𝑀
𝑖=𝑙𝜁

. 

Here 𝐼{𝜂𝑘,𝜑𝑘}≤(𝜂𝑘
∗ ,𝜑𝑘

∗ ) is the indicator function. Then the corresponding estimate is calculated as follows: 

𝛱̂(𝜂𝑘
∗ , 𝜑𝑘

∗ |𝑦) =

{
 
 

 
 0              𝑖𝑓   {𝜂𝑘

∗ , 𝜑𝑘
∗ } < {𝜂𝑘(𝑙𝜁), 𝜑𝑘(𝑙𝜁)}

∑ 𝑤𝑘

𝑖

𝑘=𝑙𝜁

  𝑖𝑓   {𝜂𝑘(𝑖), 𝜑𝑘(𝑖)} < {𝜂𝑘
∗ , 𝜑𝑘

∗ } < {𝜂𝑘(𝑖+1), 𝜑𝑘(𝑖+1)}

1             𝑖𝑓    {𝜂𝑘
∗ , 𝜑𝑘

∗ } < {𝜂𝑘(𝑀), 𝜑𝑘(𝑀)}

 

where 𝑤𝑠 =
1

𝑀−𝑙𝜁
  and {𝜂𝑘(𝑠), 𝜑𝑘(𝑠)}  are the ordered values of {𝜂𝑘𝑠, 𝜑𝑘𝑠} . Now, for 𝑖 =

𝑙𝜁 , . . . , 𝑀, {𝜂𝑘
(𝛾)
, 𝜑𝑘

(𝛾)
} can be convergent by 

{𝜂̃𝑘
(𝛾)
, 𝜑̃𝑘

(𝛾)
} =

{
 
 

 
 {𝜂𝑘(𝑙𝜁), 𝜑𝑘(𝑙−𝜁)}     𝑖𝑓   𝛾 = 0

{𝜂𝑘(𝑖), 𝜑𝑘(𝑖)}            𝑖𝑓    ∑ 𝑤𝑘 < 𝛾 <

𝑖−1

𝑘=𝑙𝜁

∑𝑤𝑘

𝑖

𝑘=𝑙𝜁

.
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Now to obtain a 100(1 − 𝛾)% HPD credible interval for 𝜂𝑘 , 𝜑𝑘 and 𝑘 = 1,2, let 

𝐻𝑃𝐷𝑘𝑠
𝜂
= {𝜂̃

𝑘

[
𝑠

𝑀
]
, 𝜂̃
𝑘

[
(𝑠+(1−𝛾)𝑀)

𝑀
]
} &  𝐻𝑃𝐷𝑘𝑠

𝜑
= {𝜑̃

𝑘

[
𝑠

𝑀
]
, 𝜑̃

𝑘

[
(𝑠+(1−𝛾)𝑀)

𝑀
]
}  

for 𝑠 = 𝑙𝜁 , . . . , [𝛾𝑀]. Then choose 𝐻𝑃𝐷𝑠∗ among all the 𝐻𝑃𝐷𝑠’s such that it has the smallest width. 

6. Simulation study and data analysis 

The purpose of this section is to compare the results of the various estimation methods presented 

in the previous parts. A MC analysis is used to evaluate the statistical behaviors of the estimators within 

Type-I APHCS under competing risks mode, as well as to check the behavior of the suggested 

approaches. A real data collection is also evaluated for demonstration. For calculations, the R statistical 

programming language will be utilized. In addition, the bbmle and HDInterval packages in R can be 

used to compute MLEs and HPD intervals. 

6.1. Simulation study 

To compare the performance of suggested MC estimation methods, a simulation study is used. 

The MC simulation is carried out utilizing two estimate methods: ML and Bayesian estimations. With 

the following assumptions, 1000 data sets of IWD competing risks model under Type-I PHCS are 

generated for MLEs. 

1) Assume the parameters of the IWD in the following options: (𝜂1, 𝜑1, 𝜂2, 𝜑2) = (0.5, 1.5, 0.75, 2). 

2) For each cause of failure, the sample sizes are 𝑛 = 50,100,200  and the number of failures 

observed 𝑚 = 20, 40, 60. 

3) Number of re-samplings for bootstrap CI is 1000. 

4) Censoring times for Type-I APHCS are assumed as: 𝜏 = 1, 1.5, 2. 

5) Removed items 𝑅𝑗 are assumed to as follows: 

Scheme I: 𝑅1 = 𝑛 −𝑚 and 𝑅2 =. . . = 𝑅𝑚 = 0. 

Scheme II: 𝑅1 =. . . = 𝑅𝑚
2
= 0, 𝑅

(
𝑚

2
+1)

= 𝑛 −𝑚 and 𝑅
(
𝑚

2
+2)

=. . . = 𝑅𝑚 = 0. 

Scheme III: 𝑅1 =. . . = 𝑅𝑚−1 = 0 and 𝑅𝑚 = 𝑛 −𝑚. 

MLEs and related to 95% asymptotic CI and two types of bootstrap CI are calculate based on the 

generated data. Note that the preliminary guess values are regarded as the same as the true parameter 

values whilst gaining MLEs. Also, we used the MH algorithm to computed BEs by the IP and Non-IP. 

Thus: 

• For IP, we assume that the hyper-parameter values as 𝑎1 = 𝑏1 = 0.5, 𝑐1 = 𝑑1 = 1.5, 𝑎2 = 𝑏2 =

0.75, 𝑐2 = 𝑑2 = 2. 

• For Non-IP, we assume that the hyper-parameter values are 𝑎1 = 𝑏1 = 𝑐1 = 𝑑1 = 𝑎2 = 𝑏2 = 𝑐2 =

𝑑2 = 0, hence the joint prior density is defined as 𝜋(𝜂1, 𝜑1, 𝜂2, 𝜑2) =
1

𝜂1×𝜑1×𝜂2×𝜑2
. 

These values, referred to as hyper-parameters, are then used to produce the desired estimations. 

When the MH method is used, the MLEs are used as preliminary guess estimates, together with the 

associated variance-covariance matrix 𝑆𝜙  of [𝑙𝑛(𝜂1) , 𝑙𝑛(𝜑1) , 𝑙𝑛(𝜂2) , 𝑙𝑛(𝜑2)]  which can be obtained 

using delta method (see reference [40]). Lastly, 1200 burn-in samples are removed from the total 6000 

samples obtained from the posterior density and subsequent BE and HPD interval estimations. 

Tables 1–3 are showing all of the average bias estimates and related MSEs for both methods. 
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Furthermore, the corresponding AILs and CPs are presented in Tables 4–6 for all of the suggested CIs, 

namely; Asy-CI, bootstrap (Boot-P and Boot-T) CI, and HPD interval. 

Table 1. Bias and MSEs of the MLE and BEs based on the Type-I APHCS under various 

censoring schemes at (𝜂1 = 0.5, 𝜑1 = 1.5, 𝜂2 = 0.75, 𝜑2 = 2), and (𝑛,𝑚) = (50,20). 

𝜏 Scheme Parm. 
MLE MCMC: IP MCMC: Non-IP 

Bias MSE Bias MSE Bias MSE 

1.00 

I 

1  0.1782 0.1371 0.1984 0.1928 0.2065 0.2176 

1  0.1929 0.6695 0.1688 0.7014 0.2169 0.9156 

2  0.0721 0.1111 0.0849 0.1342 0.0455 0.1789 

2  0.2947 0.8145 0.2885 0.7188 0.2632 1.2457 

II 

1  0.1819 0.1567 0.2114 0.2304 0.2893 0.2364 

1  0.1243 0.7738 0.0908 0.7439 0.1823 1.0724 

2  0.0669 0.1266 0.0823 0.2231 0.0617 0.1849 

2  0.3809 0.8589 0.3637 0.7335 0.3920 1.0488 

III 

1  0.1307 0.1450 0.1592 0.2068 0.1694 0.2528 

1  0.3045 1.2015 0.2736 1.1935 0.3168 1.3615 

2  0.1189 0.1420 0.1359 0.1635 0.1856 0.2324 

2  0.1981 1.1229 0.1946 0.9810 0.2600 1.4263 

1.50 

I 

1  0.1834 0.1426 0.1874 0.1720 0.2073 0.2204 

1  0.2053 0.7629 0.17924 0.7072 0.2206 0.9859 

2  0.0661 0.1129 0.0739 0.1395 0.0361 0.1790 

2  0.3076 0.7076 0.3059 0.6262 0.3153 0.8918 

II 

1  0.1751 0.1517 0.1918 0.1975 0.2279 0.2595 

1  0.1331 0.8100 0.0972 0.7113 0.1145 1.0073 

2  0.0752 0.1272 0.0952 0.1609 0.0277 0.2079 

2  0.3648 0.9613 0.3535 0.7886 0.3761 1.2223 

III 

1  0.1243 0.1482 0.1350 0.1950 0.1827 0.2659 

1  0.3354 1.2688 0.3039 1.1397 0.3127 1.4749 

2  0.1260 0.1489 0.1279 0.1750 0.0658 0.2373 

2  0.1722 1.1369 0.1921 1.0350 0.1920 1.4392 

2.00 

I 

1  0.1817 0.1421 0.1837 0.1771 0.2181 0.2304 

1  0.1879 0.7337 0.1821 0.7224 0.1812 0.8879 

2  0.0683 0.1138 0.0790 0.1446 0.0458 0.1682 

2  0.3128 0.7984 0.2991 0.7114 0.3055 0.9193 

II 

1  0.1735 0.1577 0.1920 0.2145 0.2258 0.2681 

1  0.1258 0.7363 0.1058 0.7574 0.1285 1.6146 

2  0.0751 0.1321 0.0924 0.1597 0.0441 0.2021 

2  0.3609 1.0153 0.3554 0.8740 0.3673 1.1849 

III 

1  0.1368 0.1555 0.1370 0.1967 0.2048 0.3047 

1  0.3212 1.2075 0.3184 1.2011 0.3116 1.4986 

2  0.1133 0.1495 0.1166 0.1841 0.0553 0.2498 

2  0.1627 1.2822 0.1673 1.1622 0.1840 1.4961 
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Table 2. Bias and MSEs of the MLE and BEs based on the Type-I APHCS under various censoring 

schemes at (𝜂1 = 0.5, 𝜑1 = 1.5, 𝜂2 = 0.75, 𝜑2 = 2), and (𝑛,𝑚) = (100,40). 

𝜏 Scheme Parm. 
MLE MCMC: IP MCMC: Non-IP 

Bias MSE Bias MSE Bias MSE 

1.00 

I 

1  0.2675 0.1232 0.2606 0.1417 0.2803 0.1632 

1  0.0843 0.1328 0.0674 0.1704 0.0868 0.1965 

2  0.0175 0.0519 0.0001 0.0744 0.0377 0.0845 

2  0.5848 0.4645 0.5492 0.4590 0.5980 0.5336 

II 

1  0.2561 0.1257 0.2604 0.1582 0.2830 0.1752 

1  0.1594 0.1386 0.1518 0.1874 0.1766 0.2000 

2  0.0061 0.0602 0.0067 0.0870 0.0059 0.0924 

2  0.6593 0.5480 0.6257 0.5465 0.6451 0.5961 

III 

1  0.2236 0.1198 0.2480 0.1696 0.2647 0.1980 

1  0.0329 0.2480 0.0449 0.2884 0.0503 0.3526 

2  0.0261 0.0701 0.0302 0.1008 0.0018 0.1143 

2  0.5385 0.5061 0.5170 0.5106 0.5493 0.5954 

1.50 

I 

1  0.2580 0.1199 0.2578 0.1430 0.2732 0.1616 

1  0.0711 0.1236 0.0604 0.1663 0.0694 0.1805 

2  0.0080 0.0533 0.0012 0.0764 0.0199 0.0842 

2  0.5710 0.4447 0.5470 0.4555 0.5700 0.5019 

II 

1  0.2514 0.1225 0.2530 0.1527 0.2767 0.1755 

1  0.1465 0.1485 0.1376 0.1977 0.1598 0.2230 

2  0.0013 0.0593 0.0171 0.0827 0.0210 0.0980 

2  0.6465 0.5450 0.6085 0.5448 0.6488 0.6185 

III 

1  0.2185 0.1199 0.2332 0.1622 0.2479 0.1794 

1  0.0179 0.3234 0.0207 0.3629 0.0336 0.4038 

2  0.0315 0.0732 0.0382 0.1024 0.0063 0.1211 

2  0.5276 0.5196 0.5010 0.5322 0.5309 0.6038 

2.00 

I 

1  0.2620 0.1253 0.2602 0.1506 0.2774 0.1684 

1  0.0720 0.1506 0.0615 0.2008 0.0736 0.2165 

2  0.0119 0.0570 0.0008 0.0763 0.0390 0.0906 

2  0.5698 0.4803 0.5478 0.4901 0.5939 0.5707 

II 

1  0.2735 0.1358 0.2735 0.1668 0.2930 0.1819 

1  0.1708 0.1743 0.1537 0.2036 0.1779 0.2462 

2  0.0235 0.0614 0.0129 0.0890 0.0408 0.1014 

2  0.6734 0.5829 0.6444 0.5758 0.6751 0.6512 

III 

1  0.2227 0.1215 0.2336 0.1646 0.2576 0.1835 

1  0.0352 0.2079 0.0337 0.2488 0.0569 0.2701 

2  0.0273 0.0726 0.0348 0.0980 0.0033 0.1233 

2  0.5369 0.4842 0.5119 0.4901 0.5485 0.5827 
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Table 3. Bias and MSEs of the MLE and BEs based on the Type-I APHCS under various 

censoring schemes at (𝜂1 = 0.5, 𝜑1 = 1.5, 𝜂2 = 0.75, 𝜑2 = 2), and (𝑛,𝑚) = (200,60). 

𝜏 Scheme Parm. 
MLE MCMC: IP MCMC: Non-IP 

Bias MSE Bias MSE Bias MSE 

1.00 

I 

1  0.2557 0.1053 0.2721 0.1344 0.2706 0.1373 

1  0.1107 0.0818 0.1171 0.1154 0.1154 0.1224 

2  0.0057 0.0381 0.0028 0.0592 0.0282 0.0653 

2  0.6104 0.4432 0.5813 04436 0.6218 0.4972 

II 

1  0.2727 0.1172 0.2728 0.1426 0.2826 0.1534 

1  0.1977 0.1207 0.1855 0.1529 0.1901 0.1603 

2  0.0227 0.0433 0.0122 0.0668 0.0456 0.0869 

2  0.6972 0.5697 0.6648 0.5632 0.7001 0.6257 

III 

1  0.2226 0.1061 0.2317 0.1427 0.2458 0.1608 

1  0.0844 0.1182 0.0769 0.1580 0.0859 0.1773 

2  0.0275 0.0575 0.0388 0.0848 0.0098 0.1007 

2  0.5833 0.4540 0.5528 0.4513 0.6008 0.5215 

1.50 

I 

1  0.2485 0.0971 0.2545 0.1236 0.2685 0.1348 

1  0.1031 0.0789 0.0946 0.1130 0.1073 0.1214 

2  0.0014 0.0353 0.0018 0.0545 0.0077 0.0663 

2  0.6032 0.4321 0.5904 0.4496 0.5979 0.4713 

II 

1  0.2648 0.1154 0.2752 0.1507 0.2790 0.1585 

1  0.1913 0.1174 0.1866 0.1515 0.1876 0.1577 

2  0.0148 0.0454 0.0031 0.0730 0.0229 0.0796 

2  0.6912 0.5587 0.6561 0.5530 0.6834 0.5919 

III 

1  0.2172 0.1039 0.2257 0.1385 0.2461 0.1638 

1  0.0803 0.1127 0.0747 0.1486 0.0896 0.1684 

2  0.0328 0.0579 0.0398 0.0853 0.0026 0.1039 

2  0.5795 0.4440 0.5493 0.4493 0.5883 0.5117 

2.00 

I 

1  0.2461 0.0972 0.2483 0.1236 0.4366 0.1318 

1  0.0969 0.0783 0.0851 0.1150 0.0995 0.1173 

2  0.0037 0.0366 0.0022 0.0585 0.0058 0.0614 

2  0.5969 0.4253 0.5787 0.4366 0.5941 0.4617 

II 

1  0.2682 0.1154 0.2755 0.1443 0.2857 0.1577 

1  0.1988 0.1131 0.1954 0.1437 0.1962 0.1573 

2  0.0182 0.0438 0.0075 0.0658 0.0349 0.0807 

2  0.6986 0.5621 0.6758 0.5648 0.6965 0.6070 

III 

1  0.2009 0.0983 0.2174 0.1388 0.2338 0.1585 

1  0.0542 0.1184 0.0546 0.1608 0.0622 0.1899 

2  0.0491 0.0605 0.0474 0.0919 0.0238 0.1026 

2  0.5522 0.4288 0.5333 0.4424 0.5599 0.4943 
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Table 4. The length of the difference intervals and CPs for the Type-I APHCS under various 

censoring schemes at (𝜂1 = 0.5, 𝜑1 = 1.5, 𝜂2 = 0.75, 𝜑2 = 2), and (𝑛,𝑚) = (50,20). 

𝜏 Scheme Parm. 
MLE HPD- MCMC 

Asy-CI Boot-P Boot-T IP Non-IP 

1.00 

I 

1  1.2733 (98.10) 1.2169 (95.50) 1.2079 (96.00) 1.4039 (95.20) 1.4173 (95.10) 

1  3.1185 (96.30) 2.8667 (92.10) 1.8982 (88.40) 2.5273 (96.00) 2.8493 (95.40) 

2  1.2762 (98.10) 1.2143 (96.00) 1.2078 (96.00) 1.3059 (95.90) 1.4638 (95.10) 

2  3.3453 (96.70) 2.8659 (93.60) 1.9095 (89.20) 2.3650 (96.30) 2.8020 (95.30) 

II 

1  1.3715 (98.10) 1.2804 (96.30) 1.1476 (93.30) 1.5152 (95.10) 1.4841 (95.10) 

1  3.3320 (95.70) 3.2564 (93.90) 2.9073 (92.50) 2.7897 (95.70) 3.2580 (95.90) 

2  1.3684 (98.10) 1.2888 (96.50) 1.1481 (93.30) 1.3593 (95.20) 1.4324 (95.10) 

2  3.2757 (95.40) 3.4700 (94.10) 2.8743 (92.00) 2.5880 (95.40) 3.0359 (95.30) 

III 

1  1.3321 (97.90) 1.2814 (96.50) 1.3062 (97.70) 1.4150 (95.10) 1.5595 (95.10) 

1  3.8695 (95.70) 4.1000 (95.00) 2.4081 (90.70) 3.2295 (95.20) 3.6285 (95.40) 

2  1.3323 (97.90) 1.2743 (97.50) 1.2984 (97.60) 1.2993 (95.10) 1.5309 (95.10) 

2  3.8432 (95.70) 3.6813 (93.80) 2.2241 (89.20) 3.0101 (95.40) 3.7577 (95.30) 

1.50 

I 

1  1.2945 (98.40) 1.1344 (97.50) 1.2950 (99.00) 1.3263 (95.40) 1.4661 (95.10) 

1  3.3295 (96.00) 2.3355 (91.20) 1.2450 (85.00) 2.6097 (95.80) 2.8005 (95.50) 

2  1.2922 (98.40) 1.1374 (97.00) 1.2974 (99.00) 1.3173 (95.40) 1.4779 (95.10) 

2  3.0707 (95.10) 2.3868 (92.00) 1.2514 (85.00) 2.5960 (96.00) 2.7928 (95.70) 

II 

1  1.3575 (97.80) 1.2518 (93.10) 1.0686 (89.00) 1.3557 (95.10) 1.4899 (95.10) 

1  3.3786 (95.90) 2.7974 (96.00) 3.2368 (95.00) 2.6530 (95.70) 3.0505 (95.40) 

2  1.3586 (97.80) 1.2550 (90.00) 1.0655 (89.00) 1.3698 (95.10) 1.5571 (95.10) 

2  3.4198 (96.00) 2.7809 (97.30) 3.3072 (95.50) 2.5752 (95.90) 2.9714 (95.10) 

III 

1  1.3389 (97.70) 1.2271 (97.70) 1.2703 (96.50) 1.4095 (95.10) 1.5538 (95.10) 

1  3.9441 (95.60) 2.7714 (91.00) 2.0155 (86.50) 3.1312 (95.30) 3.7848 (95.20) 

2  1.3392 (97.70) 1.2649 (97.80) 1.2704 (96.50) 1.3402 (95.10) 1.5876 (95.10) 

2  3.8912 (96.10) 2.8981 (94.10) 2.3108 (93.50) 2.8637 (95.20) 3.5192 (95.40) 

2.00 

I 

1  1.2955 (97.80) 1.2091 (94.00) 1.0787 (88.50) 1.3513 (95.20) 1.4914 (95.10) 

1  3.2776 (96.00) 2.6724 (90.30) 1.6138 (81.50) 2.4501 (95.20) 2.8315 (95.50) 

2  1.2959 (97.80) 1.2158 (95.00) 1.0785 (89.00) 1.3112 (95.10) 1.3761 (95.10) 

2  3.2826 (95.80) 3.2747 (89.10) 1.6409 (82.00) 2.5791 (95.70) 2.6419 (95.20) 

II 

1  1.3741 (98.10) 1.2635 (97.50) 1.2312 (95.00) 1.5040 (95.10) 1.5575 (95.10) 

1  3.2902 (95.60) 2.8177 (95.50) 2.3093 (91.00) 2.7558 (95.60) 2.9165 (95.70) 

2  1.3721 (98.10) 1.2163 (96.90) 1.2317 (95.00) 1.3358 (95.10) 1.5075 (95.10) 

2  3.4839 (96.80) 1.9829 (94.10) 2.3256 (90.00) 2.4873 (95.50) 2.8610 (95.50) 

III 

1  1.3621 (98.80) 1.1872 (97.80) 1.3311 (98.50) 1.4292 (95.10) 1.6857 (95.10) 

1  3.8819 (95.40) 2.7582 (90.50) 1.6880 (83.00) 3.4134 (95.50) 3.8733 (95.40) 

2  1.3616 (98.70) 1.1894 (96.50) 1.3312 (98.50) 1.3625 (95.10) 1.6064 (95.10) 

2  4.0346 (95.60) 2.7577 (89.60) 1.6376 (82.50) 3.1719 (95.20) 3.8778 (95.90) 
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Table 5. The length of the difference intervals and CPs for the Type-I APHCS under various 

censoring schemes at (𝜂1 = 0.5, 𝜑1 = 1.5, 𝜂2 = 0.75, 𝜑2 = 2), and (𝑛,𝑚) = (100,40). 

𝜏 Scheme Parm. 
MLE HPD- MCMC 

Asy-CI Boot-P Boot-T IP Non-IP 

1.00 

I 

1  0.8914 (97.80) 0.9132 (97.00) 1.2320 (98.20) 1.0263 (96.60) 1.0697 (96.80) 

1  1.3903 (96.30) 1.3041 (92.10) 1.3350 (93.90) 1.5186 (96.80) 1.5668 (96.70) 

2  0.8912 (97.80) 0.9139 (95.60) 1.2319 (98.20) 1.0189 (97.00) 1.0852 (95.90) 

2  1.3724 (96.30) 1.3033 (94.30) 1.3337 (93.90) 1.4665 (95.40) 1.4522 (95.60) 

II 

1  0.9619 (98.20) 0.9214 (96.40) 1.1690 (96.40) 1.1027 (96.10) 1.1051 (96.30) 

1  1.3194 (95.10) 1.3052 (93.20) 0.9789 (89.90) 1.5071 (96.10) 1.5133 (95.80) 

2  0.9620 (98.20) 0.9210 (94.00) 1.1687 (96.40) 1.1087 (96.00) 1.1103 (95.70) 

2  1.3200 (95.10) 1.3051 (92.00) 0.9792 (89.90) 1.4549 (96.50) 1.5883 (96.80) 

III 

1  1.0363 (98.70) 1.0598 (96.00) 1.2307 (97.40) 1.2591 (96.80) 1.3123 (96.70) 

1  1.9488 (96.50) 1.6959 (93.80) 1.0974 (87.60) 1.7495 (96.40) 1.8589 (95.60) 

2  1.0335 (98.70) 1.0616 (96.10) 1.2306 (97.40) 1.1915 (98.10) 1.2894 (96.20) 

2  1.8231 (96.00) 1.7024 (92.00) 1.0938 (87.50) 1.6761 (96.10) 1.8282 (96.40) 

1.50 

I 

1  0.9056 (98.00) 0.9883 (97.80) 1.2091 (97.30) 1.0291 (96.50) 1.0867 (96.50) 

1  1.3506 (95.90) 1.5287 (95.50) 1.1267 (90.70) 1.4908 (96.80) 1.5148 (96.80) 

2  0.9057 (98.00) 0.9783 (96.20) 1.2091 (97.30) 1.0449 (96.90) 1.0783 (96.90) 

2  1.3511 (95.90) 1.5229 (97.30) 1.1244 (90.60) 1.4869 (96.40) 1.5558 (96.50) 

II 

1  0.9554 (97.90) 0.9531 (96.60) 1.1800 (97.20) 1.1396 (96.50) 1.1784 (96.40) 

1  1.3980 (96.10) 1.3992 (95.20) 1.5537 (94.90) 1.4871 (96.40) 1.6021 (96.60) 

2  0.9553 (97.90) 0.9531 (96.50) 1.1798 (97.20) 1.0866 (98.20) 1.1655 (96.50) 

2  1.3974 (96.10) 1.3998 (95.00) 1.5541 (94.90) 1.4839 (96.50) 1.4778 (96.00) 

III 

1  1.0534 (98.90) 1.0151 (95.90) 1.1238 (94.30) 1.2290 (96.60) 1.2668 (97.60) 

1  2.2295 (97.30) 1.5193 (94.80) 1.3973 (92.00) 1.8172 (95.30) 1.8137 (95.70) 

2  1.0535 (98.90) 1.0144 (96.00) 1.1244 (94.30) 1.1805 (97.00) 1.2669 (97.10) 

2  1.9264 (95.90) 1.5228 (92.10) 1.3896 (91.80) 1.7449 (96.10) 1.8340 (95.90) 

2.00 

I 

1  0.9340 (98.50) 0.8923 (94.30) 1.1622 (97.20) 1.1159 (96.40) 1.1727 (96.80) 

1  1.4956 (96.00) 1.3205 (93.10) 0.9641 (86.70) 1.5382 (95.60) 1.6283 (95.60) 

2  0.9354 (98.50) 0.8925 (96.20) 1.1623 (97.20) 1.0734 (95.90) 1.1433 (96.30) 

2  1.5470 (96.00) 1.3208 (92.50) 0.9664 (86.70) 1.5729 (96.10) 1.6037 (95.40) 

II 

1  0.9685 (97.90) 1.0300 (95.70) 1.0994 (93.60) 1.1367 (96.30) 1.1805 (96.90) 

1  1.4941 (96.90) 1.6622 (93.80) 1.4330 (93.80) 1.5063 (96.00) 1.5126 (96.20) 

2  0.9677 (97.90) 1.0310 (96.10) 1.0993 (93.60) 1.1407 (96.80) 1.2110 (96.30) 

2  1.4106 (96.20) 1.6638 (97.00) 1.4312 (93.80) 1.4570 (95.30) 1.5855 (97.10) 

III 

1  1.0517 (98.70) 1.0346 (97.00) 1.2541 (98.70) 1.2426 (97.90) 1.2616 (95.60) 

1  1.7832 (95.60) 1.7497 (92.60) 1.0493 (89.00) 1.7403 (95.40) 1.7656 (96.30) 

2  1.0519 (98.70) 1.0308 (96.00) 1.2544 (98.70) 1.1528 (97.40) 1.3294 (97.00) 

2  1.7359 (95.40) 1.7527 (96.10) 1.0591 (89.10) 1.6374 (95.90) 1.8718 (95.90) 
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Table 6. The length of the difference intervals and CPs for the Type-I APHCS under various 

censoring schemes at (𝜂1 = 0.5, 𝜑1 = 1.5, 𝜂2 = 0.75, 𝜑2 = 2), and (𝑛,𝑚) = (200,60). 

𝜏 Scheme Parm. 
MLE HPD- MCMC 

Asy-CI Boot-P Boot-T IP Non-IP 

1.00 

I 

1  0.7658 (97.90) 0.8187 (95.00) 1.0470 (97.40) 0.9474 (96.20) 0.9559 (96.60) 

1  1.0346 (95.30) 1.0814 (96.10) 1.0539 (92.90) 1.1977 (96.50) 1.2560 (97.50) 

2  0.7659 (97.90) 0.8188 (94.50) 1.0493 (97.40) 0.9166 (96.40) 0.9751 (96.40) 

2  1.0419 (95.40) 1.0809 (91.30) 1.0555 (92.90) 1.2261 (96.40) 1.2357 (96.70) 

II 

1  0.8115 (98.40) 0.8265 (96.10) 1.0135 (95.70) 0.9517 (96.10) 1.0283 (97.40) 

1  1.1207 (97.00) 1.0671 (93.90) 1.0063 (93.20) 1.2138 (97.10) 1.2599 (96.50) 

2  0.8120 (98.40) 0.8262 (95.80) 1.0131 (95.70) 1.0011 (97.10) 1.0698 (97.00) 

2  1.1338 (97.10) 1.0674 (92.10) 1.0068 (93.20) 1.2096 (95.60) 1.2587 (97.00) 

III 

1  0.9324 (98.20) 0.9190 (95.50) 1.1624 (97.50) 1.0811 (96.60) 1.1634 (96.70) 

1  1.3076 (95.40) 1.3266 (96.30) 1.1696 (91.60) 1.3732 (96.40) 1.4417 (96.60) 

2  0.9344 (98.20) 0.9229 (97.50) 1.1622 (97.50) 1.0477 (96.90) 1.1408 (96.50) 

2  1.3227 (95.40) 1.3388 (94.00) 1.1832 (92.10) 1.4185 (97.10) 1.4638 (96.60) 

1.50 

I 

1  0.7372 (98.20) 0.7715 (94.00) 0.9491 (96.50) 0.9273 (97.70) 0.9691 (98.20) 

1  1.0248 (95.40) 1.0706 (97.10) 0.8938 (92.70) 1.2035 (96.30) 1.2415 (95.90) 

2  0.7371 (98.20) 0.7719 (96.30) 0.9397 (96.50) 0.9062 (96.60) 0.9551 (97.30) 

2  1.0246 (95.40) 1.0706 (92.80) 0.8936 (92.70) 1.1956 (95.70) 1.2517 (95.90) 

II 

1  0.8343 (97.80) 0.7860 (96.60) 0.8472 (93.90) 1.0631 (96.70) 1.1022 (96.60) 

1  1.1153 (95.70) 1.0089 (95.50) 1.5410 (98.10) 1.2906 (95.80) 1.3245 (95.70) 

2  0.8343 (97.80) 0.7860 (95.20) 0.8275 (93.60) 1.0027 (95.80) 1.0705 (96.50) 

2  1.1156 (95.70) 1.0084 (97.00) 1.5044 (97.90) 1.3146 (95.60) 1.3287 (95.70) 

III 

1  0.9343 (97.70) 0.8947 (97.30) 1.0984 (95.30) 1.0897 (95.50) 1.2016 (95.70) 

1  1.2786 (95.10) 1.2631 (96.20) 1.2981 (93.20) 1.3852 (96.80) 1.4450 (96.10) 

2  0.9356 (97.70) 0.8938 (96.10) 1.0992 (95.40) 1.0585 (95.90) 1.1586 (95.60) 

2  1.2895 (95.00) 1.2589 (97.00) 1.2993 (93.20) 1.3527 (95.40) 1.4743 (96.70) 

2.00 

I 

1  0.7505 (97.80) 0.7604 (95.40) 0.8829 (95.20) 0.9468 (96.20) 0.9254 (96.90) 

1  1.0300 (95.00) 1.0169 (92.10) 0.7994 (90.70) 1.2518 (97.50) 1.2283 (96.70) 

2  0.7506 (97.80) 0.7601 (94.00) 0.8824 (95.20) 0.9339 (96.70) 0.9392 (97.00) 

2  1.0301 (95.00) 1.0170 (92.00) 0.7988 (90.70) 1.1913 (97.10) 1.2624 (96.50) 

II 

1  0.8182 (98.20) 0.8085 (94.30) 0.6973 (92.90) 1.0066 (97.10) 1.0384 (97.10) 

1  1.0643 (95.70) 0.9421 (95.50) 1.0770 (95.40) 1.2278 (96.00) 1.3069 (95.60) 

2  0.8185 (98.20) 0.8085 (95.20) 0.6978 (93.00) 0.9937 (96.70) 1.0914 (97.90) 

2  1.0669 (95.70) 0.9424 (96.20) 1.0773 (95.40) 1.2683 (96.80) 1.2406 (95.80) 

III 

1  0.9439 (98.20) 0.9225 (95.80) 1.2227 (97.60) 1.1371 (96.80) 1.1902 (96.80) 

1  1.3328 (95.70) 1.1781 (94.20) 0.9708 (89.70) 1.4559 (96.10) 1.4882 (96.50) 

2  0.9453 (98.20) 0.9225 (93.10) 1.2228 (97.50) 1.0421 (96.10) 1.1436 (96.90) 

2  1.3803 (96.10) 1.1806 (92.00) 0.9620 (89.70) 1.4121 (97.60) 1.4809 (97.40) 

From tabulated values, it can be noted that, higher values of 𝑛  lead to decreasing in MSE 

depending on the MSEs. With increasing in 𝑛  and 𝑚 , the average bias of the estimated values is 
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increasing for the parameters 𝜂1,𝜑2 and decreasing for the parameters 𝜂2 and 𝜑1. Also, the average 

bias of the estimated values of the parameters, 𝜑1 and 𝜑2, of the MLEs is fewer than the BEs (IP and 

Non-IP) and for parameters, 𝜂1 and 𝜂2, of the MLEs are higher than the BEs. Furthermore, The BEs 

under IP for the parameters are better than BEs under Non-IP for the same parameters. Comparing the 

results in Tables 4–6, we noted that the HPD intervals under IP perform better than the HPD intervals 

under Non-IP based on minimum confidence/credible intervals lengths. Also, The AILs of the Asy-CI 

of the MLEs have the shortest length among the suggested CIs, the AIL decreases in general as 𝑛 and 

𝑚 increase. In addition, according to the CPs, the MLEs technique has the highest CP among the 

suggested CPs. Our simulation study's major conclusion is that as the number of steps in a progressive 

Type-I censoring scheme rises over time, the average bias of the estimates and MSEs diminish. 

6.2. Real data 

A real-world data set is used to illustrate the concept and to determine the statistical measures of 

the MLEs and BEs for IWD under a variety of Type-I APHCS using a competing risks model. 

The set of data beneath was first examined by reference [41] and was subsequently examined by 

reference [21]. The finding was obtained in a laboratory experiment in which male mice were 

administered a 300-roentgen radiation dosage between the ages of 35 and 42 days (5–6 weeks). For 

each mouse, the cause of death was identified as reticulum cell sarcoma as 1 (*) and other reasons of 

death as cause 2 (**), there were 𝑛 = 77 observations remain in the analysis registered below: 

40**, 42**, 51**, 62**, 163**, 179**, 206**, 222**, 228**, 249**, 252**, 282**, 317*, 318*, 324**, 333**, 

341**, 366**, 385**, 399*, 407**, 420**, 431**, 441**, 461**, 462**, 482**, 495*, 517**, 517**, 524**, 525*, 

536*, 549*, 552*, 554*, 557*, 558*, 564**, 567**, 571*, 586*, 586**, 594*, 596*, 605*, 612*, 619**, 620**, 

621*, 621**, 622**, 628*, 631*, 636*, 643*, 647*, 647**, 648*, 649*, 651**, 661*, 663*, 666*, 670*, 686**, 

695*, 697*, 700*, 705*, 712*, 713*, 738*, 748*, 753*, 761**, 763**.    

From data original, one can create, e.g., five Type-I APHC samples with a number of stages 𝑚 =
30  at time censoring 𝜏 = 400  and removed items 𝑅𝑗  (randomly from the surviving items) are 

assumed to as follows: 

Scheme I: 𝑅1 = 𝑛 −𝑚 and 𝑅2 =. . . = 𝑅𝑚 = 0. 

Scheme II: 𝑅1 =. . . = 𝑅𝑚
2
= 0, 𝑅

(
𝑚

2
+1)

= 𝑛 −𝑚 and 𝑅
(
𝑚

2
+2)

=. . . = 𝑅𝑚 = 0. 

Scheme III: 𝑅1 =. . . = 𝑅𝑚−1 = 0 and 𝑅𝑚 = 𝑛 −𝑚. 

Scheme IV: 𝜏 = 800, 𝑅1 = 𝑛 −𝑚 and 𝑅2 =. . . = 𝑅𝑚 = 03. 

Scheme V: 𝜏 = 800 and 𝑅1 = 𝑅2 =. . . = 𝑅𝑚 = 0. 

Note that: Scheme IV can be considered as a progressive Type-II censoring scheme, a special case of 

Type-I APHCS. Also, complete sampling can be considered as a special case of Type-I APHCS in 

Scheme V when 𝑅1 = 𝑅2 =. . . = 𝑅𝑚 = 0. 

The MLEs of 𝜂1, 𝜑1, 𝜂2 and 𝜑2, as well as their related asymptotic CI, two types of bootstrap CI 

estimates, and AIL for Type-I APHC samples under competing risks model with two independent 

causes of failures as in the given real data set, are shown in Table 7. In addition, BEs were calculated 

using the MH method with the Non-IP. It is indicated that, while generating samples from the posterior 

distribution utilizing the MH algorithm, preliminary values of (𝜂𝑘, 𝜑𝑘)  are considered as 

(𝜂𝑘
(0)
, 𝜑𝑘

(0)
) = (𝜂̂𝑘, 𝜑̂𝑘) , 𝑘 = 1,2  and (𝜂̂𝑘, 𝜑̂𝑘)  are the MLEs of the parameters(𝜂𝑘, 𝜑𝑘) . BEs and 

HPD intervals were then obtained from the remaining 2000 burn-in samples from the posterior density. 

Each censoring scheme's relative risk will be calculated. 
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The convergence of MCMC estimation in case of scheme II of Type-I APHCS for the cause 1, i.e.,  

(𝜂1, 𝜑1) can be showed in Figure 2 and for the cause 2, i.e., (𝜂2, 𝜑2) can be showed in Figure 3. 

 

Figure 2. Convergence of MCMC estimates for 1  and 1  using MH algorithm. 

 

Figure 3. Convergence of MCMC estimates for 2  and 2 using MH algorithm. 
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Table 7. ML, Bayesian, and related interval estimates and SEs for real data set based on 

the Type-I APHCS under various censoring schemes with competing risks model. 

Scheme Parm 

MLE MCMC Relative risk 

Estimate  St.E Asy CI 
Estimat

e 
St.E HPD 

𝜏1 𝜏1 

I 

1  20.1336 15.4900 (6.6826, 90.0117) 5.2757 0.3444 (4.1937, 6.4285) 

08166 0.1834 
1  2.8010 1.6213 (0.3511, 6.5381) 0.3132 0.0399 (0.0318, 0.7026) 

2  3.7969 0.3399 (3.1899, 4.5330) 3.6545 0.0931 (3.0620, 4.2262) 

2  0.3541 0.0807 (0.2097, 0.5211) 0.3637 0.0056 (0.2230, 0.5097) 

II 

1  13.2841 6.1005 (6.3409, 36.1274) 5.4296 0.3074 (4.3746, 6.5555) 

0.4475 0.5525 
1  1.6071 0.6806 (0.5333, 3.1173) 0.4923 0.0220 (0.2212, 0.7746) 

2  3.4629 0.2850 (2.9436, 4.0647) 3.3675 0.0737 (2.8536, 3.9011) 

2  0.3399 0.0657 (0.2218, 0.4767) 0.3398 0.0040 (0.2210, 0.4687) 

III 

1  11.8853 4.2466 (6.9693, 27.6577) 6.2115 0.2380 (5.2807, 7.1624) 

0.5935 0.4065 
1  1.0006 0.5207 (0.2719, 2.2565) 0.2561 0.0095 (0.0721, 0.4292) 

2  4.9741 0.2947 (4.4365, 5.5965) 4.8244 0.0727 (4.3020, 5.3282) 

2  0.2359 0.0484 (0.1503, 0.3386) 0.2311 0.0021 (0.1367, 0.3112) 

IV 

1  81.1868 48.3477 (27.3954, 92.1643) 5.8338 0.3392 (4.7744, 7.0125) 

0.7736 0.2264 
1  3.2885 0.5401 (2.2939, 4.3669) 1.0294 0.0170 (0.7842, 1.2739) 

2  3.7650 0.4524 (2.9619, 4.7408) 3.5105 0.1584 (2.7611, 4.2735) 

2  0.5533 0.0945 (0.3756, 0.7413) 0.5320 0.0072 (0.3609, 0.6900) 

V 

1  17.7841 9.9707 (6.7734, 59.4942) 4.8931 0.4678 (3.5849, 6.1881) 

0.5721 0.4279 
1  3.3324 1.0099 (1.6132, 5.5633) 1.2396 0.1014 (0.6567, 1.8698) 

2  1.8744 0.2256 (1.4695, 2.3569) 1.8517 0.0483 (1.4259, 2.2873) 

2  0.7132 0.0976 (0.5287, 0.9093) 0.7133 0.0086 (0.5369, 0.9036) 

*Asy CI- Asymptotic confidence interval, Parm.-Parameter, St.E-Standard error. 

7. Conclusions 

A competing risks model under Type-I APHCS technique was explained in this paper. When a fixed 

number of failure causes are known. Assuming that the lifetime distributions are IWD. The MLEs have 

been generated, and different CIs for the parameters of the IWD has been suggested using asymptotic 

distributions and bootstrap CIs. Also provided are the HPD intervals. Different sample sizes and 

censoring schemes are used to differentiate between different estimators and CIs in a simulation study. 

Also, using the MH method, BEs based on squared error loss function under the assumption of 

independent gamma priors were produced. In terms of minimum MSEs, the simulation results show that 

BEs, provide the importance sampling technique better than the other estimates. It's also important to 

note that among the various CIs, the HPD intervals have the shortest lengths. We studied two real data 

sets to illustrate how the suggested estimators perform in real. According to the real data analysis, the 

Type-I APHCS technique appears to be highly effective when the experimenter's primary concern is time 
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and it is not required to terminate the experiment at a predefined number of failures. Finally, future 

research may be interested in locating a real-life Type-I APHCS situation and using the suggested 

approaches presented here, as well as comparing the results to other censoring schemes. 
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