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Abstract: In the medical field, researchers are often unable to obtain the sufficient samples in a short
period of time necessary to build a stable data-driven forecasting model used to classify a new
disease. To address the problem of small data learning, many studies have demonstrated that
generating virtual samples intended to augment the amount of training data is an effective approach,
as it helps to improve forecasting models with small datasets. One of the most popular methods used
in these studies is the mega-trend-diffusion (MTD) technique, which is widely used in various fields.
The effectiveness of the MTD technique depends on the degree of data diffusion. However, data
diffusion is seriously affected by extreme values. In addition, the MTD method only considers data
fitted using a unimodal triangular membership function. However, in fact, data may come from
multiple distributions in the real world. Therefore, considering the fact that data comes from
multi-distributions, in this paper, a distance-based mega-trend-diffusion (DB-MTD) technique is
proposed to appropriately estimate the degree of data diffusion with less impacts from extreme
values. In the proposed method, it is assumed that the data is fitted by the triangular and trapezoidal
membership functions to generate virtual samples. In addition, a possibility evaluation mechanism is
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proposed to measure the applicability of the virtual samples. In our experiment, two bladder cancer
datasets are used to verify the effectiveness of the proposed DB-MTD method. The experimental
results demonstrated that the proposed method outperforms other VSG techniques in classification
and regression items for small bladder cancer datasets.

Keywords: small data approach; virtual sample generation; data-driven model

1. Introduction

Bladder cancer is a common cancer in the human urinary system. Some bladder cancer studies
have reported that this cancer is related to tumor suppressor genes and oncogene genes, such as
multidrug resistance (MDR), topoisomerase II (Topo II), Rb, epidermal growth factor receptor
(EGFR), HER-2 (Neu), c-ErbB-3, c-ErbB-4, Cyclin A, Cyclin D1, P16, Cdc 2, Bcl-2, Bax, etc. [1–7].
These genes can be used to diagnose bladder cancer [1,4,6] and analyze the effects of X-ray
treatment among bladder cancer patients [5,7]. For example, higher Cyclin D1 values indicate that
patients are in the early stage of bladder cancer [2]. The over-expression values of EGFR, Neu,
c-ErbB-3, c-ErbB-4 may reflect the treatment outcomes of Cobalt-60 (Co-60) radiation therapy on
bladder cancer [3]. These studies often suffer from a small sample problem because it is difficult to
obtain a sufficient number of gene expression profiles from patients due to the need for a costly
genome sequencing procedure [8,9]. However, for researchers who adopt data-driven models as
forecasting tools to predict cancer, it is necessary to collect sufficient data and find representative
samples from which to build data-driven models with good learning performance [10–12]. With a
limited number of gene profiles, traditional machine learning methods cannot construct data-driven
models that will provide accurate predictions of bladder cancer. For this reason, small data learning
has become an important challenge to bladder cancer prediction with small datasets.

1.1. Small data learning

Previous research approaches to the problem of small data learning can be divided into two
types: The first proposes a better learning model for different data sets. For example, Mao et al. [13]
proposed a modified Mahalanobis-Taguchi System to extract important information for the purpose
of improving classification accuracy for a high-dimensional small dataset. Izonin et al. [14] proposed
the input-doubling method to improve prediction performance of the compressive strength of
trabecular bone with only 77 observations. Due to data diversity, it is difficult to apply the same
model to different datasets. Researchers must fine-tune the parameters of data-driven models to
improve the learning of models using small data. The second approach is a virtual sample generation
(VSG) method used to expand the quantity of data. VSG methods have been developed in various
fields, such as diagnostic classification of tumors [1,4,6,15], prediction of the treatment effects of
radiotherapy on tumors [5,7], and engineering applications [16–18]. These methods based on the
concept of VSG are typically classified into three types: resampling-based VSG, model-based VSG,
and diffusion-based VSG. The bootstrap method and the Synthetic Minority Over-sampling
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Technique (SMOTE) [19] typify resampling-based VSG methods. The bootstrap method replaces the
original sample with a synthetic sample by re-sampling the original samples [20]. The SMOTE
method draws out a neighboring example of the original data as a new example to fill gaps between
data. The neighboring example is calculated as shown in the following equation: syntheticx 

(0,1) ( ),i j ix random x x i j     , where syntheticx is a synthetic virtual sample different from ix , and

ix is resampled data and jx is the neighboring data of ix , e.g., Figure 1.

Figure 1. Synthetic sample generation of SMOTE.

Many studies have combined bootstrap methods with data-driven models to achieve good
learning results [21–23]. For example, Lee et al. [21] created samples using the combined bootstrap
method to construct a support vector regression (SVR), when only a small number of samples from
the health care system were used to predict oscillometric measurement of blood pressure (BP). La
Rocca and Perna [23] proposed a combination of extreme learning machine (ELM) models with
bootstrap samples to improve the learning accuracy of small data sets. These experimental results
showed that the proposed method led to a significant improvement in the performance of small data
learning. The problem with bootstrapping, however, is that it can repeatedly overlearn the same
sample, thus creating an overfitting problem. In this regard, Lee et al. [21] applied a bootstrap to a
SVR to reduce the probability of overfitting. Unfortunately, most machine learning models are not
immune to this problem. From the perspective of augmenting data diversity, some scholars suggest
that by treating data that approximates the original sample as a virtual sample, the model can learn
diverse data and reduce the incidence of overfitting.

Model-based VSG methods depend on machine learning models or artificial neural networks to
find the relevance between input attributes and the output targets of small data in high dimensional
space. The characteristics of original data can be learned by generating virtual samples in high
dimensional space. Cho et al. [24] randomly generated virtual samples and selected virtual samples
that were similar to the original examples using a multilayer perceptron neural network. Huang and
Moraga [25] suggested the use of the diffusion-neural-network (DNN), which utilizes information
diffusion and fuzzy theory to derive artificial samples in DNNs. In the field of image recognition, the
generative adversarial net (GAN) model [26], which is specifically designed to generate synthetic
images. The concept of the GAN is to generate a fake image that approximates a true image to
increase the amount of training data. However, the GAN model is computationally intensive and may
suffer from mode collapses due to low image variability when the true image data has an extremely
skewed distribution [27].

Diffusion-based VSG methods are represented based on information derived from original data.
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The method usually assumes that data comes from a mathematical function or a specific probability
distribution to generate virtual samples. The most representative method is mega-trend-diffusion
(MTD) method [28]. Based on a triangular membership function (MF), the MTD method is to
estimate domain of small data and generate virtual samples within the domain. Methods based on
MTD method have been developed to improve the prediction performance of data-driven models
with small datasets in practical applications [29–32]. For example, Majid et al. [30] applied the MTD
technique to perform estimation of the data range in minority class data. Their experimental results
showed that the generated virtual samples improved the classification accuracy of four data-driven
models (k-nearest neighbor, support vector machines, Naïve Bayes, and random forest) for the
prediction of human breast and colon cancers.

As an alternative to the MTD method, Yang et al. [33] proposed the VSG method based on a
Gaussian distribution (GD), and virtual samples were generated within the estimated data domain.
However, in the real world, data may be fitted using multiple distributions. The MTD and GD
methods did not consider generating virtual samples based on multiple distributions. For this reason,
based on multiple triangular MFs, Zhu et al. [31] proposed the multi-distribution MTD (MD-MTD)
to generate virtual samples intended to improve the learning accuracies of models of purified
terephthalic acid production. In addition, the MD-MTD method has been applied to enhance the
prediction of an applicant risk assessment of an early online lending platform [32]. In addition to the
assumption of multiple triangular MFs, Wang et al. [34] assumed that the data came from a mixture
of normal distributions to create a large amount of data from a similar process and fuse data using a
transfer learning method. The distribution of the fused data can be inferred using a nonparametric
method. The estimated distribution is used to generate virtual samples to improve prediction in other
processes. Although their method achieved good prediction results, it is more complex than the
MD-MTD method. In addition, virtual samples generated using their method follow symmetric
normal distributions. However, in fact, it is more appropriate to consider using asymmetric
distributions to generate virtual samples for small datasets [31,32]. Therefore, based on the
assumption of multi-distributions, in this paper, a distance-based mega-trend-diffusion (DB-MTD)
technique is proposed to avoid over-diffusion of data due to extreme values and estimate the central
locations (CLs) of multi-distributions. The detailed motivation for this work is explained in the
following section.

1.2. Motivation

The traditional MTD method uses the midpoint of the data as an estimation of the CL of the
data and estimates the skewness of the data by the amount of data greater or less than CL. The
concept of data diffusion in MTD is that when the data is more skewed, the data domain is more
diffused. However, when estimating the skewness of data in terms of data quantity, there is a problem:
a small data set with about the same amount of data on both sides of the CL is estimated to be an
un-skewed distribution for the reasons illustrated using Scenario A and Scenario B in Figure 2(a).
Scenario A considers the amount of data used to estimate the degree of skewness of the data. As a
result, the degree of skewness on the left side of the data is not significant enough to increase the
spread of the data range. Scenario B considers the distance between the data and the CL to estimate
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the degree of skewness, and the data on the left is farther away from the CL, which means that the
skewness between the left and the CL is greater, and the data distribution is close to the left skewed
distribution. Therefore, the data in the left-hand area has a larger diffusion of data, meaning that
more potential information is hidden in this region. Thus, more virtual samples can be explored in
that domain. On the other hand, the MTD method assumes the data is fitted in a unimodal triangular
MF, and it ignores the possibility that the data may come from a multi-modal triangular MF. This is
illustrated in Scenarios C and D in Figure 2(b). The data in Scenario C is fitted in two triangular MFs,
where the distance between the two MFs is relatively large. Therefore, it is regarded as multiple
triangular MFs. The data in Scenario D indicates that when two triangular MFs have overlapping
regions, this means that the similarity between the data is high, and it also means that potential
information is hidden in the overlapping region. Therefore, in this paper, the two triangular MFs are
fused into a trapezoidal MF.

(a) MTD method (b) The proposed DB-MTD method

Figure 2. Two types of data diffusion.

As mentioned above, data diffusion depends on the degree of data skewness. When extreme
values exist in a small dataset, the estimated skewness is excessively left or right, which results in
over-diffusion of data. Most virtual samples generated in an over-extended domain are unsuitable
and cannot effectively improve the learning of models. To address this problem, the MD-MTD
method can be used to modify the estimation of data skewness in order to avoid excessive data
diffusion. However, because data skewness in MD-MTD is still determined by the amount of data,
the problem where different small datasets result in the same data diffusion shown in Scenario A and
Scenario B still exists and thus needs to be solved. In addition, although the MD-MTD method
estimates the CL of multi-distributions, it does not consider multiple CLs for multi-distributions.
Therefore, in this paper, a distance-based mega-trend-diffusion (DB-MTD) method is proposed to
extend the data range and reduce the influences of extreme values when there are small datasets. In
our method, data skewness is determined by the distances between examples. When most of the
examples are farther from the CL, this means that a significant amount of information is hidden
between these examples and the CL, and vice versa. In addition, in this paper, a plausibility
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assessment mechanism (PAM) is proposed to select appropriate virtual samples generated by
multiple triangular MFs or one trapezoidal MF.

This study validates the proposed DB-MTD approach using one bladder cancer classification
case from Liao [6] to diagnose bladder cancer and a regression case from Tsai et al. [7] to predict the
effects of treatment of bladder cancer patients with radiotherapy. In this study, a data-driven model
using a back-propagation neural network (BPNN) was used to compare the learning performance
between the proposed DB-MTD method and other VSG methods. The experimental results of the
two bladder cancer datasets showed that the learning performance of the proposed method
outperformed the other VSG methods. A paired-test was also used to verify whether there were
statistically significant differences in the BPNN model for the two bladder cancer datasets.

The remainder of this study is organized as follows: Section 2 is a review of the literature on VSG
methods, as well as a brief introduction to the learning tools used in the experimental validation.
Section 3 explains the details of the proposed DB-MTD. Section 4 is the description of the two bladder
cancer datasets and provides the experimental results. The conclusions are given in Section 5.

2. Background

Many studies have attempted to improve the learning performance of small datasets by
generating virtual samples that been added into the original dataset to expand the amount of training
data [24,25,28,33,31]. The generation of virtual samples has been verified as an effective strategy by
which to extract meaningful information from a small dataset and increase the forecasting accuracy
of models. Three related studies on virtual sample generation are reviewed in this section.

2.1. Diffusion neural network (DNN)

Huang and Moraga [25] proposed the DNN method, which applies a diffusion function to
generate virtual samples on both sides of a given data point. In their approach, the data point is
designated as the midpoint of a fuzzy normal function. After determining the possibility of n midpoints,
the DNN approach then carried out symmetric diffusion on both sides of the midpoint to derive 2n
virtual samples from Eqs (1)–(5). In Eqs (1) and (2), u and v are virtual samples of the input and output
derived by using the original data; seth is the diffusion coefficient obtained from Eq (3); “r” represents
the linear correlation coefficient of the input x and the output y, and  r represents the
membership function value of the linear correlation coefficient r, as shown in Eq (5). After obtaining
the corresponding values of the fuzzy normal membership function using Eqs (4), (1) and (2) are
applied to produce virtual samples, u and v, after which the possibilities of the virtual samples are
entered into a neural network for training, as shown in Figure 3.
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Figure 3. Small sample neural network (2-k-2 scheme).
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2.2. The mega-trend-diffusion (MTD) approach

Li et al. [28] proposed the mega-trend-diffusion (MTD) method to estimate the triangular
membership function used to generate virtual samples. This method assumes that data follows the
assumptions below:

1) Each variable is independent of the other.
2) Each variable is fitted into a unimodal distribution.

The virtual sample generation of data range can be estimated using Eqs (6) and (7).
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generated randomly between interval [a,b], as shown in Figure 4(a).

2.3. The Multi-distribution MTD (MD-MTD) approach

Zhu et al. [31] presented the multi-distributions MTD method to avoid over-diffusion of small
data. They modified the MTD method to avoid extreme values to influence estimations of data
skewness and CL. In their paper, the data skewness and CL are modified as:
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where m is a shape parameter used to adjust the degree of data skewness, and  x  is an order

statistic. The m is set to one in their method. The LN ( UN ) is the number of values smaller (greater)
than setu . The range estimation of MD-MTD method is defined by Eqs (6) and (7). Due to the
adjusted skewness on the left and right side of CL, the data diffusion is reduced into a narrower
domain [a,b], as shown in Figure 4(b).
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(a) MTD method (b) MD-MTD method

Figure 4. Data diffusion in the MTD and MD-MTD methods.

2.4. Back-propagation neural network (BPNN)

The back-propagation neural network (BPNN) was adopted in the present study as the
data-driven model, which is a supervised learning model applicable for classification or forecasting
problems. The input and output of the training data were used to build a neural network, and the
weight of each node could be adjusted based on the difference between the degree of the expected
output value and the actual observed value between each layer. A mapping function was built to
process the weights in the different layers, as shown in Eq (11).

1
 ( )

P

i i
i

Y WX bf


  (11)

The output result for the input can be expressed as Eq (11), where iX and Y are ith input
variable and one output variable, respectively; W is the weighting value between the node and
other nodes in the layer; ( )f  is an activate function for nodes; b represents the product-sum of the
weights, which must be greater than an error value, so the input nodes can be transferred into other
nodes between linking layers, and p is the number of inputs from other nodes. In this paper, ( )f 
is set as the sigmoid activation function to update the weights of the nodes in the jth hidden layer
as follows:

1( ) , 0 ( ) 1
1j jxf x f x
e

  


(12)

In a basic BPNN scheme, nodes are composed of so-called “layers,” as shown in Figure 5,
where the input and output layers are, respectively, the attributes and target of data. A hidden layer is
mainly used to process the data, and the number of layers is determined according to the data
complexity. Generally speaking, a higher number of hidden layers and more nodes produce fewer
learning errors, but the network scheme in the training process is more complex and has a longer
convergence time.



6213

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6204–6233.

Figure 5. Basic BPNN (Input layer - j Hidden layers - Output layer).

3. Methodology

In this paper, we propose a unique distance-based mega-trend-diffusion method, including the
skewness degree, the diffusion coefficient, the selection of setu , and the number of setu . This
section illustrates the proposed method in detail, including the plausibility assessment mechanism
(PAM) in Subsection 3.8 used to select suitable virtual samples.

3.1. Symbol definitions

Assume that a training dataset has n examples with m-1 input attributes { | 1,2,..., 1}jX j m  , and
one output target mX , denoted as 1 1 2 2{( , ),  ( , ), ..., ( , )}i iT x y x y x y

      , 1, 2,...,i n , where
,1 ,2 , 1{ , ,..., }i i i i mx x x x 


has m-1 variables and iy

 is the target of ix
 . The elements of the variables are

,{ |i jx 1, 2,..., ; 1, 2,..., }i n j m  in the training dataset, as shown in Table 1.

Table 1. Symbol definitions in a training dataset.

NO.
Input attributes Output

1X … jX … 1mX  mX
1 1,1x … 1, jx … 1, 1mx  1,mx
… … … … … … …
i ,1ix … ,i jx … , 1i mx  ,i mx
… … … … … … …
n ,1nx … ,n jx … , 1n mx  ,n mx
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3.2. Data pre-processing

This subsection introduces the Min-Max data normalization method and k-nearest neighbor
(kNN) algorithm used for imputation of missing data.

3.2.1. Min-Max data normalization

Because the proposed method is based on the distances between examples to measure the
degree of data diffusion, before performing our proposed method, a data normalization process is
necessary to avoid the effects from different variable scales that affect the data diffusion
measurement. In this paper, we applied the Min-Max data normalization process to transform the

domain of original data ,i jx into [0,1]. The transforming formula is expressed as:

,*
,

min
[0,1]

max min
i j j

i j
j j

x
x


 


(13)

where *
,i jx is transformed value and max j ( min j ) is the maximum(minimum) value of the

jX variable. Min-Max normalization is a linear transformation intended to maintain the relative
distances between the original examples. As a result, the proposed method can be effectively
performed with transformed examples for small datasets with different variable scales.

3.2.2. kNN in missing data imputation

When missing values occur in the original dataset, they increase the amount of data diffusion
measurement error due to an incomplete data structure. There are two types of methods that can be
used to deal with missing values. One is the ignoring missing value method in which examples with
missing values are deleted, and the other is the data imputation method, where missing values are
replaced with plausible values. In this paper, we adopt the data imputation method to fill in missing
values instead of deleting them due to the very limited amount of data. Common data imputation
methods include mean imputation, imputation with distributions, kNN imputation, etc. Some
studies have suggested that kNN has better imputation performance than other methods [35–38].
For example, Jadhav et al. [38] compared kNN with other methods in terms of data imputation, and
kNN significantly outperformed the other methods for numerical datasets. Because the proposed
method is applicable to numerical variables, we use the kNN imputation method to handle data
with missing values.

The kNN is an instance-based algorithm proposed by Cove and Hart [39]. This algorithm
classifies examples based on similarity measurements that are made between examples. For data
imputation, the kNN is used to impute missing values by selecting the nearest neighbors of examples
with missing values. In this paper, we use the Euclidean distance as the similarity measurement to
select the nearest neighbors of the example, as follows:



6215

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6204–6233.

2
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1
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i j i j
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  (14)

where k is the number of nearest neighbors, and j represents jth data variable. We illustrate a
simple example of kNN for data imputation in Figure 6. When we set k as three, the original data
with a missing value has two neighbors, where the missing value can be imputed using the
nearest neighbors.

Figure 6. The kNN for data imputation.

3.3. Measurement of the degree of skewness

In the original MTD, the number of samples occurring on two sides of setu is used to

determine the degree to which the data is skewed. When the number of samples is significantly
larger on one side, the MTD formula is not suitable for estimating the data distribution. In this paper,
a unique MTD method is proposed based on the distance between samples. The idea of this paper is
that when the sum of the distances between the samples on one side is less than that on the other side,
this indicates that the sample distribution is skewed to one side.

The distance between the samples is defined by using the distance equation derived from the

Minkowski Distance, as noted by Cha [40], where

1

1
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d hh
i i

i
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 . Since in this paper, it

is assumed that each variable is independent, only a 1-D data distribution is considered. That is,

1
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d

i
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i= P Q , where iP represents the ith sample point ix , and iQ is the setu of

variables. The degree to which the data is skewed is considered in Eqs (18) and (19).
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where LG (or UG ) represents the sum of the distance between the smaller (or greater) sample, as
compared to setu and setu . Figure 7(a) (or (b)) shows that if LSkew is smaller (or greater) than

USkew , the data distribution is inferred as being a right (or left) skewed distribution.

(a) Scenario A: right skewed distribution (b) Scenario B: left skewed distribution

Figure 7. Skewed distribution.

3.4. Diffusion coefficient

In the MTD, the diffusion coefficient is set as
2ˆ

L

xs
N

or
2ˆx
U

s
N

to fine-tune the degree of

diffusion on two sides of setu . When extreme values exist in the dataset, then the variations among

the samples are significant, so the sample variance 2ˆxs leads to excessive effects on the estimate of

the diffusion coefficient seth . In order to reduce this effect, seth is set as
ˆ

L

xs
G

or
ˆx
U

s
G

. Therefore,

in order to reduce the influence of outliers by using the distance function G on two sides of setu , we
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adjust the diffusion coefficient as follows:  n2×
ˆ

×lx

LG
s

 or  n2×
ˆ

×lx

UG
s

 . If LG is

greater than UG , then it will be skewed to the left as a small seth , and if there are potential

outliers, then the G value in this direction will be increased. Thus, the proposed seth can be used to

mitigate the increasingly excessive diffusion.

3.5. Selection of setu

This selection of setu is often seriously affected when there are many extreme values in a
dataset, and thus, the midpoint setu that is obtained may not represent the tendency of the dataset
although setu can be set as the mean of the samples, and the mean can then be used as the
estimation of the data tendency when the number of samples is sufficient. However, setting the mean
of setu is unstable in terms of estimating the data tendency in small samples. Thus, when
considering the estimation of the tendency of the dataset for a small dataset, the median and mode
are considered to be slightly affected by extreme values. k modes can be used to discover the
frequency of repeated values in the dataset to predict the tendency of the dataset. Therefore, the
proposed setting of setu can be defined as follows:

,
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,  for 1,2,..., ,  where 2
2k i
nMo x i n k        

(22)

Given a dataset  1 2, ,..., nX x x x , n represents the number of samples, and k is the number of
modes, where the mode is defined as identical data that occurs more than twice in a dataset. If no
mode exists in a dataset, then the setu is the median.

3.6. Estimation of the data range

Assuming a dataset  1 2, ,..., nX x x x , the forms of Eqs (6),(7) and Eqs (16),(17) can be
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modified with k setu as follows:
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Eqs (25) and (26) represent the sum of the distances between ix and ,set ku . ,L kG and ,U kG
represent the sum of the distances between the sample points fewer and greater than kth setu ,
respectively. Therefore, in this case, we use the distance function on two sides of kth setu as an
expression of skewness, as shown in Eqs (27) and (28).
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In Eqs (23) and (24), considering the diffusion coefficient presented in Section 3.4, two specific
cases are discussed: If the kth mode is one of the extreme values, this will cause ,L kG or ,U kG to
be close to 0 because 0i set i setx u x u   ; then, the diffusion in the direction of the extreme
value cannot be defined, and the lower bound ka or the upper bound kb of the kth mode is set as

,set ku . In addition, when the total number of samples is one, both ,L kG and ,U kG are 0.

3.7. Virtual sample generation with the proposed method

Since the previous MTD method set setu as the midpoint, the method is susceptible to extreme
values. In addition, the method assumes that the data is fitted into a unimodal distribution, but the
data may come from a multi-modal distribution. For these two reasons, the new DB-MTD method
proposed in this paper generates virtual samples from a unimodal distribution or a multi-modal
distribution, where the median or mode is set as setu to reduce the influence of outliers. The
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process proposed in the DB-MTD used to generate virtual samples is shown in Figure 8.

Figure 8. Diagram of the proposed process.

When using the proposed method to estimate the data range, some possible scenarios are
illustrated as follows:
1) When a dataset does not have a mode, the median is taken as the setu , as shown in Figure 9,

Scenario A. Or, when the mode exists in the dataset, then setu is the mode, as shown in Figure
9, Scenario B.

2) When there is only one mode, the setu is the extreme minimum, as shown in Figure 9,
Scenario C. If setu is the extreme maximum, the estimation of membership function is as
shown in Figure 9, Scenario D.

3) When there is more than one mode, then it is necessary to generate more than one triangular
fuzzy membership function, and we thus need to consider whether multiple triangular
membership functions will overlap or not.

a. When there is no overlapping area between any two modes, there are two triangular membership
functions, as shown in Figure 9, Scenario E.

b. When these two triangular fuzzy membership functions overlap, there is one trapezoidal
membership function, as shown in Figure 9, Scenario F.

Since the overlapping of two triangular fuzzy membership functions in Scenarios E and F mean
that important data may be located in the overlapping area, the value of the membership function of
the sample point is set as 1. In other words, we thus set the possibility of the virtual sample being
located in the interval as 1.

After estimating the data range given by Eqs (23) and (24), the virtual sample is randomly
generated within the specified range with a uniform distribution.
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Figure 9. The mixture MFs.

As mentioned above, we discuss possible scenarios of the membership functions, as shown in
Figure 9, where the peak of the membership function is set at 1, and the membership function
value of the upper bound and lower bound is set at 0. When k setu exists, and sample x lies in the
interval [ ka ,

kb ], the value of the membership function of x can be calculated when multiple
triangular membership functions do not overlap each other, using Eq (29). When multiple
triangular membership functions overlap each other, trapezoidal membership functions are used, as
shown in Eq (30).
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3.8. Plausibility assessment mechanism (PAM)

According to the virtual sample generation method, the values of the fuzzy membership
functions are used to randomly generate virtual samples in order to fill the gaps in the data in the
case of small sample learning. In this paper, a procedure was developed for a PAM that could be used
to select the virtual samples based on an inferred data distribution so as to increase learning
robustness. This mechanism can be used to examine whether the randomly generated virtual values
are qualified or not, and it is described as follows in detail: Firstly, a tv (temporary value) is
randomly generated from the estimated interval [a,b], after which the corresponding membership
function values, MF (tv), are discovered, as shown in Figure 10.

Figure 10. The proposed PAM.

Three possible scenarios are illustrated, as follows: In Figure 10, Scenario A only has one setu ;
Scenario B is two triangular membership functions, and Scenario C is a trapezoid fuzzy membership
function with two setu . When determining whether tv can be kept as a virtual sample or not, we
additionally generate a rs (random seed) ranging between [0,1], as shown in Figure 10. This random
seed is defined based on a uniform distribution. In the testing process, if the random seed is less than
the membership function value of tv, then this tv will be kept as a suitable virtual sample v; if not,
this tv will be abandoned, and a new virtual value will be generated. When a tv is close to the setu ,
then the membership function value of tv is close to 1, and thus, it will have a higher likelihood of
being be kept as a qualified virtual sample, as shown in Eq (31).

,   ( )v tv as rs MF tv  (31)

4. Experiments

This section illustrates the experimental procedures designed for the purposes of this study. We
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compare the proposed method with other VSG methods with two bladder cancer cases. The
experiments were implemented with Python 3.8.10. The experimental results are discussed in the
following section.

4.1. Case description

Two bladder cancer cases are examined in our experiments. One case provided by Liao [6] is
used to classify whether a patient suffers from bladder cancer, and the other case was obtained in [7]
to predict a bladder cancer patient’s resistance to radiotherapy.

4.1.1. Bladder cancer (BC) case

The BC dataset comprises nine bladder cancer patients and nine healthy persons, as listed in
Table 2. The first nine examples are bladder cancer patients defined as class 1, and the last nine
samples are healthy persons defined as class 0. Thirteen gene proteins MDR, Topo II, Rb, EGFR,
Neu, c-ErbB-3, c-ErbB-4, Cyclin A, Cyclin D1, P16, Cdc 2, Bcl-2, and Bax extracted in bladder cell
lines are set as the input attributes.

Table 2. BC dataset.

Bladder cell lines Input attributes Output

NO. ID MDR Topo II Rb EGFR Neu c-ErbB-3 c-ErbB-4 Cyclin A Cyclin D1 P16 Cdc 2 Bcl-2 Bax class

1 BFTC-905 1.8 0.1 2.5 7 0.8 1 1 0.3 2.5 0.1 2 0.1 1.5 1

2 HT 1197 1 1.3 1 8.5 0.3 0.1 3.5 0.3 0.8 2.8 2.5 1 1.3 1

3 T24 1.5 3.5 0.7 2 1 1.5 2.5 2 2.5 2.3 2 2 0.1 1

4 TCC-SUP 0.1 1 1 1.5 0.1 0.1 3 0.1 0.8 2.3 2.8 0.1 0.2 1

5 J82 0.3 1.3 2.7 2.2 1 0.1 2.5 0.5 2 0.1 2.5 1.3 0.2 1

6 TSGH-8301 2 0.3 0.3 9 3.5 4.5 6.5 0.1 0.1 0.1 2.5 1.3 1.5 1

7 HT 1376 1 2 1.3 3 0.3 3 2.5 0.1 1.3 1.3 2.5 0.1 0.8 1

8 Sca-BER 1 1 0.5 5 0.5 6.5 6.5 0.7 0.1 0.5 2.8 1.8 0.3 1

9 5637 1.2 0.8 1.5 10 0.5 0.1 5 0.1 2.7 0.1 2.5 0.1 1.3 1

10 A 0.3 0.1 6 0.5 0.1 0.2 0.5 0.1 0.5 5 0.5 5 8 0

11 B 0.1 0.3 4 1 0.2 0.1 2 0.3 0.1 4 0.5 9 5 0

12 C 0.2 0.1 5 0.5 0.1 0.1 1.5 0.2 0.1 6 1 7 5 0

13 D 0.1 0.8 9 1.5 0.1 0.5 0.5 0.1 1 6 0.8 6 6 0

14 E 0.5 0.1 6 2 0.5 0.1 0.5 0.3 0.1 5 0.5 4 4 0

15 F 0.5 0.5 6 2 0.1 0.8 0.8 0.1 0.2 6 1 5 5 0

16 G 0.1 1 4 1 0.3 0.2 0.5 0.5 0.2 5 1.5 5 7 0

17 H 0.5 0.1 5 0.5 0.2 0.1 1 0.1 0.1 8 0.5 7 7 0

18 I 0.1 0.1 7 0.8 0.1 0.1 2 0.2 0.5 5 0.5 6 4 0
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Table 3. RBC dataset.

Bladder cell lines Input attributes Output

NO. ID MDR Topo II Rb EGFR Neu c-ErbB-3 c-ErbB-4 Cyclin A Cyclin D1 P16 Cdc 2 Bcl-2 Bax Co-60
Resistance to

radiotherapy

1 HT 1376 1 1 -0.5 5 0.5 6.5 6.5 0.7 0.1 -0.5 2.8 1.8 -0.3 5 97

2 HT 1376 1 1 -0.5 5 0.5 6.5 6.5 0.7 0.1 -0.5 2.8 1.8 -0.3 10 90

3 HT 1376 1 1 -0.5 5 0.5 6.5 6.5 0.7 0.1 -0.5 2.8 1.8 -0.3 20 84

4 HT 1376 1 1 -0.5 5 0.5 6.5 6.5 0.7 0.1 -0.5 2.8 1.8 -0.3 30 82

5 HT 1197 1 2 -1.3 3 0.3 3 2.5 0.1 1.3 -1.3 2.5 0.1 -0.8 5 92

6 HT 1197 1 2 -1.3 3 0.3 3 2.5 0.1 1.3 -1.3 2.5 0.1 -0.8 10 78

7 HT 1197 1 2 -1.3 3 0.3 3 2.5 0.1 1.3 -1.3 2.5 0.1 -0.8 20 72

8 HT 1197 1 2 -1.3 3 0.3 3 2.5 0.1 1.3 -1.3 2.5 0.1 -0.8 30 73

9 TCC-SUP 0.1 1 -1 1.5 0.1 0.1 3 0.1 0.8 -2.3 2.8 0.1 -0.2 5 94

10 TCC-SUP 0.1 1 -1 1.5 0.1 0.1 3 0.1 0.8 -2.3 2.8 0.1 -0.2 10 70

11 TCC-SUP 0.1 1 -1 1.5 0.1 0.1 3 0.1 0.8 -2.3 2.8 0.1 -0.2 20 50

12 TCC-SUP 0.1 1 -1 1.5 0.1 0.1 3 0.1 0.8 -2.3 2.8 0.1 -0.2 30 41

13 J82 1.5 3.5 -0.7 2 1 1.5 2.5 2 2.5 -2.3 2 2 -0.1 5 84

14 J82 1.5 3.5 -0.7 2 1 1.5 2.5 2 2.5 -2.3 2 2 -0.1 10 70

15 J82 1.5 3.5 -0.7 2 1 1.5 2.5 2 2.5 -2.3 2 2 -0.1 20 48

16 J82 1.5 3.5 -0.7 2 1 1.5 2.5 2 2.5 -2.3 2 2 -0.1 30 40

17 Sca-BER 1.2 0.8 -1.5 10 0.5 0.1 5 0.1 2.7 -0.1 2.5 0.1 -1.3 5 82

18 Sca-BER 1.2 0.8 -1.5 10 0.5 0.1 5 0.1 2.7 -0.1 2.5 0.1 -1.3 10 57

19 Sca-BER 1.2 0.8 -1.5 10 0.5 0.1 5 0.1 2.7 -0.1 2.5 0.1 -1.3 20 39

20 Sca-BER 1.2 0.8 -1.5 10 0.5 0.1 5 0.1 2.7 -0.1 2.5 0.1 -1.3 30 36

21 T24 0.3 1.3 -2.7 2.2 1 0.1 2.5 0.5 2 -0.1 2.5 1.3 -0.2 5 90

22 T24 0.3 1.3 -2.7 2.2 1 0.1 2.5 0.5 2 -0.1 2.5 1.3 -0.2 10 58

23 T24 0.3 1.3 -2.7 2.2 1 0.1 2.5 0.5 2 -0.1 2.5 1.3 -0.2 20 39

24 T24 0.3 1.3 -2.7 2.2 1 0.1 2.5 0.5 2 -0.1 2.5 1.3 -0.2 30 34

25 5637 1 1.3 -1 8.5 0.3 0.1 3.5 0.3 0.8 -2.8 2.5 1 -1.3 5 83

26 5637 1 1.3 -1 8.5 0.3 0.1 3.5 0.3 0.8 -2.8 2.5 1 -1.3 10 50

27 5637 1 1.3 -1 8.5 0.3 0.1 3.5 0.3 0.8 -2.8 2.5 1 -1.3 20 32

28 5637 1 1.3 -1 8.5 0.3 0.1 3.5 0.3 0.8 -2.8 2.5 1 -1.3 30 28

29 TSGH-8301 2 0.3 -0.3 9 3.5 4.5 6.5 0.1 0.1 -0.1 2.5 1.3 -1.5 5 60

30 TSGH-8301 2 0.3 -0.3 9 3.5 4.5 6.5 0.1 0.1 -0.1 2.5 1.3 -1.5 10 30

31 TSGH-8301 2 0.3 -0.3 9 3.5 4.5 6.5 0.1 0.1 -0.1 2.5 1.3 -1.5 20 29

32 TSGH-8301 2 0.3 -0.3 9 3.5 4.5 6.5 0.1 0.1 -0.1 2.5 1.3 -1.5 30 30

33 BFTC-905 1.8 0.1 -2.5 7 0.8 1 1 0.3 2.5 -0.1 2 0.1 -1.5 5 63

34 BFTC-905 1.8 0.1 -2.5 7 0.8 1 1 0.3 2.5 -0.1 2 0.1 -1.5 10 33

35 BFTC-905 1.8 0.1 -2.5 7 0.8 1 1 0.3 2.5 -0.1 2 0.1 -1.5 20 21

36 BFTC-905 1.8 0.1 -2.5 7 0.8 1 1 0.3 2.5 -0.1 2 0.1 -1.5 30 18
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4.1.2. Radiotherapy of bladder cancer (RBC) case

The RBC dataset has 36 examples used to predict the resistance to Co-60 radiotherapy for
bladder cancer cells. Each example has thirteen gene proteins, as mentioned above, and one
additional attribute, the energy of gamma radiation from the Co-60 isotope, as listed in Table 3. The
example output represents the patients’ resistance to radiotherapy treatment.

4.2. An example using the proposed DB-MTD method

We randomly drew 10 samples in the RBC dataset as an example to explain the different
scenarios in the proposed DB-MTD method. The drawn samples were set as a training dataset, as
listed in Table 4. The implementation procedure for the DB-MTD method is explained in the
following discussion.

Table 4. The training dataset.

Bladder cell lines Input attributes

NO. ID MDR Topo II Rb EGFR Neu c-ErbB-3 c-ErbB-4 Cyclin A Cyclin D1 P16 Cdc 2 Bcl-2 Bax Co-60

1 HT 1197 1 2 -1.3 3 0.3 3 2.5 0.1 1.3 -1.3 2.5 0.1 -0.8 5

2 HT 1376 1 1 -0.5 5 0.5 6.5 6.5 0.7 0.1 -0.5 2.8 1.8 -0.3 5

3 5637 1 1.3 -1 8.5 0.3 0.1 3.5 0.3 0.8 -2.8 2.5 1 -1.3 5

4 TCC-SUP 0.1 1 -1 1.5 0.1 0.1 3 0.1 0.8 -2.3 2.8 0.1 -0.2 10

5 5637 1 1.3 -1 8.5 0.3 0.1 3.5 0.3 0.8 -2.8 2.5 1 -1.3 30

6 J82 1.5 3.5 -0.7 2 1 1.5 2.5 2 2.5 -2.3 2 2 -0.1 30

7 Sca-BER 1.2 0.8 -1.5 10 0.5 0.1 5 0.1 2.7 -0.1 2.5 0.1 -1.3 20

8 J82 1.5 3.5 -0.7 2 1 1.5 2.5 2 2.5 -2.3 2 2 -0.1 5

9 HT 1197 1 2 -1.3 3 0.3 3 2.5 0.1 1.3 -1.3 2.5 0.1 -0.8 30

10 J82 1.5 3.5 -0.7 2 1 1.5 2.5 2 2.5 -2.3 2 2 -0.1 20

Table 5. Estimations of attributes using the DB-MTD method.

Input attributes

MF type Tri Tri Trap Tri Tri Tri Tri Tri Trap Tri Tri Tri Trap Tri

estimations MDR Topo II Rb EGFR Neu c-ErbB-3 c-ErbB-4 Cyclin A Cyclin D1 P16 Cdc 2 Bcl-2 Bax Co-60

1a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

,1se tu 0.643 0.315 0.5 0.176 0.333 0.219 0.062 0.105 0.3 0.185 0.625 0.474 0.0 0.4

1b 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

2a - - 0.0 - - - - - 0.0 - - - 0.0 -

,2setu - - 0.8 - - - - - 0.9 - - - 1.0 -

2b - - 1.0 - - - - - 1.0 - - - 1.0 -

Note: “Tri” and “Trap” represents that the attribute is fitted by the triangular and trapezoidal MF, respectively.
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We use the Min-Max data normalization process from Eq (13) to transform the training data
domain into [0,1]. The lower bound a and upper bound b of the input attributes can be obtained from
Eqs (23) and (24), as shown in Table 5. The Rb, Cyclin D1, Bax attributes are determined to be the
trapezoidal MF based on our method, where we could obtain two CLs. The remaining attributes were
defined as the triangular MF.

To explain the PAM used to select the virtual samples, we use the MDR and Rb attributes as
examples. The virtual sample (vs) could be created based on different MFs in the two attributes, as
shown in Figure 11. Then, the vs was randomly generated within [a,b] to calculate the possibility
MF(vs). When the MF(vs) was greater than rs~Uniform(0,1), then vs could be regarded as an
appropriate virtual sample.

(a) MF in MDR attribute (b) MF in Rb attribute

Figure 11. The selection of the vs.

After performing the PAM, the virtual samples could be generated, as shown in Table 6. The
virtual sample output was derived using the built BPNN model with small datasets. Then, we added
the generated virtual examples into the original training dataset to build a new training dataset.

Table 6. The virtual samples using DB-MTD method.

NO. MDR Topo II Rb EGFR Neu c-ErbB-3 c-ErbB-4 Cyclin A Cyclin D1 P16 Cdc 2 Bcl-2 Bax Co-60

1 0.336 0.631 0.032 0.104 0.600 0.201 0.186 0.889 0.127 0.05 0.223 0.696 0.407 0.425

2 0.862 0.075 0.806 0.278 0.329 0.109 0.837 0.581 0.353 0.113 0.145 0.529 0.305 0.052

3 0.966 0.141 0.231 0.381 0.534 0.338 0.169 0.377 0.57 0.171 0.774 0.171 0.444 0.165

4 0.937 0.656 0.256 0.715 0.047 0.561 0.314 0.727 0.108 0.700 0.483 0.488 0.024 0.477

5 0.515 0.514 0.818 0.754 0.882 0.912 0.647 0.178 0.037 0.39 0.904 0.554 0.224 0.012

6 0.129 0.147 0.139 0.685 0.486 0.576 0.485 0.646 0.148 0.782 0.04 0.871 0.491 0.724

7 0.468 0.595 0.631 0.289 0.631 0.877 0.581 0.059 0.185 0.721 0.513 0.873 0.035 0.347

8 0.882 0.648 0.877 0.774 0.722 0.734 0.124 0.863 0.260 0.459 0.865 0.646 0.175 0.173

9 0.795 0.467 0.528 0.189 0.775 0.433 0.295 0.246 0.778 0.442 0.031 0.076 0.615 0.466

10 0.208 0.173 0.741 0.615 0.927 0.338 0.136 0.762 0.717 0.629 0.439 0.899 0.32 0.292

4.3. Experimental procedure

In our experiment, we used the random sampling method to create different scenarios for small
sample sizes. The different training datasets were created by sampling from the original datasets with
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the BC dataset ranging in size from 3 to 17 and training data sizes {5,10,15,20,25,30,35} for the
RBC dataset, and the remaining data was set as a testing dataset. Then, we used Eqs (23) and (24) to
calculate the lower and upper bounds of the attributes of the training dataset. The virtual sample
could be randomly generated from the evaluated range. In addition, we calculated the MF values of
the virtual samples to select virtual samples using the PAM. The virtual data size was set as 100. The
f-k-l BPNN network was set as a learning model in the experiment, where f represents f attributes of
the training dataset as the number of nodes in the input layer; k is the number of nodes in the hidden
layer, and l is the number of nodes in the output layer. The testing dataset was inputted into the
learned BPNN model with 100 nodes in the hidden layer and 50 epochs in the training process. In the
BC dataset, we used classification accuracy as the evaluation metric for the BPNN model. In the
RBC dataset, the prediction performance of the BPNN model was evaluated using the root mean
squared error (RMSE), which was defined as:

2

1

1 ˆ( )
Ntest

i i
iN

RMSE y y
test 

  (32)

where Ntest is the number of testing samples; iy is the actual value, and ˆ iy is the predicted
values of the ith testing sample. A total of 100 iterations were used in this experiment. After
performing the experiments, we calculated the average and standard deviation of the
classification accuracy for the BC dataset and the average and standard deviation of the RMSE
for the RBC dataset.

4.4. Experimental results

To verify the effectiveness of the proposed DB-MTD method, we compared it using four
methods: RAW (using raw training samples), MTD (generating virtual samples based on the
triangular MF), GD (generating virtual samples base on a normal distribution), and MD-MTD
(generating virtual samples based on multiple distributions). For the BC dataset, the average
(Avg-accuracy) and the standard deviation (SD-accuracy) of the classification accuracies are
respectively shown in Figures 12 and 13. The improvements (%) in classification accuracy using the
proposed DB-MTD method are listed in Table 7. In Figure 12, it can be seen that the results for most
of the training subsets indicated superior classification accuracies as compared to those for the other
methods under consideration. The SD-accuracy in these methods had smaller variances that were close
to each other with different training data sizes. For example, when the training sample size was 3, the
Avg-accuracy using the DB-MTD method was improved from 86.2 to 89.9%, where the
improvement was approximately 3.7%, as shown in Table 7. For the RBC dataset, the average
(Avg-RMSE) and the standard deviation (SD-RMSE) of RMSE are respectively shown in Figures 14
and 15. In Figure 14, the Avg-RMSE using DB-MTD method was improved from 24.79 to 24.47 at a
training sample size of 5, where the improvement was approximately 0.32. The other improvements
are shown in Table 8.
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Figure 12. The Avg-accuracy for the BC dataset.

Figure 13. The SD-accuracy for the BC dataset.

Figure 14. The Avg-RMSE for the RBC dataset.
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Table 7. The improvement (%) in the classification accuracy using the proposed method.

Training data size RAW vs DB-MTD MTD vs DB-MTD GD vs DB-MTD MD-MTD vs DB-MTD
3 3.70 4.00 0.80 3.90
4 2.60 2.70 0.50 2.50
5 2.30 1.80 0.20 2.20
6 2.00 1.80 0.50 1.90
7 2.40 1.80 1.20 1.80
8 1.60 1.10 0.80 1.20
9 0.90 0.50 0.50 0.20
10 0.70 0.00 0.20 0.30
11 0.70 0.70 1.20 0.20
12 0.30 -0.20 0.80 -0.20
13 0.60 0.60 0.90 0.20
14 0.00 0.00 0.40 0.10
15 0.60 0.30 0.70 0.10
16 0.30 0.30 0.50 0.30
17 0.00 0.00 0.30 0.30

Figure 15. The SD-RMSE for the RBC dataset.

Table 8. The improvement in the RMSE using the proposed method.

Training data size RAW vs DB-MTD MTD vs DB-MTD GD vs DB-MTD MD-MTD vs DB-MTD
5 0.32 0.03 0.05 0.01
10 0.37 0.07 0.16 0.06
15 0.47 0.15 0.23 0.07
20 0.87 0.18 0.25 0.22
25 1.45 0.29 0.40 0.37
30 1.31 0.51 0.65 0.43
35 2.61 0.59 0.16 0.55
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4.5. The statistical test confirming the experimental results

A paired t-test was used to verify the significance of the learning improvements using the proposed
DB-MTD method in BC and RBC datasets. The p-values of the paired t-test for the four methods and the
DB-MTD method are listed in Tables 9 and 10, where the symbol “*” indicates that the prediction results
demonstrated a statistically significant difference (p-value < 0.05). In these tables, the results show
statistical significance in terms of the difference in the Avg-accuracy for the BC dataset and the
Avg-RMSE for the RBC dataset in some training data sizes. For example, when the training data size was
set at 10 in the BC dataset, “0.02*” represents that the prediction results based on the DB-MTD
demonstrated a significant difference in learning performance for the RAW method. Although the
DB-MTD method was only statistically superior to the other methods in some training sizes, the
Avg-accuracy of the DB-MTD method was greater than that when using the methods for BC dataset. It is
the same results based on the Avg-RMSE were obtained for the RBC dataset, as shown in Table 10.

Table 9. The p-values of the paired t-test for the BC dataset on classification accuracy.

Training data size RAW vs DB-MTD MTD vs DB-MTD GD vs DB-MTD MD-MTD vs DB-MTD
3 0.06 0.87 0.69 0.66
4 0.00* 0.00* 0.01* 0.00*
5 0.91 0.73 0.31 0.79
6 0.00* 0.00* 0.01* 0.00*
7 0.00* 0.00* 0.00* 0.00*
8 0.00* 0.00* 0.00* 0.00*
9 0.01* 0.10 0.06 0.56
10 0.02* 1.00 0.44 0.32
11 0.00* 0.00* 0.00* 0.23
12 0.16 0.47 0.00* 0.62
13 0.03* 0.02* 0.00* 0.42
14 0.66 1.00 0.10 0.42
15 0.03* 0.08 0.01* 0.32
16 0.16 0.16 0.08 0.16
17 Not applicable Not applicable 0.32 0.32

Table 10. The p-values of the paired t-test for the RBC dataset on RMSE.

Training data size RAW vs DB-MTD MTD vs DB-MTD GD vs DB-MTD MD-MTD vs DB-MTD
5 0.11 0.68 0.40 0.98
10 0.00* 0.07 0.00* 0.04*
15 0.00* 0.00* 0.00* 0.11
20 0.00* 0.01* 0.00* 0.00*
25 0.00* 0.00* 0.00* 0.00*
30 0.00* 0.00* 0.00* 0.00*
35 0.00* 0.01* 0.44 0.02*
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5. Conclusions

In many fields, the virtual sample generation (VSG) approach has been regarded as an effective
method to improve the learning performance of machine learning models with small sample sizes.
The popular MTD method has been widely applied in many VSG studies to generate virtual samples
within the estimated data range to extend the amount of the original training data. The problem with
the MTD method is that extreme values have serious effects, including making it difficult to estimate
the central location and data skewness. To deal with this problem, a new distance-based MTD
(DB-MTD) method based on a defined distance function between data was proposed in the present
work to improve the degree of data diffusion. The distance became the basis of the coefficient of
skewness, which made the inferred distribution close to the pattern in the existing samples. The
proposed DB-MTD coefficient could more effectively reduce the excessive diffusion problem that
existed in the original MTD method based on a premise where only the triangular membership
function was considered.

As to the limitations of this method, the proposed DB-MTD method can be used for small data
with continuous variables, but it is not suitable for categorical or discrete variables. In our future
research, two research directions can be considered: One is finding discrete density functions to
create virtual samples for categorical or discrete attributes. The other is validating the proposed
method on practical medical datasets.
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