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Abstract: Background: Atherosclerosis is one of the major reasons for cardiovascular disease 

including coronary heart disease, cerebral infarction and peripheral vascular disease. Atherosclerosis 

has no obvious symptoms in its early stages, so the key to the treatment of atherosclerosis is early 

intervention of risk factors. Machine learning methods have been used to predict atherosclerosis, but 

the presence of strong causal relationships between features can lead to extremely high levels of 

information redundancy, which can affect the effectiveness of prediction systems. Objective: We aim 

to combine statistical analysis and machine learning methods to reduce information redundancy and 

further improve the accuracy of disease diagnosis. Methods: We cleaned and collated the relevant data 

obtained from the retrospective study at Affiliated Hospital of Nanjing University of Chinese Medicine 

through data analysis. First, some features that with too many missing values are filtered out of the 34 

features, leaving 25 features. 49% of the samples were categorized as the atherosclerosis risk group 

while the rest 51% as the control group without atherosclerosis risk under the guidance of relevant 

experts. We compared the prediction results of a single indicator that had been medically proven to be 

highly correlated with atherosclerosis with the prediction results of multiple features to fully 

demonstrate the effect of feature information redundancy on the prediction results. Then the features 
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that could distinguish whether have atherosclerosis risk or not were retained by statistical tests, leaving 20 

features. To reduce the information redundancy between features, after drawing inspiration from graph 

theory, machine learning combined with optimal correlation distances was then used to screen out 15 

significant features, and the prediction models were evaluated under the 15 features. Finally, the 

information of the 5 screened-out non-significant features was fully utilized by ensemble learning to 

improve the prediction superiority for atherosclerosis. Results: Area Under the Receiver Operating 

Characteristic (ROC) Curve (AUC), which is used to measure the predictive performance of the model, 

was 0.84035 and Kolmogorov-Smirnov (KS) value was 0.646. After feature selection model based on 

optimal correlation distance, the AUC value was 0.88268 and the KS value was 0.688, both of which 

were improved by about 0.04. Finally, after ensemble learning, the AUC value of the model was further 

improved by 0.01369 to 0.89637. Conclusions: The optimal distance feature screening model proposed 

in this paper improves the performance of atherosclerosis prediction models in terms of both prediction 

accuracy and AUC metrics. Code and models are available at 

https://github.com/Cesartwothousands/Prediction-of-Atherosclerosis. 

Keywords: atherosclerosis; machine learning; random forest classifier; ensemble learning, operation 

research; information redundancy 

 

1. Introduction  

According to the World Health Organization, cardiovascular disease has become the most 

important cause of death worldwide. Atherosclerosis is a kind of slow narrowing of the arteries that 

influences the blood flow from the heart to the brain, also the cause of most cardiovascular diseases [1–3]. 

The subclinical latency period for atherosclerosis is 30 to 50 years, with a long asymptomatic period [4]. 

There are many factors that influence the onset of atherosclerosis, the influence factors are highly 

relevant and interact with each other. Therefore, doctors often diagnose patients based on a few typical 

features. And it’s difficult to diagnose it accurately at an early stage when the typical features do not 

change significantly. The traditional statistical model is not effective enough when applied to this 

situation. In order to identify atherosclerosis earlier, machine learning methods are widely used to build 

models to predict and prevent the disease. Currently, algorithms like support vector machines, decision 

trees naive Bayes and several others enhanced the relevant diseases prediction and enabled the 

continuation of human life worldwide [5–8]. For instance, Couturier et al. decided to use a three-step 

method based on cluster-supervised classification and frequent itemset search to predict whether the 

patient was likely to develop atherosclerosis based on the relevance of his lifestyle habits and social 

environment [9]. Artificial neural networks (ANN) and random forests (RF) are also very widely used 

in atherosclerosis research. They are applicable to most of the datasets, having superior performance, 

and are less difficult to use and reduce the computational burden [10].  

There are many academics who have contributed to the prediction of cardiovascular disease using 

different machine learning methods. We review the relevant literature and collect the following 

research methods and results which are shown in Table 1.  
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Table 1. Results and methods of previous studies. 

Author Method Result 

V. Sree Hari Rao [11] 
In-built imputation algorithm and 

particle swarm optimization (PSO) 
The best accuracy was 99.73% 

Jiang Xie [12] Weight learning approach 

The prediction accuracy improved 

from 11.53 to 16.76% after weighted 

learning 

Wenming He [13] 

Kernel extreme learning machine 

(KELM) optimized by an improved 

salp swarm algorithm (SSA) 

The classification accuracy obtained 

by 

STSSA-KELM was 84.40% 

Andrew Ward [14] Trained ML models 

Bettr AUC was 0.835; AUC after 

incorporating additional EHR data 

was 0.790 

Oumaima Terrada [7] 

K-medoids and k-means clustering for 

classification, Artificial Neural 

Network (ANN) and K-Nearest 

Neighbor (KNN) 

The best accuracy was 96%, the best 

Matthews’s correlation coefficient 

was 0.92 

Soodeh Nikan [15] 

Ridge expectation 

maximization imputation (REMI) 

technique, conditional likelihood 

maximization method 

The best accuracy was 88.04% 

Jiang Xie [16] Subset Learning (S-learning) The best AUC was 0.83 

Mohan Priya [17] Fast correlation-based filter About 99.47% 

Antonis I. Sakellarios [18] 
Gradient Boosted Trees (GBT) 

algorithm 

The best accuracy was 68%, the best 

AUC was 0.59 

Brajesh Kumar [19] Support vector machine 

The AUC with Hungarian dataset was 

79.6%, 

The AUC with Cleveland dataset was 

79.0%, 

The AUC with Z-Alizadeh Sani 

dataset was 91.2%, 

The AUC with Statlog dataset was 

79.6%. 

Over the past two decades, many doctors and researchers have tried to combine machine learning 

methods and imaging biomarkers to predict atherosclerosis. Lin [20] combined discriminative feature 
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selection and a semi-supervised graph-based regression to detect changes of plaque. However, 

atherosclerosis is affected by many factors, the analysis of imaging biomarkers often leads to the ignore 

in early period. Terrada used different machine learning model like ANN and KNN [7] to achieve a 

high accuracy performance (The best accuracy was 96%). While, they didn’t do additional feature 

selection for features which include a variety of demographic indexes, physical and chemical indexes, 

imaging and echo biomarkers. They are medically important, but highly relevant and interact with each 

other. Rao proposed N2Genetic optimizer [11] to improve the performance and their prediction 

accuracy can achieve 99.73%. Hathaway [21] tried to combined deep learning method and routine 

atherosclerosis prediction by using simple office-based clinical features. However, they focus on using 

computing optimization in different features while didn’t consider the high relevant of features they 

use. These features can enhance the information redundancy of the model, and it is necessary to reduce 

the redundancy through feature selection. According to Jamthikar [22], supervised ML-based 

algorithms. were made up of five components: (i) data partitioning, (ii) feature engineering, (iii) 

training model, (iv) prediction model and (v) performance evaluation. Skandha [23] made a major 

breakthrough on the accuracy of the prediction through applying deep learning to training and 

prediction model. They have inspired us to focus our efforts on feature engineering and to further 

integrate it with operations research. 

This paper presents an operations research-based machine learning approach for atherosclerosis 

prediction. The focus is on combining statistical analysis and machine learning methods to reduce 

information redundancy and further improve the accuracy of disease diagnosis. First, we remove the 

features with more missing values and fill in the features with fewer missing values among the 34 

features, leaving 25 features. Then t-test and chi-square test are used for continuous and discrete 

features respectively, and the features that fail the statistical test are removed, leaving 20 features Next, 

machine learning combined with optimal correlation distance is used to filter out 15 significant features, 

and the prediction model is evaluated under these 15 features. Finally, the information of the screened 5 

non-significant features is fully utilized by ensemble learning to improve the predictive advantage of 

atherosclerosis. The experiments show that the prediction performance is significantly improved by 

reducing the redundancy of information. 

The rest of this paper is presented below. Section 2 briefly describes related work, including data 

sources and processing, selecting prediction performance metrics and prediction models, and using 

random forests to filter features. Section 3 focuses on the feature selection inspired by operations 

research, and proposes an optimal distance model based on Dijkstra. Experimental results are presented 

in Section 4. The paper concludes with some conclusions in Section 5. 

2. Methods 

2.1. Data sources and preprocessing 

The data in this paper are obtained from a summation study conducted from January 2016 to 

December 2017 at Affiliated Hospital of Nanjing University of Chinese Medicine, while the study here 

was approved by the hospital's ethics committee after written informed consent was obtained from all 

patients. After screening, we select 34 characteristics. In order to better study the pathology of 

atherosclerosis, we divide total samples under the guidance of relevant experts, with 49% categorized 

as atherosclerosis risk group and 51% as a control group without atherosclerosis risk at the end. 
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In consultation with a medical professional and based on relevant tests, we refine the group 

classification to assess patients at risk for hypertension, cardiovascular, chronic kidney and 

hyperlipidemia (HL), which constitute the risk group for this study. Patients with hyperlipidemia (HL) 

are defined as having a low-density lipoprotein (LDL) level (  3.36 mmol/L), and/or a total cholesterol 

(TC) level ( ≥ 5.17 mmol/L), and/or a triglyceride (TG) level ( 1.69 mmol/L). Healthy controls are 

mainly selected from the same period of physical examination, but people with abnormal hemoglobin 

or history of previous cardiovascular events are excluded, and People with cancer, diabetes or 

autoimmune diseases are the same as the former. 

Table 2. Twenty-five features affecting atherosclerosis and statistical values of them. 

Features Average value Standard deviation p-value 

Sex   0.056 

Age 55.7540 14.4806 < 0.001 

BMI 23.8016 3.4114 < 0.001 

Triglycerides 1.5360 1.4969 < 0.001 

Total cholesterol 4.7253 1.9817 0.004 

Glucose 5.3104 1.3383 < 0.001 

Uric acid 530.9794 195.3352 0.754 

Haemoglobin 130.9871 22.9056 < 0.001 

white blood cell count 6.2310 3.0117 0.022 

Red blood cell count 4.5991 5.2696 < 0.001 

Platelet count 195.4817 59.5907 0.477 

Glutathione 

aminotransferase 
24.6704 19.1175 0.440 

Glutathione transaminase 22.7894 12.2302 0.896 

HDL 1.3621 0.3759 < 0.001 

LDL 2.5349 0.7251 < 0.001 

Systolic blood pressure 134.3746 21.3627 < 0.001 

Diastolic blood pressure 78.2170 12.3026 0.003 

LCCA-IMT 0.0627 0.0563 < 0.001 

RCCA-IMT 0.0584 0.0365 < 0.001 

LCCA-RI 0.7167 0.0693 0.023 

RCCA-RI 0.7272 0.0893 0.017 

LCCA-BS 6.5665 2.7185 < 0.001 

LCCA-ES 8.9234 2.4416 < 0.001 

RCCA-BS 6.0710 1.4666 < 0.001 

RCCA-ES 8.4066 2.2626 < 0.001 

Through data analysis, there are 8 discrete features and 26 continuous features in the dataset. 

Since most of the features have missing values, the missing situation of each feature needs to be 

analyzed specifically before doing missing value processing. After preliminary statistics, we find that 2 

features do not have missing values, and the remaining 30 features have different degrees of missing. 

In general, the treatment of missing values is to remove the features with more than 30% missing 

proportion, and filling the missing values of all features will bring some problems such as presence of 
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biased information on certain extreme pathologies, large filling errors. Therefore, features with more 

missing values are selectively eliminated and 25 features are retained as shown in Table 2. Considering 

that the missing proportion is not high in the remaining characteristics and the difficulty of each filling 

method, this paper uses statistical methods to fill the data with fewer missing values. Specifically, 

continuous variables are filled with the median if they are skewed, otherwise they are filled with the 

mean; for discrete variables, the plural is chosen to fill the missing values. At last, we got 622 samples 

with all the features. Under the guidance of relevant experts, 304 samples are seen as atherosclerosis 

risk group and 318 samples are seen as a control group without atherosclerosis risk. In addition, the data 

is randomly divided into a training set of 0.7 and a test set of 0.3 in preparation for the cross-validation. 

2.2. Statistical analysis 

In this paper, when the data is statistically processed, continuous type characteristics are expressed 

as ‘mean ± standard deviation’, and for the presence of atherosclerosis risk, we take independent 

sample t-test for the difference comparison between these two groups; while discrete type 

characteristics were expressed as counts and percentages, the difference comparison between groups 

was done using the chi-square test with p < 0.05 used as the inspection standard. In the full sample 

after analysis, the basic situation is shown in Table 2. 

As seen in Table 2, using the idea of label encoding, we quantified the gender index as 1 for male 

and 0 for female. Also, age, BMI (body mass index), triglycerides, total cholesterol, glucose, 

hemoglobin, white blood cell count, red blood cell count, HDL (High-density lipoprotein), LDL (Low-

density lipoprotein), systolic blood pressure, diastolic blood pressure, LCCA-IMT (Left common 

carotid artery intima-media thickness), RCCA-IMT (Right common carotid artery intima-media 

thickness), LCCA-RI (Resistance indices of blood flow in the left common carotid artery), RCCA-RI 

(Resistance indices of blood flow in the right common carotid artery), LCCA-BS (Pulse wave 

conduction velocity at the beginning of systole in the left common carotid artery), LCCA-ES (Pulse 

wave conduction velocity at the end of systole in the left common carotid artery), RCCA-BS (Pulse 

wave conduction velocity at the beginning of systole in the right common carotid artery) and RCCA-

ES (Pulse wave conduction velocity at the end of systole in the right common carotid artery) passed 

the statistical test. We finally selected 20 features while the remaining features were screened down 

because they did not meet the statistical requirements. 

2.3. Predictive performance metrics 

We assess our model through a range of relative metrics. The ROC curve is the working 

characteristic curve of the model being measured, and is a visualization of the relationship between 

the relevant indicators of the continuous variables of sensitivity and specificity of the model in the 

form of an image. AUC means the area under the ROC curve. It is a metric often used to evaluate the 

merits of a dichotomous model, with higher values indicating better prediction. 

However, the AUC value only evaluates the overall training effect of the model, and does not 

reflect how to divide the categories to make the best prediction. In our experiments, we use the KS 

(Kolmogorov-Smirnov) statistic [24] to evaluate the classification effectiveness of the model. For 

dichotomous classification problems, the KS value, like the AUC value, uses two metrics, TPR and 

FPR, to measure the overall predictive effectiveness of the model. And KS uses the maximum of the 
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difference between TPR and FPR to indicate the optimal classification threshold as shown in Figure 1. 

Moreover, we use sensitivity-specificity curve and precision-recall curve to Calibrate model. 

 maxKS max TPR FPR                                   (1) 

 

Figure 1. Schematic diagram of the KS curve. 

2.4. Predictive model based on RFC 

Random Forest (RF) [25] is an optimized version of the bagging algorithm and it was used in 

many different areas including banking, stock markets, pharmaceuticals and e-commerce. In 

healthcare, ingredients combined correctly in a drug can be identified by this method, and diseases can 

be accurately identified based on the patient's medical history. As a result, we build predictive models 

about the risk of atherosclerosis based on RF for intelligent classification. 

2.5. Random forest classifier 

We start by splitting 70% of the data into a training set and 30% into a test set, and ensure that all 

samples are equally likely to be selected for the training set. If the predictions obtained after such 

multiple equal-likelihood sampling are stable, it means that the current model is feasible. Once the 

dataset has been partitioned, the random forest is used to train the model. 

Single decision trees can be difficult to achieve high accuracy, mainly because solving an optimal 

(minimum generalization error) decision tree is an NP-hard (unable to exhaust all possible tree 

structures) problem, and often results in a locally optimal solution. Models constructed from a single 

tree are often not stable enough, and changes in the sample can easily cause changes in the tree structure. 

We use the idea of bagging algorithm to divide the training set into several training subsets 

randomly, and then build decision trees on each subset separately. In the process of building each 

decision tree, the idea of feature subspace is introduced into it, that is, for each node of the decision 

tree in choosing to divide the features to achieve the best, its candidate feature set is not all the features 

at the corresponding node, but a subset composed of some randomly selected features from it. The 

final prediction result is derived from the voting result of each decision tree. 

We select T sample sets containing m training samples by self-sampling, and then train a base 
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learner based on each sample set before combining them. When combining and regressing the 

predicted outputs together, the Bagging-like approach usually uses simple voting for the classification 

task, i.e., a simple average weighted summation method is performed. However, if the number of votes 

is consistent, it is simplest to select a class at random, or of course to further examine the confidence 

of the learner votes to determine the final classification. Their exact process is as follows, for a given 

dataset containing n training samples  1 2, , , nD x x x , 

1) A new training set containing n samples is formed using Bootstrap with put-back sampling; 

2) Repeat 1) for T times to obtain T training sets; 

3) T base classifiers trained independently on each training set using classification algorithm; 

4) For each test sample, T predictions are obtained using the above T classifiers; 

5) For each test sample, a majority vote is used to obtain the final prediction. 

The exact process is shown in Figure 2. 

 

Figure 2. Flow chart of the random forest model. 

2.6. Measurement of feature importance 

The Gini index demonstrates the chance of misclassifying a randomly selected sample in the 

sample set, and a smaller Gini index indicates a lower probability of being misclassified, i.e., a higher 

sample purity (when all samples in the set are of one type, the Gini index is 0). The Gini index is 

calculated as follows. 

2

1 1

( ) 1 (1 )
K K

k k k

k k

Gini p p p p
 

                                      (2) 

where kp  denotes the chance that the selected sample belongs to the kth category. If the certain node 

has the smallest Gini index, it is also the least likely to make a mistake. Therefore, we use this node as 

the root node of the decision tree. In the consequent forest, the Gini index represents the fineness of 

the model, negatively correlated with purity and characteristics. 

Let the nodes in the jth decision tree in which a feature appears be the set M. Then the importance 

of the feature under the jth decision tree is： 

( ) ( ( ) ( ) ( ))Gini

ij m MA Gini m Gini i Gini r                      (3) 

where Gini(i) and Gini(r) refer to the Gini index corresponding to the two new nodes of node m after 
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branching, respectively. Finally, the importance of each feature under the T decision tree is calculated 

as follows. 

( )

1

( )

1 1

T Gini

iji
i c T Gini

ijj i

A
A

A



 




 
                                     (4) 

where iA   is the magnitude of the importance of the object corresponding to the ith feature, after 

normalization. The importance of selected features is shown in Table 3. 

Table 3. Fifteen selected features and importance ranking obtained from random forest. 

 %IncMSE IncNodePurity 

Age 0.006542 3.688916 

BMI 0.00203 3.493642 

Triglycerides 0.000509 2.862369 

Total cholesterol 0.018734 6.030064 

white blood cell count 0.003258 3.490238 

HDL 0.045132 15.41302 

LDL 0.084491 20.03696 

Systolic blood pressure 0.00936 4.092086 

Diastolic blood pressure 0.006558 3.329568 

LCCA-IMT 0.014924 6.732724 

RCCA-IMT 0.041935 13.04469 

LCCA-BS 0.010674 4.803951 

LCCA-ES 0.00215 3.041142 

RCCA-BS 0.017512 7.513578 

RCCA-ES 0.007113 5.189474 

3. Feature selection (FS) inspired from operations research 

3.1. Correlation distances and redundancy between features 

To improve the identification accuracy of this atherosclerosis risk predictive model, feature 

quantities need to be removed that are not relevant to the classification target. We screened out the 

relevant features by statistical tests followed by feature redundancy needs to be considered. Feature 

redundancy refers to the correlation between features. Redundant feature quantities that have a high 

correlation with other feature quantities will also have a significant impact on this model, and if two 

features are perfectly correlated, they are mutually redundant features. We will model the optimal 

correlation distance based on the correlation distance between the features by transforming it into an 

NP problem in operations research. 

We can calculate and select features for the model by using a measure of relevance. Similarity 

measurement can be achieved by calculating the distance between individual features.  

Estimating similarity measures between samples is often done in many research questions, also 

known as correlation coefficients. This is often accomplished by calculating the distance between 
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samples, and the method used to calculate the distance depends on the correctness of the feature 

classification and feature selection. We define the correlation coefficient as: 

 

   

      
   

,
XY

E X E X X E YCov X Y

D X D Y D X D Y


 
                         (5) 

The correlation distances are defined as follows: 

1xy XYD                                          (6) 

The Pearson Correlation Coefficient between features is shown in Figure 3. 

 

Figure 3. Pearson Correlation Coefficient between 15 features after FS. 

3.2. Optimal distance model based on Dijkstra 

In the fields of data structures, topological sorting and algorithms, transforming an operations and 

optimization problem into a graph theoretic problem can help us a lot. Graphs are the basis of graph 

theory problems, and we study each feature as 20 nodes in the graph set up for this problem, where we 

can describe the labelled values on each edge in terms of weights, i.e., each edge has a unique 

corresponding value, and study the graph as a weighted graph. Where the unique weight of each path 

is the distance associated with Eq (6), we can use a ternary group  , ,G V E W  to represent the 

entitled undirected graphs to be solved in this paper, where W is the correlation function between the 

nodes, i.e., the matrix 20 20W   consisting of the correlation distances xyD  between the nodes. 

We can extract combinations of different nodes through feature filtering to obtain better results 

for atherosclerosis prediction models. We combine the ideas of computer sampling search and the 

shortest distance in graph theory problems to build an optimal distance model based on the solution of 

the Dijkstra algorithm. When we need to select k features, we can assume that the selection of features 

is done from a certain node. We obtain the optimal set of features from this node by selecting the k-1 

features that have less redundancy with each other after composing the feature set. Then by traversing 
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the computer from each node and comparing them, we can obtain the best set of filtered features when 

k features need to be selected. 

 

a                               b 

Figure 4. a. Flow chart of the Dijkstra algorithm. b. Flow chart of feature selection based 

on optimal distance model. 

We will choose the Dijkstra algorithm [26] for optimal route solving. We introduce an auxiliary 

array D while each element D[i] (1 < i < 20) is used to represent the currently recorded distance from 

the starting node to the other nodes. We assume the initial state of D: if we go from the starting ith 

node to the jth node, then ijD D , i.e., representing the size of the weights on the edges by the path 

from the ith node to the jth node. The role of Dijkstra algorithm is solving the shortest path in graph 

theory. In order to pursue the optimal path, we reduce the impact of redundant features on the model 

by finding the node with the greatest distance from the relevance of this node. Indeed, it is a process 

of finding the longest path. D [1] is the length of the path from the origin to the node with the greatest 

distance. We denote all the reached node as the set S, then the shortest path to the next farthest and 

non-S node t, that is, D [2], and so on, to obtain the objective function max: 
1

max  [ ]
k

i
D i

 . The 

specific process, as shown in flow chart Figure 4a. 

Using Dijkstra algorithm, we can obtain the longest path contained the optimal set of features of 

the ith node when k features are selected. At this point, the computer traversal is then used to obtain 

the different sets of optimal features when starting from the 1st to the 20th node. Because we want to 

strengthen the accuracy of the feature screening results, we then perform the selection from 1 to 20 

features by traversal and use them in a random forest-based atherosclerosis prediction model, evaluated 

by KS statistics, and finally obtain the objective function 
20

1
max  kk

KS
 . The final optimal set of 

features and its KS metric results are obtained. The specific model is as follows. 
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                                   (7) 

At this point, we obtain the set of features that can make the random forest-based atherosclerosis 

prediction model optimal, and complete the feature screening, the specific steps of which are shown 

in Figure 4b. 

We obtain the optimal feature set by comparing the KS statistics of each feature set based on the 

optimal distance model solved by Dykstra's algorithm to complete the feature selection. We finally 

select the optimal special feature set under 15 features, and the variation of KS value for each feature 

set can be obtained in Figure 5a. Its KS value of 0.688 is better than the rest of the feature classes, KS 

curve is shown in Figure 5b and the optimal set of features is shown in Table 3. 

 

a                                     b 

Figure 5. a. variation in KS of the optimal set for different number of features. b. KS 

curves under the optimum set. 

3.3. Ensemble learning (EL) 

The prediction model above is constructed based on the 15 central feature sets screened by the 

feature selection model. Although it reduces the complexity of the model, a certain degree of 

information on variables that are not screened out is lost, which in turn reduces the accuracy of the 

prediction model. 

With the purpose of further enhancing the model accuracy, this paper uses ensemble learning to 

make the most of the data information embodied in the four non-central variables that were discarded. 

The basic idea is to model the predictions of the 15 selected central features and the 5 discarded non-

central features separately, and then weight the predictions of the two sets of variables to obtain the 

final prediction results modified by ensemble learning. The result will contain the information of the 5 

variables that are initially discarded. 
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3.4. Bayesian network 

Bayesian network [27] is directed acyclic graphs consisting of nodes representing features and 

directed edges representing the interrelationships between the nodes. The direction of the directed edge 

points from the parent node to the child node. Dependencies between features are expressed through 

conditional probabilities, and features without a parent node are expressed informally through their 

prior probabilities. As Bayesian networks express the causal relationships between characteristic 

variables in a visual framework structure, they can make the logic of uncertainty between variables 

clearer and better interpreted. 

In our work, Bayesian network is constructed for each of the 15 selected central variable sets and 

the remaining 5 non-central variable sets. The sparsity of the Bayesian network measures the 

redundancy of feature information in each of the two feature sets divided. 

 

a 

 

b 

Figure 6. a. Bayesian network of 15 selected central features. b. Bayesian network of 5 

non-central features. 
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As can be seen from Figure 6, after the filtering of the feature selection algorithm based on the 

optimal correlation distance, the Bayesian network structure of the divided two feature subsets is 

simple and the information redundancy between the features has been effectively reduced. 

3.5. Ensemble learning based on the search method 

The aim of ensemble learning is to integrate the information described by the set of 15 central 

features with the set of 5 non-central variables through a certain weighting process, making full use of 

the information of the 5 non-central features that are screened out, so that the prediction model has a 

higher accuracy. The prediction model under ensemble learning can be expressed as: 

1 1 2 2learningr w r w r                                        (8) 

where learningr  is the prediction result after ensemble learning, 1r  and 2r  are the prediction results 

for the central and non-central sets of variables, respectively, also 1w  and 2w  are the weights for the 

central and non-central sets of variables, respectively, which satisfy the following constraint: 

1 2

1 2 1

w w

w w




 
                                       (9) 

The basic idea of the search method is to search for the set of weights that has the largest value 

of the model AUC while satisfying the constraint in Eq (9). The optimal combination of weights 

searched in steps of 0.1 is 1w  = 0.7, 2w  = 0.3. 

4. Results and discussion 

The common methods, t-test and chi-square test, used in the paper yielded 20 of the 25 

characteristics with statistically significant effects. Some of these 20 features are significantly 

correlated, so this paper uses the feature selection method to obtain 15 features. 

We use AUC values to quantify the optimization of model prediction performance between 

common methods (abbreviated as CM), FS and EL. After several experiments with randomly assigned 

test sets and training sets, the model AUC is stable with no overfitting occurred confirming that the 

random forest-based prediction model works well. Then sensitivity-specificity curve and precision-

recall curve are plotted to calibrate model. After FS, AUC is turned out to be 0.8826, resulting in an 

improvement of 0.052 compared to AUC without FS in the predictive performance of the model. After 

ensemble learning, the AUC is further increased to 0.896, an improvement of 0.091. The improvement 

in AUC for both steps is shown in the  

Figure 7a and the sensitivity-specificity curve and precision-recall curve are plotted in  

Figure 7b,c. This shows that the work in this paper is really effective. 

In order to show that the method of feature selection in this paper is superior to other 

dimensionality reduction methods, we select the dimensionality reduction methods of principal 

component analysis (PCA) and factor analysis (FA), and use the AUC values obtained from the random 

forest classifier to compare the effects. PCA can regroup the original variables into a new set of 

uncorrelated composite variables, and a few selected composite variables can better reflect the 
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information of the original variables. FA is a statistical technique to study the extraction of common 

factors from a population of variables. Both PCA and FA are more classical methods for dimensionality 

reduction, but the effect of PCA and FA is much lower than that of feature selection in this paper, as 

shown in Figure 7d. 

 
a                                 b 

 
c                                 d 

Figure 7. a. AUC of CM-RF, FS-RF and EL. b. Precision-recall curve of CM-RF, FS-RF 

and EL. c. Sensitivity-specificity curve of CM-RF, FS-RF and EL. d. AUC of our FS-Rf 

compared to PCA and FA. 

Moreover, we review the medical literature related to atherosclerosis. HDL levels correlate 

strongly with atherosclerosis [28]. While increased IMT is an early clinical manifestation of 

atherosclerosis [29]. To further demonstrate the advantages of the prediction methods used in this paper, 

it is necessary to evaluate these single indicators in predicting atherosclerotic outcomes that have 

been shown to have a direct association with atherosclerosis. The ROC curves for HDL and IMT 

used to predict atherosclerosis respectively and the 25 feature sets prior to feature selection are 

shown in Figure 8. 
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Figure 8. The ROC curves for HDL and IMT used to predict atherosclerosis respectively 

and the 25 feature sets prior to feature selection. 

5. Conclusions 

The work in this paper is based on research work on atherosclerosis and the guidance of 

professionals. The original data set is preprocessed and statistically analyzed through relevant 

statistical analyses and tests. We build an atherosclerosis prediction model based on random forest 

classifier with good results. As the result of the comparison between the ROC curves for HDL/IMT 

and the 25 feature sets prior to feature selection, Even the use of a single medically proven indicator 

with a strong correlation with atherosclerosis for prediction is far from the predictive effect of our 

model. Further evidence of the great role that feature redundancy plays in model prediction is provided. 

Then we transform the data screening problem into an optimization problem based on optimal paths. 

We obtain an optimized feature set containing 15 features by building an optimal distance model solved 

based on Dijkstra algorithm, whose model effects are optimized. Finally, it is then boxed and the 

feature set is discretized. The final model yielded an AUC metric of 0.9170, an improvement of 0.0472 

from the initial one. This illustrates that the optimal distance feature screening model proposed in this 

paper improves the performance of the atherosclerosis prediction model in terms of both prediction 

accuracy and AUC metrics. 

Acknowledgments 

This research was supported by the National Natural Science Foundation of China (11771216), 

the Key Research and Development Program of Jiangsu Province (Social Development) (BE2019725), 

NUIST Students’ Platform for Innovation and Entrepreneurship Training Program 

(XJDC202110300552), and the Undergraduate Innovation & Entrepreneurship Training Program of 

Jiangsu Province (202110300098Y). 

Conflict of interest 

All authors declare no conflicts of interest in this paper. 



4908 

Mathematical Biosciences and Engineering  Volume 19, Issue 5, 4892–4910. 

References 

1. C. Sinning, A. Kieback, P. S. Wild, R. B. Schnabel, F. Ojeda, S. Appelbaum, et al., Association of 

multiple biomarkers and classical risk factors with early carotid atherosclerosis: results from the 

Gutenberg Health Study, Clin. Res. Cardiol., 103 (2014), 477–485. 

https://doi.org/10.1007/s00392-014-0674-6 

2. J. F. Polak, M. J. Pencina, D. H. O'Leary, R. B. D'Agostino, Common carotid artery intima-media 

thickness progression as a predictor of stroke in multi-ethnic study of atherosclerosis, Stroke, 42 

(2011), 3017–3021. https://doi.org/10.1161/STROKEAHA.111.625186 

3. M. W. Lorenz, C. Schaefer, H. Steinmetz, M. Sitzer, Is carotid intima media thickness useful for 

individual prediction of cardiovascular risk? Ten-year results from the Carotid Atherosclerosis 

Progression Study (CAPS), Eur. Heart J., 31 (2010), 2041–2048. 

https://doi.org/10.1093/eurheartj/ehq189 

4. M. Soni, M. Ambrosino, D. S. Jacoby, The use of subclinical atherosclerosis imaging to guide 

preventive cardiology management, Curr. Cardiol. Rep., 23 (2021), 61. 

https://doi.org/10.1007/s11886-021-01490-7  

5. A. Hazra, S. K. Mandal, A. Gupta, A. Mukherjee, A. Mukherjee, Heart disease diagnosis and 

prediction using machine learning and data mining techniques: a review, Adv. Comput. Sci. 

Technol., 10 (2017), 2137–2159.  

6. M. Shouman, T. Turner, R. Stocker, Integrating Naive Bayes and K-means clustering with 

different initial centroid selection methods in the diagnosis of heart disease patients, Comput. Sci. 

Conf. Proc., 5 (2012), 125–137. https://doi.org/10.5121/csit.2012.2511  

7. O. Terrada, B. Cherradi, A. Raihani, O. Bouattane, Classification and prediction of atherosclerosis 

diseases using machine learning algorithms, in International Conference on Optimization and 

Applications (ICOA), 5 (2019), 1–5. https://doi.org/10.1109/ICOA.2019.8727688  

8. D. Han, K. K. Kolli, S. J. Al'Aref, L. Baskaran, A. R. van Rosendael, H. Gransar, et al., Machine 

learning framework to identify individuals at risk of rapid progression of coronary atherosclerosis: 

from the PARADIGM registry, J. Am. Heart Assoc., 9 (2020), e013958. 

https://doi.org/10.1161/JAHA.119.013958  

9. O. Couturier, H. Delalin, H. Fu, G. Edouard, A three-step approach for stulong database analysis: 

characterization of patients groups, in Proceeding of the European Conference on Machine 

Learning and Principles and Practice of Knowledge Discovery, 2004.  

10. M. Abdar, W. Ksiazek, U. R. Acharya, R. S. Tan, V. Makarenkov, P. Plawiak, A new machine 

learning technique for an accurate diagnosis of coronary artery disease, Comput. Methods 

Programs Biomed., 179 (2019), 104992. https://doi.org/10.1016/j.cmpb.2019.104992  

11. V. S. H. Rao, M. N. Kumar, Novel approaches for predicting risk factors of atherosclerosis, IEEE 

J. Biomed. Health, 17 (2012), 183–189. https://doi.org/10.1109/TITB.2012.2227271  

12. J. Xie, R. Wu, H. Wang, Y. Kong, H. Li, W. Zhang, A novel weight learning approach based on 

density for accurate prediction of atherosclerosis, in Intelligent Computing Theories and 

Application (eds. D. S. Huang, K. H. Jo., Z. K. Huang), Springer, (2019), 190–200. 

https://doi.org/10.1007/978-3-030-26969-2_18  

13. W. He, Y. Xie, H. Lu, M. Wang, H. Chen, Predicting coronary atherosclerotic heart disease: an 

extreme learning machine with improved salp swarm algorithm, Symmetry, 12 (2020), 1651. 

https://doi.org/10.3390/sym12101651  

https://pubmed.ncbi.nlm.nih.gov/?term=Schnabel+RB&cauthor_id=24488175
https://pubmed.ncbi.nlm.nih.gov/?term=Ojeda+F&cauthor_id=24488175
https://pubmed.ncbi.nlm.nih.gov/?term=Appelbaum+S&cauthor_id=24488175
https://doi.org/10.1007/s00392-014-0674-6
https://doi.org/10.1161/STROKEAHA.111.625186
https://doi.org/10.1093/eurheartj/ehq189
https://pubmed.ncbi.nlm.nih.gov/?term=Soni+M&cauthor_id=33961134
https://pubmed.ncbi.nlm.nih.gov/?term=Ambrosino+M&cauthor_id=33961134
https://pubmed.ncbi.nlm.nih.gov/?term=Jacoby+DS&cauthor_id=33961134
https://doi.org/10.1007/s11886-021-01490-7
https://doi.org/10.5121/csit.2012.2511
https://doi.org/10.1109/ICOA.2019.8727688
https://doi.org/10.1161/JAHA.119.013958
https://doi.org/10.1016/j.cmpb.2019.104992
https://doi.org/10.1109/TITB.2012.2227271
https://doi.org/10.1007/978-3-030-26969-2_18
https://doi.org/10.3390/sym12101651


4909 

Mathematical Biosciences and Engineering  Volume 19, Issue 5, 4892–4910. 

14. A. Ward, A. Sarraju, S. Chung, J. Li, R. Harrington, P. Heidenreich, Machine learning and 

atherosclerotic cardiovascular disease risk prediction in a multi-ethnic population, NPJ Digit. 

Med., 125 (2020), 1–7. https://doi.org/10.1038/s41746-020-00331-1  

15. S. Nikan, F. Gwadry-Sridhar, M. Bauer, Machine learning application to predict the risk of 

coronary artery atherosclerosis, in 2016 International Conference on Computational Science and 

Computational Intelligence (CSCI), (2016), 34–39. https://doi.org/10.1109/CSCI.2016.0014  

16. J. Xie, H. Wang, J. Zhang, C. Meng, Y Kong, S. Mao, et al., A novel hybrid subset-learning method 

for predicting risk factors of atherosclerosis, in 2017 IEEE International Conference on 

Bioinformatics and Biomedicine (BIBM), (2017), 2124–2131. 

https://doi.org/10.1109/BIBM.2017.8217987  

17. M. Priya, P. Ranjith Kumar, A novel intelligent approach for predicting atherosclerotic individuals 

from big data for healthcare, Int. J. Prod. Res., 53 (2015), 7517–7532. 

https://doi.org/10.1080/00207543.2015.1087655  

18. A. I. Sakellarios, V. C. Pezoulas, C. Bourantas, K. K. Naka, L. K. Michalis, P. W. Serruys, et al., 

Prediction of atherosclerotic disease progression combining computational modelling with 

machine learning, in 2020 42nd Annual International Conference of the IEEE Engineering in 

Medicine & Biology Society (EMBC), (2020), 2760–2763. 

https://doi.org/10.1109/EMBC44109.2020.9176435  

19. B. Kumar, H. Mathur, Comprehensive analysis of atherosclerosis disease prediction using 

machine learning, Ann. Rom. Soc. Cell Biol., 4 (2021), 17962–17975. 

20. M. Lin, H. Cui, W. Chen, A. van Engelen, M. de Bruijne, M. R. Azarpazhooh, et al., Longitudinal 

assessment of carotid plaque texture in three-dimensional ultrasound images based on semi-

supervised graph-based dimensionality reduction and feature selection, Comput. Biol. Med., 116 

(2020), 103586. https://doi.org/10.1016/j.compbiomed.2019.103586  

21. Q. A. Hathaway, N. Yanamala, M. J. Budoff, P. P. Sengupta, I. Zeb, Deep neural survival networks 

for cardiovascular risk prediction: The Multi-Ethnic Study of Atherosclerosis (MESA), Comput. 

Biol. Med., 139 (2021), 104983. https://doi.org/10.1016/j.compbiomed.2021.104983  

22. A. D. Jamthikar, D. Gupta, L. Saba, N. N. Khanna, K. Viskovic, S. Mavrogeni, et al., Artificial 

intelligence framework for predictive cardiovascular and stroke risk assessment models: A 

narrative review of integrated approaches using carotid ultrasound, Comput. Biol. Med., 126 

(2020), 104043. https://doi.org/10.1016/j.compbiomed.2020.104043  

23. S. S. Skandha, S. K. Gupta, L. Saba, V. K. Koppula, A. M. Johri, N. N. Khanna, et al., 3-D 

optimized classification and characterization artificial intelligence paradigm for 

cardiovascular/stroke risk stratification using carotid ultrasound-based delineated plaque: 

Atheromatic™ 2.0, Comput. Biol. Med., 125 (2020), 103958. 

https://doi.org/10.1016/j.compbiomed.2020.103958  

24. R. H. Lopes, I. D. Reid, P. R. Hobson, The two-dimensional Kolmogorov-Smirnov test, Prod. Sci., 

(2007), 1–12. 

25. G. Biau, E.Scornet, A random forest guided tour, Test, 25 (2016), 197–227. 

https://doi.org/10.1007/s11749-016-0481-7  

26. M. Noto, H. Sato, A method for the shortest path search by extended Dijkstra algorithm, in Smc 

2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 

'cybernetics evolving to systems, humans, organizations, and their complex interactions', 3 (2000), 

2316–2320. https://doi.org/10.1109/ICSMC.2000.886462  

https://pubmed.ncbi.nlm.nih.gov/?term=Li+J&cauthor_id=33043149
https://pubmed.ncbi.nlm.nih.gov/?term=Harrington+R&cauthor_id=33043149
https://pubmed.ncbi.nlm.nih.gov/?term=Heidenreich+P&cauthor_id=33043149
https://doi.org/10.1038/s41746-020-00331-1
https://doi.org/10.1109/CSCI.2016.0014
https://doi.org/10.1109/BIBM.2017.8217987
https://doi.org/10.1080/00207543.2015.1087655
https://doi.org/10.1109/EMBC44109.2020.9176435
https://doi.org/10.1016/j.compbiomed.2019.103586
https://doi.org/10.1016/j.compbiomed.2021.104983
https://doi.org/10.1016/j.compbiomed.2020.104043
https://doi.org/10.1016/j.compbiomed.2020.103958
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1109/ICSMC.2000.886462


4910 

Mathematical Biosciences and Engineering  Volume 19, Issue 5, 4892–4910. 

27. N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers, Mach. Learn., 29 (1997), 

131–163. https://doi.org/10.1023/A:1007465528199  

28. F. Xu, J. Zhang, X. Zhou, H. Hao, Lipoxin A4 and its analog attenuate high fat diet-induced 

atherosclerosis via Keap1/Nrf2 pathway, Exp. Cell Res., 412 (2022), 113025. 

https://doi.org/10.1016/j.yexcr.2022.113025  

29. F. Polak, J. Y. C. Backlund, M. Budoff, P. Raskin, I. Bebu, J. M. Lachin, et al., Coronary artery 

disease events and carotid intima-media thickness in Type 1 diabetes in the DCCT/EDIC cohort, 

J. Am. Heart Assoc., 24 (2021), e022922. https://doi.org/10.1161/JAHA.121.022922  

©2022 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.1023/A:1007465528199
https://doi.org/10.1016/j.yexcr.2022.113025
https://doi.org/10.1161/JAHA.121.022922

