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Abstract: Gene expression data is highly dimensional. As disease-related genes account for only a 

tiny fraction, a deep learning model, namely GSEnet, is proposed to extract instructive features from 

gene expression data. This model consists of three modules, namely the pre-conv module, the 

SE-Resnet module, and the SE-conv module. Effectiveness of the proposed model on the 

performance improvement of 9 representative classifiers is evaluated. Seven evaluation metrics are 

used for this assessment on the GSE99095 dataset. Robustness and advantages of the proposed 

model compared with representative feature selection methods are also discussed. Results show 

superiority of the proposed model on the improvement of the classification precision and accuracy. 
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1. Introduction  

With the rapid development of DNA microarray technology, it is possible to monitor gene 

activity from multiple aspects through the gene expression data. As gene expression reflects human 

health, it is potentially helpful for disease identification, prevention and treatment. However, it 
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remains a challenging task to find valuable information from gene expression data. One of the main 

reasons is that gene expression data consisting of thousands of dimensions, whereas only a small part 

is instructive [1]. Actually, feature selection and feature dimensionality reduction are two kinds of 

representative methods to select instructive features from gene expression data. For the former, a 

subset is selected from gene expression data, where Filter [2–9], Wrapper [10–15] and Embedded [16] 

are representative methods. Correspondingly, feature dimensionality reduction methods focus on 

mapping the features from high dimensional spaces to low-dimensional spaces, where feature values 

generally change during the mapping process. Representative feature dimensionality reduction 

methods are principal component analysis (PCA) [17,18], multiple dimensional scaling (MDS), 

locally linear embedding (LLE) [19,20], and so on. 

Recently, deep learning methods have been widely used in many fields. For example, ResNet [21] 

and SENet [22] have achieved excellent performance in the field of image classification. However, 

there is still relatively little research in the field of selecting of instructive features from gene 

expression data. In this paper, we propose a deep learning model, namely GSEnet, to extract useful 

features from gene expression data. GSEnet is a hybrid of ResNet [21] and SENet [22]. Nine classifiers 

have been applied on the features extracted by the proposed model to evaluate its effectiveness. 

The remainder of this paper is organized as follows. In Section 2, we briefly introduce the 

dataset used to evaluate the proposed model. In Section 3, we give details of the proposed model. In 

Section 4, we perform experimental evaluations of the proposed model. Finally, we discuss and 

conclude this paper in Sections 5 and 6. 

2. DataSet 

In this paper, we take a publicly available real single-cell RNA-seq as the evaluation dataset. 

The dataset comes from NCBI data repository 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99095), values of which are collected 

from bone marrow cells [23]. It consists of 979 samples among which 391 from healthy donors and 

588 from patients with bone marrow failure and cytogenetic abnormalities. 17,258 expression genes 

have been monitored for each sample. 

3. Methods 

In this section, we describe details and framework of the proposed model (shown in Table 1 and 

Figure 1). The framework of the proposed model consists of three modules, namely the pre-conv 

module, the SE-Resnet module and the SE-conv module, respectively. Details of the modules are 

shown in the following subsections. 

3.1. pre-conv module 

The pre-conv module consists of a convolutional layer and a pooling layer, construction and 

function of which are the same as the first module in Resnet. Specifically, it employs a large 

convolutional kernel of size 7. Down-sampling has been directly performed at a stride of 2 to 

effectively reduce the feature dimension, as well as strengthen the local feature correlation. A 

maximum pooling layer is additionally used to reduce the feature dimension further. This operation 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99095
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allows to effectively extract salient features encoded by the convolutional layer. 

 

Figure 1. Framework of the proposed model. 

Table 1. Setting details of GSEnet. 

ID  Output Size  Block Number Block name 

1 64 × 4314 conv [64, 7, 2, 3]; maxpool [3, 2] 1 pre-conv module 

2 64 × 4314 

conv [64, 1, 1, 0]; conv [64, 3, 1, 1]; 

conv [256, 1, 1, 0]; fc [16 , 256] (SE Block); 

conv [64 , 1, 1, 0] 

2 SE-Resnet module 

3 128 × 2157 

conv [64, 1, 1, 0]; conv [64, 3, 1, 1]; 

conv [256, 1, 1, 0]; fc [16,256] (SE Block); 

conv [128, 1, 1, 0]; avgpool[2, 2] 

1 SE-conv module 

4 128 × 2157 

conv [128, 1, 1, 0]; conv [128, 3, 1, 1]; 

conv [512, 1, 1, 0]; fc [32,512] (SE Block);  

conv [128, 1, 1, 0] 

3 SE-Resnet module 

5 256 × 1078 

conv [128, 1, 1, 0]; conv [128, 3, 1, 1];  

conv [512, 1, 1, 0]; fc [32,512] (SE Block);  

conv [256, 1, 1, 0]; avgpool[2, 2] 

1 SE-conv module 

6 256 × 1078 

conv [256, 1, 1, 0]; conv [256, 3, 1, 1];  

conv [1024, 1, 1, 0]; fc [64,1024] (SE Block); 

conv [256, 1, 1, 0] 

5 SE-Resnet module 

7 2048 × 1 

conv [256, 1, 1, 0]; conv [256, 3, 1, 1]; 

conv [1024, 1, 1, 0]; fc [64,1024] (SE Block); 

conv [2048, 1, 1, 0]; global avgpool 

1 SE-conv module 
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Figure 2: Details of the SE-Resnet module (upper), the SE-conv module (center), and 

the SE block (lower). 

3.2. SE-Resnet module 

The SE-Resnet module, as shown in Figure 2, consists of a ResNet block [21] and an SE block [22]. 

The ResNet block is helpful for the model to reuse features extracted by the pre-conv module, while 

the SE block is used to extract key features. The fusion and reasonable stacking of the two blocks 

helps the proposed model to extract higher-level semantic information. The output of the SE-Resnet 

module is defined as 

        1 2 3 4 5, , , , , ,w f SE f f f w w w w w x x xF   (1)  

where x  is the input feature maps, f  indicates the convolution operation, 1w , 2w , 3w  and 5w  

are the parameters of each of the four convolution layers,   refers to the ReLU function, and 

 SE   corresponds to the SE block, parameters of which is denoted by 4w . 

Let,    1 2 3
ˆ , , ,= f f f w w wx x  the output of the SE block is defined as 
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    4 4
ˆ ˆ ˆ, ,w SE S w x x x   (2)  

where  

   
1

1
ˆ ˆ

L

i

S i
L 

 x x   (3)  

Note that L  is the length of each feature map from x̂ . 

3.3. SE-conv module 

The SE-conv module is similar to the SE-Resnet module except an additional pooling layer is 

appended at the end of the module as shown in Figure 2. Its function is mainly to increase the feature 

levels and reduce the feature dimension. Let 6w , 7w , 8w  and 10w  be the parameters of each of 

the four convolution layers and x  the input feature maps, the output of the SE-conv module is 

defined as  

         6 7 8 9 10, , , , , ,w P f SE f f f w w w w wx xH   (4)  

where 9w  denotes parameters of the SE block and  P   is the global average pooling if the SE 

block is the last one or an average pooling with factor 2 for other SE blocks. 

4. Experiments 

4.1. Experimental details 

Training details. During the training process, we connect a multilayer perceptron model at the 

end of the proposed instructive feature extraction model as shown in Figure 1. The number of nodes 

in the hidden layer is 256 and 64 respectively. Adam optimizer is used. The learning rate is set to 10−6, 

and the loss function is cross entropy. The dataset is divided into training and validation sets by a 

9-to-1 ratio. Early stop is adopted to avoid over fitting. 

Test details. Ten-fold cross-validation is used to evaluate performance of the selected classifiers, 

details of which will be described in the next subsection. 

Experimental Environment. The proposed model is implemented in PyCharm on a computer 

with Inter(R) Core(TM) i7-8700U CPU @ 3.20GHz, NVIDIA GeForce GTX 1050 Ti, and Windows 10 

operating system. It costs 12 hours to train the proposed model and the prediction is less than 1 

minute. 

4.2. Experimental results 

To verify effectiveness of features extracted by the proposed model, they are applied into the 

following classifiers, Support Vector Machine (SVM), Decision Tree (DT), Random forest (RF), 
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Naive Bayes (NB), Logistic Regression (LR), k-Nearest Neighbor (KNN), AdaBoost (ADA), 

Gradient Boosted Decision Tree (GBDT) and Linear Discriminant Analysis (LDA). Implementations 

of all these classifiers can be found in the scikit-learn library for python 

(https://scikit-learn.org/stable/). The evaluation metrics we adopted are true positive rate (TPR), false 

negative rate (FNR), false positive rate (FPR), ture negative rate (TNR), Precision(PRE), F1-score 

(F1), and accuracy (ACC), respectively. Specifically, the above mentioned evaluation metrics are 

defined as  TPR TP / TP FN  ,  FNR FN / TP FN  ,  FPR FP / FP TN  , 

 TNR TN / TN FP  ,  PRE TP / TP FP  ,  F1 2 P R / P R    , and 

   ACC TP+TN / TP+FP+TN FN  . TP is true positive representing the total number of samples 

correctly identified as positive, while FP is false positive representing the number of samples 

incorrectly identified as positive. Similarly, TN is true negative, namely the number of samples 

correctly identified as negative, whereas FN is a false negative, i.e. the number of samples 

incorrectly identified as negative. P and R are precision and recall. Experimental results are given in 

Figure 3 and Table 2. Note that values in Figure 3 are metric means of ten-fold cross-evaluation. 

Standard deviations are given in Table 2. It is obvious that performances of the classifiers are 

improved. In particular, KNN, ADA, NB, RF, DT and LDT, which do not perform well on original 

samples, achieve similar performances as SVM and GDBT. Thus, the proposed model is effective on 

performance improvement of the classifiers. 

  

Figure 3. Effectiveness of the proposed model on performance improvement of different 

classifiers. On the left is without GSEnet, while the right is with GSEnet. 
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Table 2. Effectiveness of the proposed model on performances of different classifiers. 

Classifier method TPR TNR ACC PRE F1 FNR FPR 

KNN 
None 0.0622±0.0405 0.9616±0.0500 0.6027±0.0340 0.6267±0.3543 0.1065±0.0605 0.9378±0.0405 0.0384±0.0500 

GSEnet 0.9895±0.0132 0.9933±0.0083 0.9919±0.0058 0.9899±0.0125 0.9896±0.0071 0.0105±0.0132 0.0067±0.0083 

ADA 
None 0.9070±0.0450 0.8606±0.0414 0.8785±0.0264 0.8130±0.0463 0.8559±0.0281 0.0930±0.0450 0.1394±0.0414 

GSEnet 0.9954±0.0093 0.9933±0.0083 0.9940±0.0065 0.9899±0.0125 0.9926±0.0076 0.0046±0.0093 0.0067±0.0083 

NB 
None 0.9168±0.0429 0.8573±0.0405 0.8805±0.0245 0.8110±0.0447 0.8592±0.0266 0.0832±0.0429 0.1427±0.0405 

GSEnet 0.9895±0.0132 0.9951±0.0075 0.9929±0.0047 0.9919±0.0124 0.9906±0.0064 0.0105±0.0132 0.0049±0.0075 

RF 
None 0.9053±0.0370 0.9717±0.0205 0.9447±0.0189 0.9535±0.0376 0.9281±0.0275 0.0947±0.0370 0.0283±0.0205 

GSEnet 0.9922±0.0123 0.9933±0.0083 0.9930±0.0063 0.9899±0.0125 0.9910±0.0076 0.0078±0.0123 0.0067±0.0083 

DT 
None 0.9540±0.0284 0.9104±0.0387 0.9279±0.0226 0.8777±0.0476 0.9132±0.0263 0.0460±0.0284 0.0896±0.0387 

GSEnet 0.9922±0.0123 0.9914±0.0086 0.9919±0.0058 0.9876±0.0126 0.9898±0.0070 0.0078±0.0123 0.0086±0.0086 

LDA 
None 0.9452±0.0350 0.9707±0.0278 0.9593±0.0217 0.9532±0.0475 0.9481±0.0278 0.0548±0.0350 0.0293±0.0278 

GSEnet 0.9954±0.0093 0.9914±0.0086 0.9930±0.0063 0.9876±0.0126 0.9914±0.0073 0.0046±0.0093 0.0086±0.0086 

SVM 
None 0.9776±0.0227 0.9774±0.0217 0.9767±0.0153 0.9641±0.0377 0.9702±0.0203 0.0224±0.0227 0.0226±0.0217 

GSEnet 0.9954±0.0093 0.9933±0.0083 0.9940±0.0065 0.9899±0.0125 0.9926±0.0076 0.0046±0.0093 0.0067±0.0083 

LR 
None 0.9851±0.0162 0.9884±0.0129 0.9869±0.0088 0.9823±0.0192 0.9835±0.0109 0.0149±0.0162 0.0116±0.0129 

GSEnet 0.9895±0.0132 0.9951±0.0075 0.9929±0.0047 0.9919±0.0124 0.9906±0.0064 0.0105±0.0132 0.0049±0.0075 

GBDT 
None 0.9903±0.0157 0.9883±0.0163 0.9890±0.0118 0.9834±0.0235 0.9867±0.0145 0.0097±0.0157 0.0117±0.0163 

GSEnet 0.9948±0.0108 0.9936±0.0079 0.9939±0.0068 0.9887±0.0140 0.9917±0.0100 0.0052±0.0108 0.0064±0.0079 
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5. Discussion 

5.1. Effect of the SE-Resnet modules 

In this subsection, we discuss effects of SE-Resnet modules on classifier performance in terms 

of F1 score and results are given in Table 3. From Table 1, we can see that the number of SE-Resnet 

modules is ten. We delete existing modules or add new ones to the model with S and A as indicators. 

S2 and S4 indicate remove 2 and 4 modules from the SE-Resnet module shown in Table 1 with ID = 6, 

respectively, while S6 further remove 2 modules from the SE-Resnet module with tag ID = 4. 

Correspondingly, A2 and A4 indicate appending one or two additional SE-Resnet module for the 

modules given in ID = 4 and ID = 6. It is obvious that the original network setting given in Table 1, 

namely GSEnet, performs the best. However, effect of structure changes on the performance is little. 

5.2. Comparison with feature selection methods 

In this subsection, we compare the proposed model with representative feature selection 

methods, i.e., t-test (T), analysis of variance (Var), lasso feature selection (Lasso) and Logistic 

Regression feature selection (Log) in terms of F1 and show the result in Table 4. The features with a 

p-value less than 0.05 are included in the results of t-test, and 8174 feature values remain. For others, 

we select the top K salient feature values, where K = 256, K = 512, K = 1024, K = 2048 and K = 4096. 

For the proposed model, we modify the number of output channels of the last convolutional layer. It 

is obvious that the proposed model introduces the best performance on DT, RF, NB, KNN, ADA and 

GDBT classifiers. 

Table 3. Effect of the SE-Resnet modules on performances of different classifiers in terms of F1. 

 SVM DT RF NB  LR KNN  ADA  GDBT  LDA 

GSENet

S6 
0.9820 0.9791 0.9791 0.9859 0.9833 0.9818 0.9807 0.9777 0.9831 

GSEnet

S4 
0.9777 0.9764 0.9754 0.9750 0.9777 0.9735 0.9739 0.9716 0.9735 

GSEnet

S2 
0.9811 0.9767 0.9741 0.9811 0.9798 0.9811 0.9775 0.9706 0.9714 

GSEnet 0.9926 0.9898 0.9910 0.9906 0.9906 0.9896 0.9926 0.9917 0.9914 

GSEnet

A2 
0.9774 0.9833 0.9857 0.9800 0.9865 0.9826 0.9802 0.9827 0.9842 

GSEnet

A4 
0.9797 0.9807 0.9824 0.9823 0.9834 0.9730 0.9795 0.9869 0.9814 
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Table 4. Comparison of the proposed model with feature selection methods on performances of different classifiers in terms of F1. 

 SVM  DT  RF NB  LR KNN  ADA  GDBT  LDA 

T 0.9833 0.9132 0.9520 0.8828 0.9886 0.2154 0.8846 0.9840 0.9649 

Var_256 0.9249 0.7563 0.9351 0.7126 0.8339 0.3924 0.7418 0.9411 0.8636 

Var_512 0.9249 0.7563 0.9351 0.7126 0.8339 0.3924 0.7418 0.9389 0.8636 

Var_1024 0.9249 0.7563 0.9351 0.7126 0.8339 0.3924 0.7418 0.9387 0.8636 

Var_2048 0.9249 0.7563 0.9351 0.7126 0.8339 0.3924 0.7418 0.9373 0.8636 

Var_4096 0.9249 0.7563 0.9351 0.7126 0.8339 0.3924 0.7418 0.9401 0.8636 

Lasso_256 0.9951 0.9132 0.9894 0.9535 0.9963 0.8829 0.9681 0.9857 0.9975 

Lasso_512 0.9939 0.9132 0.9857 0.9216 0.9951 0.6134 0.9421 0.9857 0.9975 

Lasso_1024 0.9911 0.9132 0.9752 0.9118 0.9939 0.1550 0.9161 0.9819 0.9434 

Lasso_2048 0.9899 0.9132 0.9735 0.8870 0.9939 0.0972 0.8860 0.9802 0.9393 

Lasso_4096 0.9851 0.9132 0.9634 0.8603 0.9951 0.1048 0.8628 0.9876 0.9439 

Log_256 0.9951 0.9132 0.9870 0.9750 0.9912 0.9531 0.9859 0.9863 0.9934 

Log_512 0.9947 0.9132 0.9871 0.9738 0.9959 0.8473 0.9809 0.9876 0.9911 

Log_1024 0.9935 0.9132 0.9830 0.9747 0.9984 0.6214 0.9747 0.9868 0.9214 

Log_2048 0.9923 0.9132 0.9728 0.9771 0.9984 0.4158 0.9747 0.9827 0.9871 

Log_4096 0.9923 0.9132 0.9744 0.9746 0.9959 0.2276 0.9746 0.9841 0.9778 

GSEnet_256 0.9880 0.9891 0.9863 0.9824 0.9880 0.9891 0.9827 0.9878 0.9905 

GSEnet_512 0.9878 0.9828 0.9854 0.9890 0.9907 0.9878 0.9852 0.9856 0.9865 

GSEnet_1024 0.9774 0.9735 0.9814 0.9759 0.9761 0.9776 0.9791 0.9825 0.9756 

GSEnet 0.9926 0.9898 0.9910 0.9906 0.9906 0.9896 0.9926 0.9917 0.9914 

GSEnet_4096 0.9807 0.9781 0.9797 0.9807 0.9820 0.9793 0.9735 0.9799 0.9770 
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6. Conclusions 

In this paper, a novel deep learning model, namely GSEnet, is proposed. It combines ResNet 

and SENet, and is constructed to improve the extraction of instructive features from gene expression 

data. The proposed model has been evaluated on the GSE99095 dataset with 9 representative 

classifiers. Experimental results show advantages of the proposed model on performance 

improvement of different classifiers compared with t-test, analysis of variance, lasso and Logistic 

Regression feature selection methods, GSEnet introduces the best performance on DT, RF, NB, KNN, 

ADA and GDBT classifiers. 
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