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Abstract: Long non-coding RNAs (lncRNAs) play a regulatory role in many biological cells, and the
recognition of lncRNA-protein interactions is helpful to reveal the functional mechanism of lncRNAs.
Identification of lncRNA-protein interaction by biological techniques is costly and time-consuming.
Here, an ensemble learning framework, RLF-LPI is proposed, to predict lncRNA-protein interactions.
The RLF-LPI of the residual LSTM autoencoder module with fusion attention mechanism can extract
the potential representation of features and capture the dependencies between sequences and structures
by k-mer method. Finally, the relationship between lncRNA and protein is learned through the method
of fuzzy decision. The experimental results show that the ACC of RLF-LPI is 0.912 on ATH948 dataset
and 0.921 on ZEA22133 dataset. Thus, it is demonstrated that our proposed method performed better
in predicting lncRNA-protein interaction than other methods.
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1. Introduction

With the in-depth understanding of non-coding RNAs (ncRNAs), it is discovered that ncRNAs play
an important part in many living activities such as cell cycle regulation, epigenetic regulation and cell
differentiation, which makes it one of the research hotspots in the field of genetics [1], particularly
lncRNA, with a length of more than 200nt. Studies have shown that the types and quantities of lncR-
NAs are far from the same with those of proteins. Only a few of the biological functions of lncRNAs
have been revealed. Abnormal expressions of lncRNAs are closely related to various complex diseases,
such as hepatocellular carcinoma, liver cancer, breast cancer, Alzheimer’s disease, etc. [2–5]. Identifi-
cation of lncRNA biological functions is helpful to improve the deep cognition of living activities. In
recent years, exploring the interactions between lncRNAs and proteins is one of the main ways to infer
the lncRNAs functions and to do further studies on lncRNAs. LncRNA-protein interactions (LPIs)
play a vital part in protein synthesis, viral replication and transcriptional regulation. Thus, it is of
significance to study lncRNA-protein interactions [6, 7]. At present, relevant studies are mainly being
divided into experiments and computational methods, while traditional experimental methods can only
conduct experimental studies on a pair of lncRNA and protein each time, which is time-consuming and
costly [8]. The computational methods are being used to reveal the potential lncRNAs and proteins in-
teractions increasingly [9, 10]. The computational methods of lncRNA-protein interaction recognition
can be divided into two works: network-based methods and machine learning-based methods. The
network-based LPIs prediction methods construct a heterogeneous lncRNA-protein network, which
can capture the hidden feature information of the topology containing lncRNAs in the related biolog-
ical heterogeneous network. Lu et al. [11] produced feature vector coding by sequences of lncRNAs
and proteins, and scored each RNA-protein pair by matrix multiplication, which is further used to mea-
sure RNA-protein interactions. Zhang et al. [12] calculated the linear neighborhood similarity in the
feature space and transferred it to the interaction space. Then, LPIs were predicted by a label propa-
gation progress. Zhao et al. [13] searched for the potential interactions between lncRNAs and proteins
through random walk and neighborhood regularized logistic matrix factorization. Zhu et al. [14] pro-
posed a lncRNA-protein bipartite network based on ant colony clustering (ACCBN) to predict LPIs.
Zhang et al. [15] calculated the similarity of lncRNAs and proteins by integrating lncRNA expression
information and gene ontology information, and predicted all lncRNA-protein interactions by using
graph regularized nonnegative matrix factorization framework. Zhang et al. [16] integrated protein
semantic similarity, lncRNA functional similarity, known human LPIs and Gaussian interaction profile
kernel similarity to predict LPIs using a heterogeneous graph and depth-first search algorithm. The
network-based methods deliver LPI labels in heterogeneous graph and path propagation effectively,
however, it is of less capability to predict interaction performance for isolated proteins or lncRNAs.

Machine learning-based methods combine the feature of sequences, structures and physicochemi-
cal properties to construct a classifier, forming an interactive or non-interactive classification model.
Muppriala et al. [17] used k-mer features as SVM and random forest input to predict the associa-
tions of RNA and protein, which achieved high prediction accuracy in prediction. Wang et al. [18]
proposed an extended naı̈ve-Bayes-classifier method to extract the sequence features of proteins and
ncRNAs. Then, based on likelihood ratio score, the method selected effective features and reduced
data dimensions to predict LPIs more accurately. Pan et al. [19] proposed IPMiner to extract the se-
quence features of proteins and ncRNAs and used stack autoencoder and fine tuning to preprocess
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data, and SDA-RF, SDA-FT-RF and IP-Miner methods were used to predict LPIs, respectively. The
final results showed that IPMiner had the best performance and obtained high prediction accuracy
in verification set. Peng et al. [20] developed an ensemble framework (LPI-EnEDT) with extra tree
classifier and decision tree classifier to implement imbalanced LPIs data classification by integrating
multiple biological features of lncRNAs and proteins. Deep learning-based methods are widely used
in biological applications. Compared with other sequence-based methods, deep learning can learn
the sequence features of RNAs and proteins automatically and discover specific interactions between
these sequences. Peng et al. [21] proposed a hierarchical deep learning framework RPITER to predict
RNA-protein interactions and input the combination of primary sequence information and structure
information into convolutional neural network (CNN) and stacked auto-encoder (SAE), which could
achieve good results. Wekesa et al. [22] proposed a graph representation learning method (GPLPI)
to predict plant lncRNA-protein interactions from sequence and structural information. Then, a long
and short-term memory encoder-decoder network with multiple self-attention was proposed to extract
advanced features, and the majority voting mechanism was used to improve the prediction model to
achieve classification performance [22, 23]. In addition, some deep learning-based methods introduce
noise artificially to reduce overfitting, which further improve the generalization ability and robustness.

In this study, an ensemble learning model for predicting LPIs using sequence information and struc-
ture information, RLF-LPI, is proposed, which can determine whether there is an interaction between
specific lncRNA-protein pair. This experiment extracts the sequence and structural features of lncRNA-
protein pairs, and inputs the features into the residual LSTM autoencoder module of the fusion attention
mechanism in different ways to extract the potential representation of the original feature information,
which is then used as the input of the base classification. Finally, the ensemble learning module based
on fuzzy decision is used to improve the prediction performance. The performance of RLF-LPI on
lncRNA-protein datasets and other ncRNA-protein datasets are evaluated to compare with other exist-
ing methods. The results show that RLF-LP has higher predictive performance, better generalization
ability and robustness.

2. Materials and methods

2.1. Datasets

Datasets of Arabidopsis thaliana ATH948 and Zea mays ZEA22133 are collected from published
papers [24]. In this experiment, CD-HIT [25] algorithm is used to retain effective sequences with less
than 10% sequence similarity between lncRNAs and proteins. During non-interaction pair construc-
tion, the same number of positive and negative sample sequences are generated by randomly pairing
with lncRNA, and eliminating the existing interaction pair sequences. The ATH948 dataset includes
948 interaction pairs and 948 non-interaction pairs, consisting of 35 proteins and 109 lncRNAs. In
addition, ZEA22133 dataset is obtained, including 22,133 interaction pairs and 22,133 non-interaction
pairs, consisting of 42 proteins and 1704 lncRNAs. Futhermore, the experiment collects multiple
ncRNA-protein datasets from other studies, such as RPI1807, RPI369, RPI2241 [24] and RPI488 [19],
to verify the generalization ability of RLF-LPI, covering a wide range of species, including humans,
animals and plants. The specific datasets for this experiment are shown in Table 1. For RNAs, the
RNAfold program in the ViennaRNA package [29] is used to calculate the secondary structure infor-
mation of RNA through the minimum free energy. For proteins, the SOPMA algorithm [30] is used to
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predict the three-state structure of proteins, including α -helix, β -fold and helix.

Table 1. Experimental dataset.

Dataset lncRNA Protein Interaction pair Non-interaction pair
ATH948 109 35 948 948
ZEA22133 1704 42 22,133 22,133
RPI2241 842 2043 2241 2241
RPI369 332 338 369 369
RPI488 25 247 243 245
RPI1807 1078 1807 1807 1436

2.2. Methods

The sequence length of lncRNAs and proteins vary greatly in the dataset, during the process of ex-
tracting experimental features. Simple one-hot coding only encodes a single nucleotide or amino acid,
which cannot make fully use of the long-term dependence between adjacent nucleotides or amino acids.
Therefore, it is of great importance to select an appropriate sequence coding method. In this section,
k-mer method is used to obtain sequence and structural features and to eliminate the above deficien-
cies. Firstly, in terms of sequence information, the corresponding frequency of nucleotide (AUGC) is
calculated in the lncRNA sequence to fully extract features. Then, the 340-dimensional feature vector
is obtained by taking the combination features of k= 1,2,3 and 4. For proteins, 20 kinds of amino acids
need to be divided into seven categories according to the physical and chemical properties of amino
acids, including: {Val, Gly, Ala}, {Phe, Pro, Leu, Ile}, {Ser, Tyr, Met, Thr}, {His, Asn, Tpr, Gln}, {Arg,
Lys}, {Glu, Asp} and {Cys}. The coding frequency of each amino acid sequence is calculated based on
the seven categories of amino acids, and the 399-dimensional feature vector is obtained by taking the
combination features of k= 1,2 and 3. Finally, local features of different levels are extracted to enhance
the information representation of global features by k-mer.For sequence structure information, protein
and lncRNA secondary structure can enhance the expression of spatial information and sequence infor-
mation, making the result more accurate. K-mer method can fully extract secondary structure features
and process data. Protein and RNA secondary structure frequencies of 1-mer, 2-mer and 3-mer were
extracted to supplement the sequence coding, therefore, the 39-dimensional protein structure features
and the 399-dimensional lncRNA structure features were obtained.

2.3. Model design

In this paper, an ensemble learning framework based on RLF-LPI is proposed to predict lncRNA-
protein interactions. Firstly, the effects of sequence and structural features on classification perfor-
mance are taken into account. The sequence information of lncRNAs and proteins is extracted respec-
tively and combined to obtain 739-dimension vector. Similarly, 438-dimension structure feature vector
is also obtained. Secondly, the complementary relationship between sequence features and structural
features is fully considered to obtain 1177 dimension combine-feature vector. The sequence feature
representation, structural feature representation and combined feature representation are obtained by
inputting three types of features into AE-ResLSTM. Sequence feature representation and structure fea-
ture representation are fused to obtain enhanced feature representation. As shown in Figure 1, the
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original combine-feature, combine-feature depth representation and depth enhancement feature repre-
sentation are input into the base learner respectively to improve feature representation ability, and three
scores are obtained. Finally, the scores are taken as the fuzzy decision inputs, and the greedy algorithm
is used to optimize the parameters in the fuzzy decision, so that the given lncRNA-protein pair can
be predicted more efficiently. In AE-ResLSTM module, the deep encode-decode structure is used to
solve the long-term dependence between sequences and to learn potential feature information through
LSTM. Meanwhile, residual structure and attention mechanism are used in the decoder to calculate
feature weights.

Figure 1. The framework of the RLF-LPI. The sequence information features and structural
information features are extracted by k-mer, and the high-level abstract representation is
learned by using the AE-ResLSTM module. Finally, the ensemble learning based on fuzzy
decision is used to obtain the prediction result.

2.3.1. AE-ResLSTM with attention module

Autoencoder is a data compression algorithm, belonging to unsupervised learning, which can learn
the implied features of input data and reconstruct the original input data [26]. In this paper, the structure
of AE-ResLSTM network is proposed, which is divided into an encoder and a decoder, as shown in
Figure 2, to depict the details of the architecture. The whole feature information is learned by encoder
and represented by fixed-length vectors. Those fixed-length vectors, as the input to the decoder, are
interpreted as feature representations.

The first part of the module is the encoder. LSTM can process sequence structure and learn the
long-term dependence between RNA/protein sequence structure modules. Encoder structure can learn
the potential representation of given data. The potential feature information of sequence structure data
can be learned by deep learning model mentioned above. The second part is a stacked residual LSTM
decoder, which is composed of multiple residual LSTM network layers and attention mechanism mod-
ules. Stacked LSTM layers can enrich the expression of the model, but it may also lead to gradient
explosion or gradient disappearance. Here, skip connections between encode-decode layers are in-
troduced, which fuse the encoder information to the decoder at the corresponding level, to improve
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the sensitivity of optimization gradient and the learning process of the nonlinear neural layer, to pre-
vent possible gradient problems in the model, to enhance effective information, and to enable the back
propagation to obtain better feature expression. Meanwhile, the information of the residual module
outputs to the internal attention layer to calculate the weights of each feature, to weaken the redundant
information and to improve the expression ability of the model.

Figure 2. The structure of AE-ResLSTM module.

Equations (2.1)–(2.6) represent the calculation of LSTM units. Each unit consists of three types
of gates, including forget, input and output gates. Where, Ht−1 represents the previous state, and xt

represents the current input.
ht = LS T M(vt) = ot � tanh(Ct) (2.1)

ft = σ(W f (Ht−1 + xt) + b f ) (2.2)

lt = σ(Wl(Ht−1 + xt) + bl) (2.3)

C̃t = tanh(WC(Ht−1 + xt) + bC) (2.4)

Ct = ft ∗Ct−1 + lt ∗ C̃t (2.5)

ot = σ(Wo(Ht−1 + xt) + bo) (2.6)

The symbols � represent multiplication calculations, W represents different weight matrices, b rep-
resents bias value, and σ represents sigmoid function. Equation (2.7) represents residual calculation.
LSTM is combined with a residual network and outputted to base classifier.

Ht = ResLS T M(vt) = [LS T M(vt) + vt] (2.7)

The attention layer assigns different weights to each output layer of a decoder. Attention was first
proposed by Yang et al. [27], who proposed a hierarchical attention network for document classifica-
tion. The performance of the model in this paper is improved by adding an attention mechanism to
calculate the weights of each feature to enhance the key features. The attention mechanism is described
by the following Eqs (2.7)–(2.10):

mi = tanh(Wwhi + bw) (2.8)
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α =
exp(mT

i mw)∑
i exp(mT

i mw)
(2.9)

z =
∑

i

αihi (2.10)

where mi is the hidden representation of the ith feature and hi comes from the residual output of
ResLSTM decoder. The significance of this feature is measured by the similarity between mi and the
context vector mw. Multiply all the eigenvectors by their corresponding weights and sum to the final
output vector z. Ww, bw, and mx are initialized randomly, and they are being learned during training.

2.3.2. Extra trees classifier

Extra Trees (Extremely randomized trees, ET) were proposed by Pierre Geurts et al. in 2006. ET
algorithm is similar to Random Forest (RF), which is composed of decision trees. However, RF uses
Bagging model, and ET uses all of the samples (features were chosen randomly). To some extent, the
generalization ability of ET is higher than that of RF, and ET is different from the RF in a random
subset of the optimal bifurcation properties. Therefore, Extra Trees Classifier model is used to be the
base learner here.

2.3.3. Fuzzy decision integration and fusion

The prediction of lncRNA-protein interactions is a binary classification problem. The residual
LSTM autoencoder module with attention mechanism is used to obtain the sequence potential infor-
mation, and the Extra Trees Classifier base classifier is used to predict whether there is an interaction
between lncRNA and protein. In this paper, the method in reference [28] is introduced. Three Extra
Trees Classifier based classification models are used, and three Extra Trees outputs are taken as deci-
sions, respectively. The greedy algorithm is used to judge whether fuzzy rules are satisfied, and then
the final classification results are obtained. In this experiment, the base classification model uses Extra
Trees Classifier, which has different data training methods, so the final decision selection is compli-
cated. Using the greedy algorithm index as the criterion for the result of the base classifier model, the
formula is as follows:

G = abs(2cp − 1), cp ∈ [0, 1] (2.11)

The G is the greed index, ’abs’ is the absolute value function, and cp is the probability of confound-
ing. It can be seen from Eq (2.11) that G and cp are in direct proportion, which shows that the Extra
Trees Classifier can determine whether there is an interaction in the unlabeled sample, if cp ≥ 0.5, it
means there is an interaction, otherwise there is no interaction. The larger the greed index is, the higher
the probability of confounding is, and the output result of the base classifier model is optimal.

2.4. Implementation of predictors

The experimental code is implemented in the Keras 2.1.6 environment and is written based on
python3.6.9. The ExtraTreesClassifier module is implemented by sklearn in Python. The specific
experimental system is configured with 2.81GHz CPU, 6GB GPU and 8GB memory under the Win-
dows10 operating system. The Adam optimizer is used for fast convergence of the module, and the
Mean Square Error (MSE) loss function is used. Furthermore, the early stopping strategy [31] and
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dropout [32] are used to avoid overfitting in the training process, setting dropout to 0.5, batchsize to
256, and epoch to 100.

3. Results and discussion

3.1. Performance evaluation metrics

For the experimental model, six indicators are evaluated, including accuracy (ACC), precision (Pre),
sensitivity (Sn), specificity (Sp), Matthews Correlation Coefficient (MCC) and Area Under the Curve
(AUC).

ACC =
T P + T N

T P + T N + FP + FN
(3.1)

Pre =
T P

T P + FP
(3.2)

S n =
T P

T P + FN
(3.3)

S p =
T N

T N + FP
(3.4)

MCC =
T P × T N − T P × FN

√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

(3.5)

where TP, FP, TN, FN represent true positive, false positive, true negative and false negative.

3.2. Results

RLF-LPI performance is evaluated using two datasets. Table 2 shows the results of the five-fold
cross-validation. On the ATH948 dataset, the ACC of the method is 91.2%, the precision is 95.6%,
and the AUC is 95.3%. On the ZEA22133 dataset, the ACC of the method is 92.1%, the precision is
91.9%, and the AUC is 98.0%. According to the result analysis, the accuracy of ZEA22133 dataset
is not as good as ATH948. One possible reason is that the amount of ZEA22133 data is too large.
Overall, those information used in our model produced good results for prediction.

Table 2. Performance of dataset on RLF-LPI (%).

Dataset ACC Pre Sn Sp MCC AUC
ATH948 91.2 95.6 86.4 96.0 71.8 95.3
ZEA22133 92.1 91.9 92.5 91.8 78 98.0

3.3. Comparison with other methods

On the experimental dataset of this paper, RLF-LPI is compared with five LPI prediction models
based on other sequence methods, including LPI-DL [33], PLRPI [24], IPMiner [19], RPISeq [17]
and lncPro [11]. As shown in Table 3, RLF-LPI achieves the best performance on the ATH948 and
ZEA22133 datasets. On the ZEA22133 dataset, the accuracy is 1.4% higher and the AUC is 1.0%
higher than that of LPI-DL. Compared to other LPI prediction methods, RLF-LPI performs better
on other indicators and has certain advantages compared with IPMiner, RPISeq-RF and lncPro. This
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indicates that the performance of our proposed RLF-LPI model in predicting LPIs reaches the expected
standard, and can effectively extract high-level representations of features, making it better to be used
in predicting models.

Table 3. Performance in dataset compared with other methods (%).

Dataset Method ACC Pre Sn Sp MCC AUC
ATH948 RLF-LPI 91.2 95.6 86.4 96.0 71.8 95.3

LPI-DL 88.1 90.4 — — 77.7 94.9
PLRPI 90.4 92.8 87.6 93.2 81.1 —
IPMiner 88.2 89.2 86.9 89.5 76.5 94.1
RPISeq-RF 75.6 76.2 75.2 73.0 79.4 90.2
IncPro 75.4 76.9 75.4 74.7 71.5 89.2

ZEA22133 RLF-LPI 92.1 91.9 92.5 91.8 78.0 98.0
LPI-DL 90.7 91.5 — — 81.5 97.0
PLRPI 82.6 99.9 67.5 99.6 69.6 —
IPMiner 68.7 69.6 66.5 70.9 37.5 84.6
RPISeq-RF 65.4 64.1 62.5 70.3 35.9 81.4
IncPro 60.3 61.3 60.8 69.6 30.9 80.8

Figure 3. Comparison of Accuracy in different methods of the open dataset.

As shown in Table 3, RLF-LPI outperforms other models on the ATH948 and ZEA22133 datasets.
On one hand, in order to enhance the input of the model, the structural features of lncRNAs and proteins
are used as supplementary information of sequence features, which enable the model to have stronger
expression ability. Meanwhile, different k-mer combinations are also adopted to enrich the feature
information. On the other hand, the model uses the LSTM residual network structure with attention
mechanism, which further enhances the feature representation ability. In addition, extra trees are used
as the base learner to improve performance, which can provide additional randomness, inhibit over-
fitting, and accelerate training speed. Finally, fuzzy decision is introduced to select the optimal object
by greedy algorithm and optimize the prediction performance of the model.
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3.4. Testing the robustness of RLF-LPI

We compared this with other published papers on the interactions between ncRNAs and proteins
based on other methods, with the aim of testing the robustness of RLF-LPI. As shown in Table 4
and Figure 3, it can be found that RLF-LPI has higher performance on datasets RPI2241, RPI369 and
RPI488. On RPI1807 dataset, RLF-LPT, IPMiner and RPISeq-RF achieve similar accuracy and are all
superior to lncPro, which show that the proposed method has strong robustness.

Table 4. Performance in dataset compared with other methods (%).

Dataset Method ACC Pre Sn Sp MCC AUC
RPI2241 RLF-LPI 84.2 87.4 80.0 88.4 54.9 92.4

PLRPI 70.7 72.9 65.9 75.5 41.7 —
IPMiner 86.1 88.2 87.7 84.1 72.4 90.6
RPISeq-RF 85.0 86.3 86.1 83.8 70.7 69.0
IncPro 61.6 66.9 52.9 69.5 31.0 72.2

RPI369 RLF-LPI 84.4 81.9 88.2 80.6 61.0 90.5
PLRPI 74.5 73.3 77.2 71.8 49.2 —
IPMiner 70.3 72.4 72.3 72.3 42.8 77.3
RPISeq-RF 69.4 70.7 70.5 70.2 40.6 76.7
IncPro 50.4 71.3 70.8 69.6 40.9 74.0

RPI488 RLF-LPI 89.3 94.5 83.5 95.1 66.4 91.4
PLRPI 89.0 93.9 83.3 94.6 78.5 —
IPMiner 89.1 93.5 84.0 94.4 78.8 91.4
RPISeq-RF 88.3 93.5 82.8 83.6 77.2 88.3
IncPro 85.6 94.1 77.6 94.0 72.5 92.9

RPI1807 RLF-LPI 97.3 96.8 98.4 95.9 92.7 98.7
PLRPI 97.2 97.2 98.2 96.5 94.3 —
IPMiner 96.8 95.5 96.5 96.5 93.5 99.8
RPISeq-RF 97.0 96.2 97.0 97.6 93.8 99.6
IncPro 56.9 55.5 56.5 58.1 43.8 99.4

RLF-LPI shows better performance on the public datasets because of the use of the AE-ResLSTM
module. Since the previous autoencoder learn automatically, the error will continue to decrease. If the
amount of data is relatively small, the gradient will disappear. Using an encode-decode structure and
LSTM can fully learn features data of potential information. The stacked residual LSTM with atten-
tion mechanism is used in the decoder, where the depth of the residual network by increasing fairly can
improve accuracy. Its internal residual block uses the skip connects, alleviating the problem of gradi-
ent disappearance caused by increasing depth in deep neural networks, and better feature expression
can be obtained. The above proves that RLF-LPI is well adapted to the problem of lncRNA-protein
interactions.The ROC curves of the dataset in this paper are shown in the following Figure 4.
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Figure 4. ROC curves for different datasets.

3.5. Comparing with different base classifiers

Five classical machine learning algorithms are tested on ZEA22133 dataset, including Extra Trees
Classifier(ETC), Logistic regression (LR), Random Forest (RF), Gradient Boosting Decison Tree
(GBDT) and Decision Tree (DT). As shown in Table 5 and Figure 5, RLF-LPI with ETC is signif-
icantly superior to other methods in all evaluation indicators. The values in the table represent the
average values (%) under the five-fold cross-validation, and the bold values represent the best values
in the dataset obtained by different methods. The average accuracy of this model is 3.2% higher and
the AUC is 1.7% higher than that of other methods, which show that our approach is effective.

Table 5. Comparison of ZEA22133 on different base classifiers (%).

ACC Pre Sn Sp MCC AUC
Our 92.1 91.9 92.5 91.8 78.0 98.0
LR 88.9 89.1 88.8 89.1 69.2 96.3
RF 83.3 81.4 86.6 80.1 58.0 90.4
GBDT 88.5 87.9 89.2 87.7 68.7 96.0
DT 85.7 85.6 85.9 85.5 61.4 85.7

3.6. Ablation experiments

As shown in Table 6, RLF-LPI has a significant effect on predicting lncRNA-protein interactions.
Among them, AE-ResLSTM network structure plays an obvious role in the whole experiment process.
The network structure mainly consists of three parts, including the attention mechanisms and residual
network structures in the LSTM encode-decode structure, as well as fuzzy decision. A series of ablation
experiments are conducted to study the performance of partial network structures on the overall model
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Figure 5. Performance indicators under different base classifiers.

and explore the generalization ability. Table 6 shows the ablation experiment results of the model
under the five-fold cross-validation. It can be seen that ACC and Pre are 3.8% and 3.1% lower than our
model without the residual structures, and can not reach the performance of RLF-LPI after eliminating
attention and fuzzy decision. The experimental results show that residual structures can increase the
depth of the model and improve the performance, and the expression ability of the model can be
effectively enhanced by using attention mechanisms and fuzzy decision.

Table 6. Performance of dataset on RLF-LPI (%).

Attention Residual Fuzzy Decision ACC Pre MCC
X X X 92.1 91.9 78.0
× X X 91.2 90.7 77.8
X × X 88.3 88.8 67.2
X X × 91.1 90.2 75.0

4. Discussion and conclusions

The reason for the success of RLF-LPI may come from the following factors. First, taking se-
quence and structural coding parts as input, RLF-LPI fully exploits the dependencies on nucleotides
and amino acids in lncRNAs and proteins, which enhance the expression ability of features. Second,
feature extraction methods with different k-mer combinations are applied to lncRNAs and proteins,
and the comprehensive prediction results were generated by AE-ResLSTM. The deep feature infor-
mation of lncRNA-protein pairs is effectively captured by the combination of residual structure and
LSTM. Finally, the fuzzy decision can better divide the decision boundary, effectively reduce the pre-
diction error, and the overall strategy improves the performance of the overall model. As what shown
in Table 7, our model has good performance on most datasets, but the AUC values are slightly lower
than other models on individual datasets. For example, our AUC value on the NPInter v2.0 dataset is
slightly lower than that with IPMiner method, mainly due to the disadvantage of parallel processing
of the LSTM used in the encoder network. Compared with some state-of-the-art networks, although
the gradient problem in shorter sequences can be solved to a certain extent, it is still very difficult

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4749–4764.



4761

for longer sequences. As in the calculation process, LSTM combined with residual structure is used,
which increase the parameters and deepen the network, the computational amount is increased and it
takes longer. Our AUC values in the PRI1488 and RPI2241 datasets are slightly lower than that of
RPI-SAN. This is because the RPI-SAN model extracts pseudo-Zernike moment (PZM) features using
protein position-specific matrices, resulting in a more robust effect.

Table 7. Comparison of multiple datasets on different methods (%).

Method Inputs Classifier Database Performance(AUC)

IPMiner [19] Sequences
Stacked Autoencoder
+ RF

NPInter v2.0
/ PRI1488
/ RPI2241

99.5/91.4/90.6

HLPI-Ensemble [10] Sequences SVM + RF + XGB NPInter v2.0 96.0

RPI-SAN [34]
Sequences
+ Conservation

Stacked Autoencoder
+ RF

RPI1488/ RPI2241 92.0/96.2

BGFE [35] Sequences
Stacked Autoencoder
+ RF

RPI1488/ RPI2241 89.8/94.7

RPI-SE [36] Sequences XGBoost + SVM + Extra Tree RPI1488 90.4

LPI-BNPRA [37] Sequences Bipartite Network NPInter V2.0 87.5

RLF-LPI
Sequences

+ Structures
AE-ResLSTM
+ Extra Tree

NPInter v2.0
/ PRI1488
/ RPI2241

98.1/91.4/92.4

In conclusion, compared with previous models, RLF-LPI has good robustness in predicting
lncRNA-protein interactions. Of course, RLF-LPI has some limitations that need to be improved
in the future. For example, known lncRNA-protein interaction data is still insufficient. Limited by
the influence of datasets, there are still great challenges in the acquisition of negative samples and the
selection of parameters. More lncRNA-protein interaction data can further improve the performance
of RLF-LPI. All in all, as deep learning continues to develop, the problems raised will be solved. We
look forward to future applications of RLF-LPI in more complex biological networks and to playing
an active role in other biomolecular prediction methods.
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