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Abstract: This paper proposes the D-optimal design for the additive mixture model with two-
response, which is linear model with no interaction terms. The optimality was validated by using
the general equivalence theorem, and the corresponding weights are found under which additive model
satisfies D-optimality. In addition, relevant statistics and graphics are given to illustrate our results.

Keywords: mixture experiment; D-optimal design; additive model; multi-response

1. Introduction

Mixture experiment [1, 2] is a subject of great significance in engineering [3], pharmacy [4] and
bioscience [5]. The response depends only on the proportions but not the total amount of the mixture.
With further researches show the distinct progress of mixture experiment, the relevant research about
algorithm [6–8], optimality [9, 10] and data analytics [11, 12] are well studied. Some general recom-
mendations for the optimal design of general theory can be found in the monograph of Atkinson et
al. [13], Cornell [14], Goos et al. [15] and Sinha et al. [16].

In various fields of research, experimental designs in multi-response situations are generally of
interest and considered. Mixture experiment becomes more complicated due to the extension of multi-
response. Fedorov [17] discussed the background of optimality of multi-response experiments, as
well as its early research and influence. Draper and Hunter [18] details the design of experiment for
parameter estimation in multi-response situations. Furthermore, a lot of multi-response problems were
increasingly concerned about. For a detailed review about optimal design of mixture model with multi-
response, see Imhof [19] and Rolz [20]. Nowadays, the relevant researches have wide coverage and
practical application. The prime example is that Liu et al. [21] did the research about optimality for
multi-response linear mixed models. Dette et al. [22] solved the application in thermal spraying by
using multi-response method.
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With the exception of multi-response, the method for finding appropriate mixture models is another
major research area. There are also many mixture models based on various application conditions.
A number of features of different mixture models have been introduced by Chan [23]. Among all
mixture models, the Scheffé mixture model is the most commonly used and the easiest to be calculated.
However, Scheffé mixture model can’t function effectively when there is no interaction among all
mixture components. For this reason, Darroch and Waller [24] proposed the additive mixture model,
which is used to calculate the mixture model with no interaction.

During the last several decades, various optimal designs of additive model with single response were
studied by Chan et al. [25, 26] and Zhang and Guan et al. [27, 28]. It is therefore worthy to extend the
D-optimal design to additive model with multiple response, and investigate whether properties of D-
optimal design in additive mixture model will change on account of multi-response. In order to better
describe content. In Section 2, we first briefly review the basics of mixture experiments. Then we put
forward the additive mixture model with multi-response. In Section 3, we obtain the principal results
about the proof of D-optimality and equivalence theorem. Some concluding remarks are presented in
the final section.

2. Model specification and preliminaries

The common mixture model involving q ingredients x1, x2, . . . , xq can be written as Y(x) = f T(x)β+
ε(x), where q ⩾ 2 and x = (x1, x2, . . . , xq)T lies in a finite dimensional simplex

S q−1 = {(x1, x2, . . . , xq) :
q∑

i=1

xi = 1, 0 ⩽ xi ⩽ 1, i = 1, 2, . . . , q}. (2.1)

2.1. Additive mixture model

The mixture experiment constraints have a substantial impact on the mixture model. For every
square of xi, it is a linear combination of xi and its cross-products with the other (q − 1) proportions.
We usually write the square terms as follows:

x2
i = xi(1 −

q∑
j=1, j,i

x j) = xi − xi(1 − xi).

In view of these considerations, we reform the second-order additive mixture model

E(Y) = δ0 +

q∑
i=1

δixi +

q∑
i=1

δiix2
i =

q∑
i=1

(δ0 + δi + δii)xi +

q∑
i=1

(−δii)xi(1 − xi), (2.2)

to

E(Y) =
q∑

i=1

βixi +

q∑
i=1

βiixi(1 − xi). (2.3)

On the basis of this theory, this paper consider the second-order additive mixture model with multi-
response, which is given as

Y j(x) = f T
j (x)β j + ε j(x), (2.4)
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f T
1 (x) = (x1, x2, ..., xq)

f T
2 (x) = (x1, x2, ..., xq, x1(1 − x1), x2(1 − x2), ..., xq(1 − xq))
β1 = (β11, β12, ..., β1q)T

β2 = (β21, β22, ..., β2q, β211, β222, ..., β2qq)T

E(εi) = 0

Var((ε1, ε2)T) = Σ =
(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
2.2. Experimental design

Experimental design contains two parts: continuous design and exact design. Continuous space is
more suitable for searching the optimal design and can iterate and approximate the best and optimal
value. The domain of consideration provided by continuous space will not produce points that cannot
be valued. Because discrete space has inherent limitations in iteration and approximation. We usually
consider exact design under special conditions or restrictions. We generally only discussed continuous
design.

The design problem for model (2.4) is to obtain an n-point design ξ to estimate some function of
the k-dimensional parameter vector β with high efficiency, the design ξ can be performed of the form

ξ =

(
τ1 τ2 . . . τn

r1 r2 . . . rn

)
,

where τi are support points in the interior of simplex region S q−1, and the corresponding weights ri are
nonnegative real numbers which sum to unity. For a given covariance matrix, the moment matrix is

M(ξ) =
∫

S q−1
F(τ)Σ−1FT(τ)dξ(τ),

where FT is the block-diagonal matrix diag ( f T
1 (τ), f T

2 (τ)), and D-optimal design aims to maximize
det(M(ξ)).

3. D-optimal design for the additive mixture model with multi-response

It is known that D-optimal designs for mixture model, including additive model, have support points
in the barycenters of simplex region. But the main feature of additive model makes itself a little out of
the ordinary. Apart from vertices, other support points of additive model vary according to the number
of q, and they usually gather inward as q increase. Based on generalized simplex-centroid design, we
construct design ξ∗1i:

There are two kinds of points in total: the C1
q permutations of the pure components, the Ci

q permu-
tations of the barycenters of deep i, which are of S q−1 if i of its q coordinates are equal to 1

i and others
are zero. Geometric descriptions of the former and the later are separately vertices and ith barycenters
of simplex.

That is, we consider the design ξ∗1i of following form:

ξ∗1i =

(
M1

q Mi
q

r1 ri

)
,

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4737–4748.



4740

where M1
q denotes any point from the pure components, Mi

q denotes any point from the barycenters of
deep i, which means i of its q coordinates are equal to 1

i and the remaining ones are equal to zero. We
present the weight of vertices and the weight of ith barycenters separately by r1 and ri, they also satisfy
C1

qr1 +Ci
qri = 1.

For mixture model with multi-response, we have the equivalence theorem, presented by Kiefer [29],
let:

ϕ(τ, ξ,Σ) = Tr(Σ−1FM−1FT ), (3.1)

and for any given design ξ∗ satisfying D-optimality, there is

ϕ(τ, ξ∗,Σ) ⩽ p, (3.2)

for all points in simplex, equality in model (3.2) holds and only holds at τ ∈ ξ∗, and the p in model
(2.4) is equal to 3q.

3.1. D-optimal design for 3 ⩽ q ⩽ 6

Theorem 1. If 3 ⩽ q ⩽ 6, then ξ∗12 which assigns r∗1 to pure component and r∗2 to binary component
is the D-optimal design for additive model (2.4), where

r∗1 =
1
q
−

6q − 5 −
√

(6q − 5)2 − 8(q − 1)(3q − 1)
2q(3q − 1)

,

r∗2 =
6q − 5 −

√
(6q − 5)2 − 8(q − 1)(3q − 1)
q(q − 1)(3q − 1)

.

where r∗1 are the weights of pure component points and r∗2 are the weights of points on edges, i.e.,
combinations of (0.5, 0.5, 0).

Proof. D-optimal design typically maximizes det(M(ξ)), it is necessary to identify the inverse of
covariance matrix

Σ−1 =
1

(1 − ρ2)σ2
1σ

2
2

(
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

)
=

(
a c
c b

)
.

Straight forward calculation gives

M(ξ) =
q∑

i=1

r1FΣ−1FT +

C2
q∑

j=1

r2FΣ−1FT

=r1


(
a c
c b

)
⊗ Iq 0

0 0

 + q − 1
4

r2


a c 1

2c
c b 1

2b
1
2c 1

2b 1
4b

 ⊗ Iq +
r2

4


a c 1

2c
c b 1

2b
1
2c 1

2b 1
4b

 ⊗ Uq

=


(
a c
c b

)
⊗ ((r1 +

q−2
4 r2)Iq +

r2
4 Jq)

(
c
b

)
⊗ ( q−2

8 r2Iq +
r2
8 Jq)(

c b
)
⊗ ( q−2

8 r2Iq +
r2
8 Jq) b ⊗ ( q−2

16 r2Iq +
r2
16 Jq)


=

(
A B
C D

)
,
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where Iq is a q-dimensional identity matrix, Jq is a q×q matrix with all elements equal to 1, Uq = Jq−Iq.
When T = aI + bJ, there is T−1 = 1

a I + b
a(a+bq) J, we can get

D−1 =
16
br2
⊗ (

1
q − 2

Iq −
1

2(q − 2)(q − 1)
Jq)

BD−1C =
r2

4

(
c2

b c
c b

)
⊗ ((q − 2)Iq + Jq),

it follows that

A − BD−1C =
(

W cr1Iq

cr1Iq br1Iq

)
,

where

W = (ar1 +
q − 2

4
r2(a −

c2

b
))Iq +

r2

4
(a −

c2

b
)Jq,

then we can obtain

det(M(ξ)) =det(A − BD−1C)det(D)

=brq
1det

W − c2

b r1Iq 0
c2

b Iq Iq

 det(D)

=
brq

1

q
(a −

c2

b
)q(r1 +

(q − 2)r2

4
)q−1|b ⊗

q − 2
16

r2Iq +
r2

16
Jq|

=
brq

1

q
(a −

c2

b
)q(r1 +

(q − 2)r2

4
)q−12(q − 1)(q − 2)q−1(

r2

16
)q.

Clearly, det(M(ξ)) is the function of r1 and r2. By the linear optimization method, we have

Ψ = srq
1(r1 +

(q − 2)r2

4
)qr2

q + λ(qr1 +
q(q − 2)

2
r2 − 1),

where s is a constant independent of our objective.
The Lagrange multiple method is applied to obtain:

∂Ψ
∂r1

= srq
2[qrq−1

1 (r1 +
(q−2)r2

4 )q−1 + (q − 1)rq
1(r1 +

(q−2)r2
4 )q−2] + λq

= T1 + λq = 0
∂Ψ
∂r2

= srq
1[(q − 1)(r1 +

(q−2)r2
4 )q−2 +

q−2
4 rq

2 + (r1 +
(q−2)r2

4 )q−1]qrq−1
2 + λ q(q−1)

2

= T2 + λ
q(q−1)

2 = 0
∂Ψ
∂λ

= qr1 +
q(q−1)

2 r2 − 1 = 0.

By calculating these equations, we get: r∗1 =
1
q −

6q−5−
√

(6q−5)2−8(q−1)(3q−1)
2q(3q−1) ,

r∗2 =
6q−5−
√

(6q−5)2−8(q−1)(3q−1)
q(q−1)(3q−1) .
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At last, the D-optimality allocation ξ∗12 can be found as:

ξ∗12 =

 M1
q M2

q

1
q −

6q−5−
√

(6q−5)2−8(q−1)(3q−1)
2q(3q−1)

6q−5−
√

(6q−5)2−8(q−1)(3q−1)
q(q−1)(3q−1)

 .
For verifying equivalence theorem of design ξ∗12, above all, we calculate the inverse of M

M−1 =


L−1 − c

b L−1 0
− c

b L−1 − 1
br1

Iq +
c2

b2 L−1 − 2
br1

Iq

0 − 2
br1

I 16
br2

( 1
q−2 Iq −

1
2(q−2)(q−1)Jq

)

 ,
where L−1 = 1

(r1+
q−2

4 r2)(a− c2
b )

(Iq −
qr2
4 Jq). Then we can obtain

FM−1FT =

(
X1L−1XT

1 − c
b X1L−1XT

1
− c

b X1L−1XT
1 H

)
,

where X1 = (x1, x2, ..., xq), X2 = (x1(1 − x1), x2(1 − x2), ..., xq(1 − xq)), and

H =
1

br1
X1XT

1 +
c2

b2 X1L−1XT
1 −

2
br1

X1XT
2 +

16
br2(q − 2)

X2XT
2

−
8

br2(q − 2)(q − 1)
X2JqXT

2 +
4

br1
X2XT

2 .

At last, we have

Tr(Σ−1FM−1FT) = Tr
((

a c
c b

) (
X1L−1XT

1 − c
b X1L−1XT

1
− c

b X1L−1XT
1 H

))
= Tr

aX1L−1XT
1 −

c2

b X1L−1XT
1 −ac

b X1L−1XT
1 + cH

0 − c2

b X1L−1XT
1 + bH


=

1

r1 +
q−2

4 r2

 q∑
i=1

x2
i −

q
4

r2

 + 1
r1

q∑
i=1

x2
i −

4
r1

 q∑
i=1

x2
i −

q∑
i=1

x3
i


+

16
r2(q − 2)

 q∑
i=1

x2
i (1 − xi)2

 − 8
r2(q − 2)(q − 1)

1 − q∑
i=1

x2
i

2

+
4
r1

 q∑
i=1

x2
i (1 − xi)2

 .

(3.3)

To verify D-optimality of the design ξ∗12 in simplex-region. According to convex analysis and the
theory of Atwood [1], the maximum value must lie in the boundary of the simplex S q−1 and be one of
barycenters. When 3 ⩽ q ⩽ 6, the Table1 can be shown:
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Table 1. Weights and values of variance function of support points.

q r1 r2 ϕ(M1
q) ϕ(M2

q) ϕ(M3
q) C1

qr1 C2
qr2

ϕ(M3
q )

3q

3 0.1959 0.1374 9 9 5.5009 0.5877 0.4123 0.6112
4 0.1460 0.0693 12 12 10.2627 0.5840 0.4160 0.8552
5 0.1165 0.0418 15 15 14.0425 0.5823 0.4177 0.9362
6 0.0969 0.0279 18 18 17.5775 0.5813 0.4187 0.9765

Figure 1. Sectional photograph.

By analyzing Table 1, at vertex and midpoint of edge, the value of Tr(Σ−1FM−1FT) are ϕ(M1
q),

ϕ(M2
q), which both equal to 3q, and the value at other points are less than 3q. That indicates the

inequality in model (3.2) holds at all xi ∈ S q−1 except support points. Thus ξ∗12 is in fact D-optimal
design.

Figure 2. Contour map.
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Typically, when q = 3, we plot the Figure 1, a section photograph in one edge of simplex region,
and Figure 2, the contour map in simplex region.

Apparently the maximum value 9 must lie in the support points, and values of other points in
ξ∗12 ∈ S 2 are less than 9.

Thus we have proved that the design ξ∗12 is in fact D-optimal.

3.2. D-optimal design for q ⩾ 16

Theorem 2. If q ⩾ 16, then ξ∗13 which assigns r∗1 to pure component and r∗3 to ternary component is
the D-optimal design for additive model (2.4), where

r∗1 =
1
q
−

5q − 4 −
√

7q2 − 16q + 10
2q(3q − 1)

,

r∗3 =
15q − 12 − 3

√
7q2 − 16q + 10

q(q − 1)(q − 2)(3q − 1)
.

Proof. The process of proof is analogous, straight forward calculation gives

M(ξ) =
q∑

i=1

r1FΣ−1FT +

C3
q∑

j=1

r3FΣ−1FT

=


(
a c
c b

)
⊗ ((r1 +

(q−2)(q−3)
18 r3)Iq +

q−2
9 r3Jq)

(
c
b

)
⊗ ( (q−2)(q−3)

27 r3Iq +
2(q−2)

27 r3Jq)(
c b

)
⊗ ( (q−2)(q−3)

27 r3Iq +
2(q−2)

27 r3Jq) b ⊗ (2(q−2)(q−3)
81 r3Iq +

4(q−2)
81 r3Jq)


=

(
A B
C D

)
.

After some algebraic manipulation, we can obtain

A − BD−1C =
(

W cr1Iq

cr1Iq br1Iq

)
,

where

W = (ar1 +
(q − 2)(q − 3)

18
r3(a −

c2

b
))Iq +

q − 2
9

r3(a −
c2

b
)Jq.

Obeserving that

det(M(ξ)) =det(A − BD−1C)det(D)

=brq
1det

W − c2

b r1Iq 0
c2

b Iq Iq

 det(D)

=
3brq

1

q
(a −

c2

b
)q(r1 +

(q − 2)(q − 3)
4

r3)q−1(
4

81
r3)q(

(q − 1)(q − 2)
2

)q

By the linear optimization method, we have the function:

Ψ = srq
1(r1 +

(q − 2)(q − 3)
18

r3)qr3
q + λ(qr1 +

q(q − 1)(q − 2)
6

r3 − 1).
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According to the method mentioned above, there is

∂Ψ
∂r1

= srq
3[qrq−1

1 (r1 +
(q−2)(q−3)

18 r3)q−1 + (q − 1)rq
1(r1 +

(q−2)(q−3)
18 )q−2r3] + λq

= T1 + λq = 0
∂Ψ
∂r3

= srq
1[(q − 1) (q−2)(q−3)

18 (r1 +
(q−2)(q−3)

18 r3)q−2 + rq
3

+(r1 +
(q−2)(q−3)

18 (r1 +
(q−2)(q−3)

18 r3)q−1]qrq−1
3 + λq(q−1)(q−2)

6
= T2 + λ

q(q−1)
2 = 0

∂Ψ
∂λ

= qr1 +
q(q−1)(q−2)

6 r3 − 1 = 0.

By calculating these equations, we get: r∗1 =
1
q −

5q−4−
√

7q2−16q+10
2q(3q−1) ,

r∗3 =
15q−12−3

√
7q2−16q+10

q(q−1)(q−2)(3q−1) .

Then the D-optimality allocation ξ∗13 can be written as:

ξ∗13 =

 M1
q M3

q

1
q −

5q−4−
√

7q2−16q+10
2q(3q−1)

15q−12−3
√

7q2−16q+10
q(q−1)(q−2)(3q−1)

 .
The next step is to prove the equivalence theorem. After necessary calculations, there is

Tr(Σ−1FM−1FT)

=
1

r1 +
(q−2)(q−3)

18 r3

(
q∑

i=1

x2
i −

q(q − 2)
9

r3) +
1
r1

q∑
i=1

x2
i −

3
r1

(
q∑

i=1

x2
i −

q∑
i=1

x3
i )

+
81

2r3(q − 2)(q − 3)
(

q∑
i=1

x2
i (1 − xi)2) −

27
r3(q − 1)(q − 2)(q − 3)

(1 −
q∑

i=1

x2
i )2

+
9

4r1
(

q∑
i=1

x2
i (1 − xi)2).

Through some algebraic manipulation, we have the Table 2.

Table 2. Weights of support points and values of variance function.

q r1 r3 ϕ(M1
q) ϕ(M2

q) ϕ(M3
q) C1

qr1 C3
qr3

ϕ(M2
q )

3q

16 0.0381 6.9682e−04 48 47.8783 48 0.6098 0.3902 0.9975
17 0.0359 5.7405e−04 51 50.7327 51 0.6096 0.3904 0.9948
18 0.0339 4.7853e−04 54 53.5903 54 0.6095 0.3905 0.9924
19 0.0321 4.0308e−04 57 56.4506 57 0.6094 0.3906 0.9904
20 0.0305 3.4270e−04 60 59.3131 60 0.6093 0.3907 0.9886
...

...
...

...
...

...
...

...
...

100 0.0061 2.4246e−06 300 289.4101 3000 0.6079 0.3921 0.9647
...

...
...

...
...

...
...

...
...

200 0.0030 2.9863e−07 600 577.2789 600 0.6078 0.3922 0.9621

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4737–4748.



4746

Clearly, when q ⩾ 16, ϕ(M1
q) and ϕ(M3

q) are equal to 3q,
ϕ(M2

q )
3q is less than 1 and decrease as q

increase, that indicates all xi ∈ S q−1 satisfying the inequality in model (3.2) and the equality in model
(3.2) holds at all support points. We also notice that the C1

qr1 and C3
qr3 approach to 0.5, which means

the layout of design are approximating to uniform distribution in simplex.
Thus we have proved that the design ξ∗13 is in fact D-optimal.

4. Concluding remarks

Under the restriction of mixture experiments, this paper establishes the D-optimality for the additive
model with multi-response. The corresponding equivalence theorems are presented and used to check
optimality of designs in the illustrative examples.

The support points of additive model with multi-response still vary as q increase, as additive model
with single-response do. And we notice that the support points, which lie in the boundary of the
simplex, gather inward slower as the number of response increase. Therefore, the further research
about additive model should explore the relation and regularity between tendency of support points
movement and changes of response.
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5. S. Campos-Barreiro, J. López-Fidalgo, KL-optimal experimental design for discriminating be-
tween two growth models applied to a beef farm, Math. Biosci. Eng., 13 (2013), 67–82.
https://doi.org/10.3934/mbe.2016.13.67

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4737–4748.

http://dx.doi.org/https://doi.org/10.1016/j.conbuildmat.2014.02.062
http://dx.doi.org/http://dx.doi.org/10.22377/ajp.v7i2.31
http://dx.doi.org/https://doi.org/10.3934/mbe.2016.13.67


4747

6. G. F. Piepel, S. K. Cooley, B. Jones, Construction of a 21-component layered mixture experiment
design using a new mixture coordinate-exchange algorithm, Qual. Eng., 17 (2005), 579–594.

7. W. J. Welch, ACED: algorithms for the construction of experimental designs, Am. Stat., 39 (1985),
146.

8. W. K. Wong, R. B. Chen, C. C. Huang, W. Wang, A modified Particle Swarm Optimiza-
tion technique for finding optimal designs for mixture models, PLOS ONE, 10 (2015), 1–23.
https://doi.org/10.1371/journal.pone.0124720

9. R. Coetzer, L. M. Haines, The construction of D- and I-optimal designs for mixture experiments
with linear constraints on the components, Chemom. Intell. Lab. Syst., 171 (2017), 112–124.
https://doi.org/10.1016/j.chemolab.2017.10.007

10. U. Syafitri, B. Sartono, P. Goos, I-optimal design of mixture experiments in the
presence of ingredient availability constraints, J. Qual. Technol., 47 (2015), 220–234.
https://doi.org/10.1080/00224065.2015.11918129

11. L. Brown, A. N. Donev, A. C. Bissett, General blending models for data from mixture experiments,
Technometrics, 57 (2015), 449–456. https://doi.org/10.1080/00401706.2014.947003

12. B. P. M. Duarte, A. C. Atkinson, J. F. O. Granjo, N. M. C. Oliveira, Optimal design of mix-
ture experiments for general blending models, Chemom. Intell. Lab. Syst., 217 (2021), 104–400.
https://doi.org/10.1016/j.chemolab.2021.104400

13. A. Atkinson, A. Donev, R. Tobias, Optimum Experimental Designs, with SAS, Oxford University
Press, 2007.

14. J. A. Cornell, Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data,
John Wiley & Sons, 2011.

15. P. Goos, U. Syafitri, B. Sartono, A. R. Vazquez, A nonlinear multidimensional knapsack prob-
lem in the optimal design of mixture experiments, Eur. J. Oper. Res., 281 (2020), 201–221.
https://doi.org/10.1016/j.ejor.2019.08.020

16. B. K. Sinha, N. K. Mandal, M. Pal, P. Das, Optimal Mixture Experiments, Springer, 2014.

17. V. V. Fedorov, Theory of Optimal Experiments, Academic Press, 1972.

18. N. R. Draper, W. G. Hunter, Design of experiments for parameter estimation in multiresponse
situations, Biometrika, 53 (1966), 525–533. https://doi.org/10.2307/2333656

19. L. Imhof, Optimal designs for a multiresponse regression model, J. Multivar. Anal., 72 (2000),
120–131. https://doi.org/10.1006/jmva.1999.1841

20. C. E. Rolz, Statistical design and analysis of experiments, Computer and Information Science
Applications in Bioprocess Engineering, Springer, 1996.

21. X. Liu, R. X. Yue, W. K. Wong, D-optimal designs for multi-response linear mixed models,
Metrika, 82 (2019), 87–98. https://doi.org/10.1007/s00184-018-0679-7

22. H. Dette, L. Hoyden, S. Kuhnt, K. Schorning, Optimal designs for multi-response generalized
linear models with applications in thermal spraying, preprint, arXiv:1312.4472.

23. L. Y. Chan, Optimal design for experiment with mixtures: a survey, Commun. Stat. Theory Meth-
ods, 29 (2000), 342–373. https://doi.org/10.1080/03610920008832607

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4737–4748.

http://dx.doi.org/https://doi.org/10.1371/journal.pone.0124720
http://dx.doi.org/https://doi.org/10.1016/j.chemolab.2017.10.007
http://dx.doi.org/https://doi.org/10.1080/00224065.2015.11918129
http://dx.doi.org/https://doi.org/10.1080/00401706.2014.947003
http://dx.doi.org/https://doi.org/10.1016/j.chemolab.2021.104400
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2019.08.020
http://dx.doi.org/https://doi.org/10.2307/2333656
http://dx.doi.org/https://doi.org/10.1006/jmva.1999.1841
http://dx.doi.org/https://doi.org/10.1007/s00184-018-0679-7
http://dx.doi.org/https://doi.org/10.1080/03610920008832607


4748

24. J. N. Darroch, J. Waller, Additivity and interaction in three-component experiments with mixtures,
Biometrika, 72 (1985), 153–163. https://doi.org/10.1093/biomet/72.1.153

25. L. Y. Chan, Y. N. Guan, C. Q. Zhang, A-optimal designs for an additive quadratic mixture model,
Stat. Sin., 8 (1998), 979–990.

26. H. Zhao, Y. Guan, D. Han, R-optimal designs for an additive quadratic mixture model, Stat. Sin.,
22 (2001), 979–990.

27. C. Zhang, Y. Guan, Generalized additive mixture model and its D-optimal designs, Northeast
Univ., 1992 (1992).

28. C. Q. Zhang, L. Y. Chan, Y. N. Guan, K. H. Li, T. S. Lau, Optimal designs for an additive quadratic
mixture model involving the amount of mixture, Stat. Sin., 15 (2005), 165–176.

29. J. Kiefer, General equivalence theory for optimal designs (approximate theory), Ann. Stat., 2
(1974), 849–879.

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4737–4748.

http://dx.doi.org/https://doi.org/10.1093/biomet/72.1.153
http://creativecommons.org/licenses/by/4.0

	Introduction
	Model specification and preliminaries
	Additive mixture model
	Experimental design

	D-optimal design for the additive mixture model with multi-response
	D-optimal design for 3q6
	D-optimal design for q16

	Concluding remarks

