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Abstract: Pandemics, such as Covid-19 and AIDS, tend to be highly contagious and have the char-
acteristics of global spread and existence of multiple virus strains. To analyze the competition among
different strains, a high dimensional SIR model studying multiple strains’ competition in patchy en-
vironments is introduced in this work. By introducing the basic reproductive number of different
strains, we found global stability conditions of disease-free equilibrium and persistence conditions of
the model. The competition exclusion conditions of that model are also given. This work gives some
insights into the properties of the multiple strain patchy model and all of the analysis methods used in
this work could be used in other related high dimension systems.
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1. Introduction

Differential equation models, especially ordinary differential equation models, as mathematical
tools for studying the laws of biological phenomena over time, have been widely used in the study
of the spread of infectious diseases [1], the growth of biological populations [2], and the laws of gene
expression [3]. Among them, in the study of infectious diseases, the ordinary differential equation
model can be established by classifying the susceptible, the infected and the recovered into different
variables [1]. By analyzing the dynamics of the model and constructing the basic reproductive number
of the model, the persistence and extinction conditions of infectious diseases can be obtained. Mean-
while, based on actual data, the infectious disease ordinary differential equation model can predict the
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future trend of the disease, and then provide a corresponding basis for the formulation of epidemic
prevention policies [4].

In the study of infectious disease models, a more special category is the multi-strain model. The
research object of this type of model is the spread and competition between different strains during
the spread of infectious diseases. For infectious diseases caused by viruses, such as influenza and
Covid-19, this model often shows that different viruses are simultaneously spreading among people
due to the mutation of the pathogen. Bichara et al. [5] construct a series of Lyapunov functions
to analyze the global dynamics of the SIS, SIR and MSIR models with multi-strains, and give the
conditions whether the disease-free equilibrium could be globally stable or not. Moreover, Meehan
et al. [6] consider a multiple strain model with mutation, and numerically find the conditions that
could influence the coexistence and competition exclusion of that model. Li et al. [7] use a multi-
strain partial differential equation model to analyze competitions of different strains of the virus under
different drug environments, and find the relationship between the basic reproductive number and the
drug parameters. All of these works show the importance on analyzing multiple strain models.

Another common type of infectious disease model is the patch model [8, 9]. The model assumes
that, during the spread of infectious diseases, populations in the same patch can infect each other, and
populations among different patches can only migrate but not infect each other. This model is suitable
for infectious diseases spreading globally, and different countries and regions can be regarded as a
patch. In the study of this type of model, Wang et al. [10] construct a patchy model to analyze the
population dispersal and its effect on the transmission of disease. While, Zhang et al. [11] consider a
more general patchy model and analyze its global behaviors with the properties of a monotone system.
Li et al. [12] obtain the global stability of an autonomous system with patches by constructing a
Lyapunov function. All of these works analyze the dynamics of different patch models by introducing
the basic reproductive number which is the main threshold value to determine whether the epidemic
could persist or not.

Some works consider multiple strains and patchy environments. In reference [13], Arino et al.
consider a SEIR model with multiple strains and patches and use simulation method to analyze the
dynamic behaviors of that model. Marva et al. [14] use the SIS model without birth rate to analyze
the multiple strains and patches effect on the epidemic. In the analysis of that model, the authors
consider a special condition that the model could be written as a slow-fast system. Qiu et al. [15]
consider a multiple strains model that the susceptible population could be neglected in patches and
find the persistence and coexistence conditions of that system. In this work, we construct a novel
SIR model considering both patches and strains and analyze its global dynamic without any additional
assumptions. The model is as follows.

Let the variables S i(t) illustrate the number of susceptible population at the patch i, and Ii,k(t) note
the number of infected population of the k strain at the patch i. Then we have the equation of multiple
strains compete in patchy environment.
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dS i(t)
dt
= λi +

∑
j,i

m jiS j −
∑

k

βkIi,kS i − (di + mi)S i,

dIi,k(t)
dt

= α
∑
j,i

m jiI j,k + βkIi,kS i − (µk + γk + di + αmi)Ii,k,

dRi(t)
dt
=
∑

k

γkIi,k +
∑
j,i

m jiR j − (di + mi)Ri.

(1.1)

where k = 1, 2, ...,NS , and NS is the strain number. Meanwhile, i = 1, 2, ..,NP, and NP is the total
number of patch. mi j is the migration rate from the path i to j, and the parameters mi =

∑
j,i mi j.

0 < α < 1 is the rate that describe the ability the illness could slow down the migration rate. λi is
the constant population growth rate, and di is the natural mortality at the patch i. βk, µk and γk are the
infection rate, disease fatality rate and recovery rate of the k strain. All of the parameters are positive.
In the next two sections we will prove the basic properties and analyze the global dynamics of this
model.

2. Basic properties

The right-hand side of the sub-system about the susceptible population of system (1.1) could be
written in the matrix form

dS (t)
dt
= L + (M −

∑
k

Λ(Ik(t)) − K)S (t),

where S (t) = (S 1(t), S 2(t), · · · , S NP(t))T , and Ik(t) = (I1,k(t), I2,k(t), ..., INP,k(t))
T are column vectors. The

matrix,

M =


−m1 m21 · · · m(NP−1)1 mNP1

m12 −m2 · · · m(NP−1)2 mNP2

· · ·

m1NP m2NP · · · m(NP−1)NP −mNP

 ,
is the migration matrix. Λ(Ik(t)) is the diagonal matrix with the diagonal elements
(I1,k(t), I2,k(t), ..., INP,k(t)), L = (λ1, λ2, · · · , λNP) is the column vectors. K is the diagonal matrix with
the diagonal elements (d1, d2, · · · , dNP). As mi =

∑
j,i mi j and mi j > 0, the matrix MT is the diagonally

dominant matrix, and MT − K is the strictly diagonally dominant matrix. Thus, by Levy–Desplanques
Theorem [16], MT −K is invertible. As the diagonal elements of MT −K are less than 0, by Gershgorin
circle Theorem [16], the real part of eigenvalues of MT − K are less than 0. Therefore, M − K is the
invertible matrix with the real part of its eigenvalues less than 0 (the matrix and its transpose share the
same eigenvalues). Hence, the following lemma could be given.

Lemma 1. If MT is a diagonally dominant matrix with the diagonal elements smaller than 0, and K is
a diagonal matrix with the diagonal elements greater than 0. Then the matrix M − K is invertible and
the real parts of its eigenvalues are less than 0.

The system without the disease could be given as

dS (t)
dt
= L + (M − K)S (t).
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Thus, this system has the only equilibrium S ∗ = (K − M)−1L (Lemma 1). As the diagonal elements
of the diagonally dominant matrix, K − MT are larger than 0, while the non-diagonal elements of that
matrix are less than 0, which implies the matrix K − MT is an M-matrix [17]. By the inverse-positive
property of the M-matrix [17], the inverse matrix (K −MT )−1 is positive. Hence, the matrix (K −M)−1

is positive, and as the vector L is positive, the equilibrium S ∗ is also positive. Thus, the disease-free
equilibrium E0 could be given inn a matrix form as (S ∗,O, ..,O,O), where O is the NP × 1 zero vector
and the number of O is NS + 1.

Similarly, Ik also could be written as the matrix form,

dIk(t)
dt
=
(
αM + βkΛ(S (t)) − Dk

)
Ik,

where the matrix Dk is the diagonal matrix with the diagonal elements as (µk + γk + d1, · · · , µk + γk +

dNP). Λ(S (t)) is the diagonal matrix with the diagonal elements as (S 1(t), S 2(t), · · · , S NP(t)). Follows
the definitions of the basic reproductive number in patchy system [11], the definitions of the basic
reproductive number of the strain k, could be given as radius

R0,k = r
(

exp(αM + βkΛ(S ∗) − Dk)
)
,

where the function r(·) denote the spectral radius of the matrix.
The positivity and boundedness of the system (1.1) could be given as the following lemma.

Lemma 2 (Boundedness). Solutions of model (1.1) with positive initial conditions are positive and
bounded.

Proof. The positive could be proved by contradiction. Assuming the solution of positive initial con-
ditions could go to negative, then there exist a time for S i, Ii,k or Ri, i = 1, 2, ..,NP, k = 1, 2, · · · ,NS

become zero. When t0 is the first time that S i = 0 and other variables greater than 0, then we have

dS i(t)
dt

∣∣∣∣
S i=0
= λi +

∑
j,i

m jiS j > 0,

which follows, there exist a small constant δ > 0, such that S i(t) < 0, when t ∈ (t0 − δ, t0), which
leads to the contradiction. Thus, S i couldn’t be the first time for the system touch the boundary of Rn+.
Similarly, we have,

dIi,k(t)
dt

∣∣∣∣
Ii,k=0
= α
∑
j,i

m jiI j,k + βkIi,kS i > 0,

and,
dRi(t)

dt

∣∣∣∣
Ri=0
=
∑

k

γkIi,k +
∑
j,i

m jiR j > 0.

Thus, none of the variables of the system (1.1) could across the boundary of Rn+. Thus we proved the
positivity of the system (1.1).

Then, we will prove the boundedness of the system (1.1). Assuming Ni(t) = S i(t)+
∑

k Ii,k(t)+Ri(t),
i = 1, 2, · · · ,NP, then we have Ni(t) > 0 and

dNi(t)
dt
= λi +

∑
j,i

m jiN j − (di + mi)Ni, (2.1)
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which is a linear system and right hand side of that system satisfy the Lipschitz condition. Thus the
solution of this system is in C1 (page 148 of reference [18]), which follows the solution couldn’t be
infinity at finite time. The Lemma 1 implies the linear system (2.1) have the unique positive equilibrium
S ∗ and the real part of the eigenvalues with respect to that equilibrium are less than 0, which implies the
global stability of that equilibrium, thus the solution of system (2.1) couldn’t be infinity when the time
goes to infinity. Therefore, all of the solutions of the linear system (2.1) with positive initial condition
are bounded. Thus, the system (1.1) is also bounded. □

Remark: We can also get the invariant set of the system (1.1) by the properties of cooperating
system. The parameters m ji > 0 implies the system (2.1) is a cooperating system ([19], chapter
3, remark 1.1). The monotonicity of the cooperation system ([19], chapter 3, proposition 2.1) and
the global stability of the equilibrium S ∗ implies that all of the trajectories that comes from a vec-
tor v ∈ A, A = {(v1, v2, · · · , vNp)|0 < vi < (S ∗)i, i = 1, 2, · · · ,NP}, will stay in A. Thus, the set
AI = {(S , I1, I2, · · · , INS ,R)|S ∈ A, Ii ∈ A, i = 1, 2, · · · ,NS ,R ∈ A}, is the invariant set of the solutions
of system (1.1). In the rest of this manuscript, we only consider the solutions in the invariant set AI .

3. Global dynamics

In this section, we mainly talk about the global dynamics of system (1.1). And in the following
proofs, the comparison symbols( < and >) between two vectors compare all of the corresponding
elements of the vectors. Which means (a1, a2, · · · , an) < (b1, b2, · · · , bn) is ai < bi, i = 1, 2, · · · , n, and
same for the signs >, ≤ and ≥.

Theorem 1. For model (1.1), if R0,k < 1, k = 1, 2, · · · ,NS , then the disease-free equilibrium E0 is
globally asymptotically stable.

Proof. Take the derivative of dIi,k(t)
dt , with respect to I j,k, i , j, we could have

∂dIi,k/dt
I j,k

= m ji > 0.

Hence, the sub-system of system (1.1) that constructed with Ii,k, i = 1, 2, · · · ,NP is a cooperation
system ([19], chapter 3, remark 1.1).

As we only consider the solution in AI and S (t) < S ∗, thus,

dIk

dt
= (αM + βkΛ(S (t)) − Dk)Ik ≤ (αM + βkΛ(S ∗) − Dk)Ik,

right hand side of the above inequation is the linear system I′k = (αM+βkΛ(S ∗)−Dk)Ik, which have the
unique equilibrium (0, 0, · · · , 0)T (NP zeros), and the condition R0,k = r

(
exp(αM + βkΛ(S ∗)−Dk)

)
< 1

implies the global stability of that zeros equilibrium (Similar to the proof in Lemma 2). Thus, by the
comparison of the cooperative system (comes from the monotonicity of cooperative system and the
comparison Theorem in the page 112 of reference [18]), we could have limt→+∞ Ik(t) = (0, 0, · · · , 0)T .
Thus, limt→+∞ Ii,k(t) = 0, i = 1, 2, · · · ,NP, k = 1, 2, · · · ,NS . Which follows, ∀δ > 0, there exist a time
T1 > 0, such that ∀t > T1, we have |βkIi,k(t)| < δ. Thus, ∀δ > 0 and t > T1, the following equations
hold,

dS i(t)
dt
≥ λi +

∑
j,i

m jiS j − (di + mi)S i − δS i, i = 1, 2, · · · ,NP.

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4690–4702.



4695

Choosing a constant δ > 0 and considering the linear system with the variables as X(t) =
(x1(t), x2(t), · · · , xNP)T ,

dxi(t)
dt
= λi +

∑
j,i

m jix j − (di + mi + δ)xi, i = 1, 2, · · · ,NP, (3.1)

which could be written as the matrix form X′ = L + (M − K − δE)X. The Lemma 1 implies the system
(3.1) have the unique equilibrium (K + δE − M)−1L, and the real part of eigenvalues of M − K − δE
is less than 0. Which leads to the global stability of the equilibrium (K + δE − M)−1L of system
(3.1). Thus, ∀ϵ > 0, there exist a time T2, when t > T2, the solution X(t) of the system (3.1) satisfies
|X(t) − (K + δE − M)−1L| < ϵvE, where vE is the vector with all of its elements are 1.

Take the derivative of dS i(t)
dt , with respect to S j, i , j, we could have

∂dS i/dt
S j

= m ji > 0.

Hence, the sub-system of system (1.1) that constructed with S i, i = 1, 2, · · · ,NP is a cooperation sys-
tem. Thus, by the comparison of cooperative system, ∀ϵ > 0 and δ > 0, when T > max(T1,T2) the solu-
tion S (t) = (S 1(t), S 2(t), · · · , S Np(t)) of system (1.1) satisfy the condition, S (t) ≥ (K+δE−M)−1L−ϵvE.
From the arbitrary of δ and ϵ, and S (t) ≤ S ∗ = (K − M)−1L (S (t) ∈ A), we have limt→+∞ S (t) = S ∗.
Thus, we proved the global attractivity of the system (1.1) with the basic reproductive numbers smaller
than 1.

Then, we go to prove the local stability. By calculating the Jacobin matrix of the disease-free
equilibrium of system (1.1), we could find the eigenvalues of that Jacobin matrix calculated from
NS + 2 sub-matrices. These sub-matrices could be listed as,

M − K, αM + β1Λ(S ∗) − D1, · · · , αM + βNSΛ(S ∗) − DNS ,M − K.

Which calculated from the susceptible population, infected population and recovered population. From
the conditions R0,k < 1, we have the eigenvalues of αM + β1Λ(S ∗) − D1 is smaller than 0 (By the
definition of the exponential of matrix, it is easy to check that if µ is the eigenvalue of matrix M, then
eµ is the eigenvalue of exp(M)). By Lemma 1, the eigenvalues of M − K are also less than 0. Thus the
local stability of E0 holds. Hence, we complete the proof. □

Remark: From the above proof, it is easy to see when one of the real part of the eigenvalues of
αM + βkΛ(S ∗) − Dk, k = 1, 2, · · · ,NS is larger than 0, the disease free equilibrium E0 will become
unstable. It also can be deduced that E0 will be unstable if there is any one R0,k, k = 1, 2, ,NS larger
than 1.

Lemma 3. If M = (mi j) is a n×n real matrix, andΛ is the diagonal n×n matrix satisfyingΛ = λE. Then
the matrix exp(M) and exp(M +Λ) share the same eigenvectors, and the corresponding eigenvalues of
that two matrices satisfy µ = eλµM, where µM is the eigenvalue of exp(M) and µ is the corresponding
eigenvalue of exp(M + Λ).

Proof. As MΛ = ΛM = λM, we have exp(M + Λ) = exp(M) exp(Λ) = eλ exp(M). Let v be the
eigenvector of eigenvalue µM of matrix exp(M), then we have exp(M + Λ)v = eλ exp(M)v = eλµMv,
which implies µ = eλµM. □
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Theorem 2 (Persistence). For model (1.1), if R0,k > 1, k = 1, 2, · · · ,NS , then there exists a positive
constant δ∗ > 0, such that for at least one strain k at patch i satisfies lim supt→+∞ Ii,k(t) ≥ δ∗.

Proof. We use the contradictory method to prove this theorem. Assume ∀ϵ > 0, there exits a time
T > 0, such that Ii,k(t) < ϵ. Then similar as the global attractivity proofs in Theorem 1, we could have,
∀ϵ > 0, there exits a time T > 0, such that |S (t) − S ∗| < ϵvE.

As R0,k > 1, then the inequality r
(

exp(αM + βkΛ(S ∗) − Dk)
)
> 1 hold. Thus, from the Lemma 3,

there exist a constant η > 0, such that r
(

exp(αM + βkΛ(S ∗ − ηvE) − Dk)
)
> 1. Furthermore, we can

choose that η and find a time T ∗ > 0 such that |S (t) − S ∗| < ηvE. Hence, ∀t0, t > T ∗, we have,

dIk(t)
dt
= (αM + βkΛ(S (s)) − Dk)Ik(t) > (αM + βkΛ(S ∗ − ηvE) − Dk)Ik(t).

The system I′ = (αM + βkΛ(S ∗ − ηvE) − Dk)I is the linear system with unique zero equilibrium. As
r
(

exp(αM + βkΛ(S ∗ − ηvE) − Dk)
)
> 1, this zero equilibrium is unstable, and the solution of that

linear system will go to infinity. As we proof in Theorem 1, the sub-system constructed with Ik is the
cooperation system with the comparison property, which implies there exist at least one variable Ii,k

satisfies limt→+∞ Ii,k = ∞, which leads to the contradiction. Thus, this theorem is proved. □

In the above theorem, we proved the weak persistence of the system (1.1), which is
lim supt→+∞ Ii,k(t) ≥ δ∗. But for the lim inft→+∞ Ii,k(t) ≥ δ∗, which is also called the uniform persis-
tence, the widely used monotone system method become noneffective. Because the relationship of
different strains is competition and no cooperation between them, which is not a monotone system.

In the following theorem, we will prove the competition exclusion properties of the system (1.1).

Theorem 3 (Competition exclusion). If there exist two strains k and l satisfy the conditions βk = βl,
and µk + γk > µl + γl, or βk < βl, and µk + γk = µl + γl, then all solutions of model (1.1) with the initial
condition (S (t0), I1(t0), · · · , INS (t0),R(t0)) ∈ AI , satisfy limt→+∞ Ii,k = 0, i = 1, 2, · · · ,NP.

Proof. By solving the model (1.1), we can get

Ik(t) = exp
( ∫ t

t0
αM + βkΛ(s) − Dkds

)
Ik(t0),

and

Il(t) = exp
( ∫ t

t0
αM + βlΛ(s) − Dlds

)
Il(t0).

We first consider the conditions βk = βl, µl + γl < µk + γk, and the initial values stay in AI . Thus, there
exists a constant δ > 0, such that µl + γl + δ = µk + γk. Then, by Dl + δE = Dk, where E is an identity
matrix and the commutativity of identity matrix, ∀Ik(t0), Ik(t) could be written as,

Ik(t) = exp
(
−

∫ t

t0
δEds

)
exp
( ∫ t

t0
αM + βlΛ(s) − Dlds

)
Ik(t0),

where E is the identity matrix. And when Ik(t0) = Il(t0), the above equation could be given as,

Ik(t) = exp
(
−

∫ t

t0
δEds

)
Il(t).
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The Lemma 2 implies there exist a constant W > 0, such that for all initial conditions that in AI satisfy,
0 ≤ ∥Il(t)∥ ≤ W. Hence, limt→+∞ ∥Ik(t)∥ = 0. Thus, by the positivity of Ik(t), all solutions of model
(1.1) with the initial condition in AI , satisfy limt→+∞ Ii,k = 0, i = 1, 2, · · · ,NP.

When the conditions βk < βl, and µk + γk = µl + γl hold, there exist a positive constant δ > 0,
such that βk + δ = βl. Furthermore, from the boundedness of S i(t), we could find a time variable
diagonal matrix ∆(t) with elements δ1(t), δ2(t), · · · , δNP(t), which satisfy ∀i, δi(t) > 0, and ∀i , j,
0 < δi(t)S i(t) = δ j(t)S j(t) = δ̄ < δ, where δ̄ > 0 is a constant. Thus, the right hand side of the system
dĪ(t)

dt = (αM + βkΛ(s)+∆(t)Λ(s)−Dk)Ī(t), satisfy (αM + βkΛ(s)−Dk)Ī(t) < (αM + βkΛ(s)+∆(t)Λ(s)−
Dk)Ī(t) < (αM + βlΛ(s) − Dl)Ī(t). Then by the comparison of cooperative system and lemma 2, the
solution of that system Ī(t) is positive and bounded.

By the commutativity of the identity matrix, then choose the same initial condition, the following
equation holds.

Ik(t) = exp
(
−

∫ t

t0
δ̄Eds

)
Ī(t).

Then similar to the above proof. Use the boundedness of Ī(t) and positivity of Ik(t), we could prove
that limt→+∞ Ii,k = 0, i = 1, 2, · · · ,NP. Thus, we finish the proof.

□

Remark: The above theorem is not true for a simple assuming R0,k < R0,l. Because even for the
one dimensional patch system, we could only conclude βkS ∗ − (γk +µk + d1) < βlS ∗ − (γl +µl + d1), but
not know whether the inequation βkS − (γk + µk + d1) < βlS − (γl + µl + d1) is hold for all S < S ∗. If
this inequation doesn’t hold for some S , the growth rate of strain k may be faster than l, which couldn’t
lead to the extinction of strain k.

4. Simulation

In this section, a model containing two strains and two patches is used to simulate the multiple
strains’ competition process in patchy environments (which is listed as model (4.1)). The baseline
parameters used in the simulations of this section are λ1 = 1, λ2 = 1.5, m21 = 0.05, m12 = 0.01,
µ1 = 0.1, µ2 = 0.1, d1 = 1, d2 = 1, γ1 = 1, γ2 = 1, β1 = 2.5, β2 = 3 and α = 0.8. The baseline initial
conditions are taken as (S 1(0), S 2(0), I1,1(0), I1,2(0), I2,1(0), I2,2(0)) = (1, 2, 0.01, 0.02, 0.02, 0.0).

dS 1(t)
dt

= λ1 + m21S 2 − (β1I1,1 + β2I1,2)S 1 − (d1 + m12)S 1,

dS 2(t)
dt

= λ2 + m12S 1 − (β1I2,1 + β2I2,2)S 2 − (d2 + m21)S 2,

dI1,1(t)
dt

= αm21I2,1 + β1I1,1S 1 − (µ1 + γ1 + d1 + αm12)I1,1,

dI1,2(t)
dt

= αm21I2,2 + β2I1,2S 1 − (µ2 + γ2 + d1 + αm12)I1,2,

dI2,1(t)
dt

= αm12I1,1 + β1I2,1S 2 − (µ1 + γ1 + d2 + αm21)I2,1,

dI2,2(t)
dt

= αm12I1,2 + β2I2,2S 2 − (µ2 + γ2 + d2 + αm21)I2,2.

(4.1)
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The competition exclusion property is one of the main results analyzed in the multiple strain model.
In this work, the competition exclusion theorem is shown at the Theorem 3 and the simulation result
that under the condition of Theorem 3 is shown in the Figure 1. The simulation results illustrate that
strains with a higher infection rate could competitively exclude the other strains in a short period. This
could explain why the delta strain of Covid-19 [20] could be the superior one in a very short period in
most places of the world [21].
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Figure 1. The simulated result of the system (4.1) under the condition that the infection rate
of strain 2 larger than strain 1 and the other parameters of that two strain are same.
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Figure 2. The simulated result of the system (4.1) under the condition that two strain share
the same infection and recover rate, and with different initial conditions.
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Figure 3. The simulated result of the system (4.1) under two strategies that the patch two
with mild (m12 = 0.001) and strict (m12 = 0) lockdown.
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The simulation result of previous works [22] shows the initial condition could influence the equi-
librium of the infected strain when the infection and recovery rate of different strains are the same.
Therefore, in this work, we also numerical calculate the system (4.1) to verify this property. Figure 2
illustrates the simulation results of the two strains of system (4.1) are with the same infection and re-
covery rate. The top 2 panels of Figure 2 illustrate the simulation result of the system (4.1) under the
baseline initial condition, while the bottom 2 panels illustrate the simulation result under the initial con-
dition (1, 2, 0.01, 0.02, 0.04, 0.05). These simulation results show that different initial conditions could
change the trajectories’ trend and the equilibrium of the system when the infection rate and recovery
rate of that two strains were the same. These simulation results may give a biological explanation on
why there are so many COVID-19 strains that could co-exist at one place and the proportion of infected
cases are different in different places [21].

Lockdown is one strategy to slow down or stop the transmission of the epidemic. In this work, we
consider the lockdown of one patch that limits or stops the immigrants from the other patches, and we
call the limit the immigrants as mild lockdown and stop the immigrants is called the strict lockdown.
The Figure 3 shows the simulation result of the mild (top 2 panels of Figure 3) and strict (bottom 2
panels of Figure 3) lockdown with the parameter m12 = 0.001 as the mild lockdown and the m12 = 0.0
as the strict lockdown. The other parameters are the same as the Figure 2. The simulation result implies
that if the people at one patch don’t change their behavior, even for a very some immigrant rate could
cause the spread of the disease at this patch, and the only way to stop the transmission from one patch
to another is to shut down all of the passes from this patch to the others. This means, for the global
transmission of the Covid-19, unless there is no disease in all areas or everyone changes their behavior,
even if all passes are mild lockdown, the spread of disease will not be prevented.

5. Conclusions

In this work, we analyze a complex high dimensional SIR system with multiple strains and patches,
and conclude the properties of that system under different basic reproductive numbers and special
conditions. We find when all of the basic reproductive numbers are smaller than 1, the disease-free
equilibrium is globally stable. The persistence condition, that all basic reproductive numbers are larger
than 1, is also given. Furthermore, the competition exclusion condition for the system (1.1) is also
introduced by solving the equations. By numerical analysis, we compare different lockdown strategies
and find that only strict lockdown could stop the transmission of the disease in this patches.

This work gives some insights into the global dynamic of high dimension ordinary differential
equations. All of the analysis methods illustrated in this work could be used in other related works
about the multiple strain and patch competition. The competition exclusion theorem implies that a new
strain with a higher infection rate or lower recovery rate will become the superior one, and overcome
the inferior strains in the competition. This could explain why in the global spread of Covid-19, the
delta strain which has a higher infection rate becomes the superior one [20] and the alpha strain is
hard to be detected. Furthermore, according to the analysis results of this article, compared with the
dominant strain delta, if the omicron strain [23] has stronger infection rate and similar recovery rate,
then the omicron strain will replace delta strain and become the dominant one in the near future.
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