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Abstract: Backgrounds: Brazil has suffered two waves of Coronavirus Disease 2019 (COVID-19). 

The second wave, coinciding with the spread of the Gamma variant, was more severe than the first 

wave. Studies have not yet reached a conclusion on some issues including the extent of reinfection, 

the infection fatality rate (IFR), the infection attack rate (IAR) and the effects of the vaccination 

campaign in Brazil, though it was reported that confirmed reinfection was at a low level. Methods: 

We modify the classical Susceptible-Exposed-Infectious-Recovered (SEIR) model with additional 

class for severe cases, vaccination and time-varying transmission rates. We fit the model to the 

severe acute respiratory infection (SARI) deaths, which is a proxy of the COVID-19 deaths, in 20 

Brazilian cities with the large number of death tolls. We evaluate the vaccination effect by a contrast 

of “with” vaccination actual scenario and “without” vaccination in a counterfactual scenario. We 

evaluate the model performance when the reinfection is absent in the model. Results: In the 20 

Brazilian cities, the model simulated death matched the reported deaths reasonably well. The effect 

of the vaccination varies across cities. The estimated median IFR is around 1.2%. Conclusion: 

Overall, through this modeling exercise, we conclude that the effects of vaccination campaigns vary 

across cites and the reinfection is not crucial for the second wave. The relatively high IFR could be 

due to the breakdown of medical system in many cities.  

Keywords: COVID-19; reinfection; breakthrough infection; vaccination effectiveness; mathematical 
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1. Introduction  

Brazil was greatly affected by the coronavirus 2019 (COVID-19) pandemic caused by the 

severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). As of 01 February 2022, more 

than 628,000 people had died and 25.6 million had been infected. Many works on the impact of 

COVID-19 in Brazil have been published. The first case of COVID-19 was detected in Brazil on 25 

February 2020. A study [1] reported and contextualized epidemiological, demographic and clinical 

findings for COVID-19 cases during the first 3 months of the epidemic. These findings provide a 

comprehensive description of the ongoing COVID-19 epidemic in Brazil and may help to guide 

subsequent measures to control virus transmission. Cotta et al. [2] employed a SIRU-type epidemic 

model to predict the COVID-19 epidemy evolution in Brazil, and analysed the influence of public 

health measures on simulating the control of this infectious disease. Castro et al. [3] used daily data 

on reported cases and deaths to understand, measure and compare the spatiotemporal pattern of the 

spread across municipalities in Brazil. Candido et al. [4] used a mobility-driven transmission model 

to show the impact of nonpharmaceutical interventions (NPIs) in Brazil. Their study provides the 

evidence that current interventions remain insufficient to keep virus transmission under control in the 

country. In response to the COVID-19 pandemic, governments worldwide have implemented social 

distancing policies with different levels of both enforcement and compliance. Silva et al. [5] 

conducted an interrupted time series analysis to estimate the impact of lockdowns on reducing the 

number of cases and deaths due to COVID-19 in Brazil. They suggested that the social distancing 

policies can be useful to reduce the number of new confirmed cases and flatten the epidemic curve. 

However, there have been some controversies. Buss et al. [6] based on blood donor data, found a 

high infection attack rate (76%) after the first wave in Manaus, Brazil, which was against other two 

independent serological studies [7,8]. The inconsistence is likely due to the difference in the samples 

they used. Blood donor data used in reference [6] could have been influenced by the prevalence of 

COVID-19, while the other two studies were based on general samples (randomly chosen or walk-in 

sample) [7,8]. The pandemic has caused huge amount deaths (in the peak more than hundred deaths 

per day in a city of two million populations), it is hard to believe the recruitment of the blood donors 

was not impacted. The conclusion of high infection attack rate in the first wave of the epidemic 

resulted in the occurrence of an even higher second wave difficult to explain, unless a substantially 

high reinfection rate was assumed. Based on epidemiological modelling, Coutinho et al. [9] 

estimated that 78% of people in Manaus were infected with SARS-COV-2 in the first wave of the 

epidemic and that 28% of cases in the second wave were attributed to reinfection with the P.1 variant. 

However, their work was only based on the data of the second wave without fitting the epidemic 

curve of the first wave (fitting two waves is much more difficult than fitting one wave) and the 

finding is against with the fact that only three confirmed reinfections were reported in the whole state 

of Amazonas where Manaus is the capital city with half of the population of the whole province. The 

reinfection was surely under-reported, but the under-reporting ratio (reported divided by the true 

number) is more likely to be 1/1000, or 1/10,000, rather than 1/100,000 or even more extreme which 

is needed to explain the second wave, given only three confirmed reinfections. Thus, the question is 

whether a model without reinfection or a minor extent of reinfection can explain the second wave 

reasonably well. Ignoring reinfection, Chagas et al. [10] studied the impact of population mobility on 

the spread of COVID-19 in Brazil using a SENUR model equipped with mobility information. 

Dana et al. [11] using a Bayesian model combining a Hamiltonian Monte Carlo algorithm, 



4659 

Mathematical Biosciences and Engineering  Volume 19, Issue 5, 4657–4671. 

predicted IFR of COVID-19 in Brazil to be about 0.3%. However, Mellan et al. [12] using a Bayesian 

model of semi-mechanistic COVID-19 transmission, predicted that IFR in 16 states of Brazil were 

between 0.7% and 1.2%. In reference [13], based on the random seroprevalence survey but not model 

simulation, the average IFR in Brazil was 1.03% (95% confidence interval [CI]: 0.88–1.22%).  

Santos et al. [14] provided evidence for the presence of reinfection, although only one of 33 

reported cases of COVID-19 recurrence was confirmed by genome sequencing. Two cases (that the 

first infection in the B.1.1.33 lineage and the second infection in the P.2 lineage harboring the E484K 

mutation) again confirmed the existence of reinfection [15,16]. Li et al. [17] used serological surveys 

based on random samples to estimate the infection attack rate (IAR, proportion of the population 

being infected) of COVID-19. Buss et al. [6], based on the sample of blood donors, estimated that 

over 75% of the population in Manaus had been infected with SARS-COV-2 by October 2020. 

However, with a sudden increase in COVID-19 hospitalizations in Manaus in January 2021, the 

second wave of epidemic turned to be more severe than the first wave, which implied that ~ 50% of 

the population were infected twice. Explanations for the resurgence of COVID-19 in Manaus 

included that the attack rate of SARS-COV-2 may be overestimated in the first wave of epidemic or 

the new variant of SARS-CoV-2 (Gamma variant) may evade immunity to previous infections [18]. 

In December 2020, SARS-COV-2 variant P.1 (Gamma) emerged in Brazil [19], which had been 

confirmed in six Brazilian cities as of 24 February 2021 [20], and accounted for more than 90% of 

COVID-19 cases in several Brazilian cities in August 2021 [21]. The spread of P.1 variant had been 

suggested as a contributing factor to the second wave of COVID-19 in Brazil. In the context of the 

spread of the P.1 variant, the odds of symptomatic SARS-CoV-2 infection were reduced by a factor 

of 0.5 following at least one dose of CoronaVac, one of two vaccines approved for emergency use in 

Brazil [22]. However, breakthrough cases infected with P.1 variant after CoronaVac vaccination were 

reported [23]. 

As of 19 October 2021, World Health Organization (WHO) concluded on the mortality of P.1 

variant compared to the wild-type virus was still unclear [24]. Compared with wild-type virus, the 

risk of adjusted death associated with the P.1 variant was increased by 51% (95% CI 30–78%) [25]. 

The P.1 variant, compared with the original virus by multivariate analysis, did not show an increased 

risk of death but rather a decreased risk [26]. Given the increased transmissibility of P.1 variant, 

medical system crushed in many cities and the under-reporting of infections could be even severe, all 

these made the estimation of true IFR difficult. In this study, we assume that the IFR is constant 

through the two waves. 

In order to study the change of the transmission rate, the effects of vaccination and reinfection 

on the two waves of epidemic in 20 Brazilian cities, we adopted and modified the classic 

Susceptible-Exposed-Infectious-Recovered (SEIR) model with additional classes for deaths and 

severe cases (or hospitalizations), and with vaccination and time-varying transmission rates. 

2. Methods 

The level of immune response of vaccination varies from person to person. High immune 

response implies high level of protection against infection and severe outcome after breakthrough 

infection (BTI). For simplicity, we adopt a dichotomy fashion where high immune response group 

(fully protection) enter the recovery class (𝑅) after vaccination, and obtain long-term protection at 

least covering the study period (which will decay later). The low immune response group stay in the 
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susceptible pool (𝑆) after vaccination, and is susceptible to BTI. The model has been used in 

previous works [27,28], for the sake of convenience of readers, we re-introduce it here.  

The equations are given below: 
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S, E, I, H, D and R  denote the proportion of individuals which are susceptible, exposed, 

infectious, severe cases (or hospitalized), dead and recovered, respectively. η denotes the proportion 

of fully protected after vaccination (a proxy of the vaccination efficacy after second-dose). Parameters 

β(t), σ, γ κ denote the rate of transmission, rate at which exposed showing infectiousness, rate at 

which infectious losing infectiousness (recovery rate), and rate at which severe cases (or hospitalized) 

leaving the severe (or hospitalized) stage. Parameters π and θ  denote the ratios of infectious 

individuals entering H stage, and individuals in H entering death class. Thus, the IFR equals the product 

of π and θ. The exact definition of H is not crucial since we do not fit individual in H to data. 

According to the existing literature, σ = 0.5 per day, γ = 0.33 per day and κ = 0.125 per day, 

and the average generation time (sum of the mean latent period and the mean infectious period) equals 5 

days [29,30], and the average time from infection to death is 13 days [21]. With only deaths data, 

without severe cases (or hospitalization) data, we cannot estimate π and θ simultaneously. Thus, we 

consider two alternatives, π = θ or π = 0.15 for all cities. The reasoning for the assumption π = θ is 

that in cities with low (or high) IFR, both π and θ could be low (or high), namely the two parameters 

are likely positively correlated. We estimate β(t) and θ through fitting the model to reported SARI 

deaths which is a proxy of the true COVID-19 deaths since during the pandemic all SARI are likely 

due to SARS-COV-2. 

The daily proportion of the whole population (including both vaccinated and unvaccinated 

population) being vaccinated, denoted as v(t), is available from the Brazilian Health Ministry [31]. In 

our model, we use ṽ(t) to denote the daily proportion of the unvaccinated population being 

vaccinated on day t, where ṽ(t) = v(t)/(1 − ∫ v(s)ds)
t−1

0
. The unit of t is day. 

We assume the time-varying β(t) to be an exponential cubic spline [32–34] with the number of 

nodes nβ = 8 evenly spanning the study period, and an upper limit of β(t) < 608 then the basic 

reproduction was within a reasonable interval with an upper limit 5. In the previous studies on multiple 

waves of infections, cubic splines were widely used to model time-varying transmission rate [35–37]. 

Alternatively, Google mobility index or stringency index data can be used to drive the time varying 

transmission rate. However, Google mobility index data alone may not be sufficient in some cities. 

Previous studies propose to use a weekly autoregressive model was used to explain the additional 
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variability [38]. In this work, we argue that cubic spline with several nodes is a sensible choice 

compared with Google mobility index plus a weekly autoregressive model (which involves more 

parameters to be estimated). 

The individual susceptibility is not uniform. It was believed that some proportion of the 

population (e.g., children) have low susceptibility. It is naïve to assume the whole people have uniform 

susceptibility. We assume that 5% of people have pre-existing immunity against COVID-19, which 

may or may not be reflected in the specific antibody [39]. We assume that the initial number of 

individuals in E is the same as I, which is selected from [100, 500] randomly. In addition, the 

individuals in H is 1/10 of those in I, and the individuals in D is 1/10 of those in H. 

Our model is a partially observed Markov process (POMP) model, which allows us to adopt the 

maximum likelihood iterated filtering technology to fit the model to mortality data [36]. The detailed 

fitting procedure is well documented at https://kingaa.github.io/sbied/. 

 

Figure 1. The daily reported COVID-19 deaths and vaccination coverage (one dose and 

two dose) in Brazil, obtained from WHO and the locations of the 20 cities studied in this 

work. We draw the map with the R package Shapefiles and boundary data from 

references [40,41]. The color of states is coded according to death per capita by 01 

January 2021 showing the different state-level severity by then. 

We assume a unified vaccine efficiency after two doses of vaccination, η =0.85 against 

infection. This is a simplification of a very complicated scenario. In reality, individuals got partially 

protection after the first dose of vaccination, then got an improved protection after the second dose, 

possibly with a delay (e.g., two weeks) after the second dose. Vaccination leads to a reduce 

susceptibility against infection, and a reduced risk to severe cases or deaths after possible BTI. The 

protection (immunity) will decay over time. We synthesize all these complicities into a parameter 

η = 0.85, which takes into account the relatively high efficacy against severe outcome (> 95%) after 

BTI and a moderate efficacy against infection (~50%). To assess the population level impact of 

vaccination campaign, we compare the scenarios of “with” vaccination and “without” vaccination. 
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We first fit our model with actual vaccination data to reported SARI death and obtain the estimates of 

β(t) and IFR. With these estimates, we set v(t) = 0, and rerun our model, we obtain the simulated 

deaths under the scenario of “without” vaccination. 

Figure 1 shows the daily reported COVID-19 deaths and vaccination coverage (one dose and 

two dose) in Brazil and the locations of the 20 cities studied in this work. 

3. Results 

 

Figure 2. Model fitting and simulation results in 20 Brazilian cities. Red circles indicated 

the number of reported deaths from COVID-19. The green curves showed the median of 

the 1000 times model simulation with vaccination. The black curves (and gray region) 

showed the median of the 1000 times model simulation without vaccination (and the 95% 

confidence range of the model simulation). The blue dashed curve shows the estimated 

time-varying transmission rate in the form of β(t)/γ. 

We show the results of the fitting and simulation for 20 Brazilian cities in Figure 2, with red 

circles, green curves and black curves representing the reported SARI deaths, simulated deaths in the 

‘with’ vaccination scenario and the ‘without’ vaccination scenario, respectively. The blue dashed 

curve shows the estimates transmission rate β(t)/γ. The green curves closely matched the reported 

deaths in most of the cities. We estimate a median IFR at about 1.2%. The IAR equals the total SARI 

deaths divided by the estimated IFR. In a few cities, the green curves may be lower than the reported 

deaths which could be due to medical crush which was not modeled here (we discuss this later). 

Without consideration of reinfection, our model can capture the two waves. This demonstrated that 
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reinfection is not the crucial factor for the two waves (otherwise, one would encounter difficulty to 

achieve this). Our estimated IFR and IAR was in a reasonable range. A 10–20% reinfection rate may 

be slightly lower the estimated IAR. Because the IFR is a ratio of deaths over infections. A 10–20% 

reinfection rate means an increase in the size of the infections by a factor of 10–20%, which will 

result in a decrease in the estimates of IFR. In Recife and Fortaleza, where the epidemic was more 

severe than other cities in term of deaths per 1 million populations, it can be seen that the green and 

black curves were almost overlapped. However, in the cities that the deaths were relatively less 

severe, the differences between the green and black curves were much evident.   

 

Figure 3. The SARI-fatality-ratio (death per SARI hospitalization) in 20 Brazilian cities 

of the two waves of the epidemic. We divide the two waves of hospitalizations before 

and after 23 November 2021, and the two waves of the deaths before and after 07 

December 2021, namely allowing a two-week delay between the hospitalization start 

date and the date of the death, based on observation of this delay in the data. The black 

curve represented the first wave and the red curve represented the second wave. The 

difference between the black curve and the red curve indicated the change in the risk of 

death per hospitalization during the two waves of COVID-19 in different age groups. 

We show the age profile of the SARI-fatality-ratios (risk of death per hospitalization of SARI) 

in Figure 3 for two waves (divided on 23 November 2020). The change in this mortality rate between 

the two waves was not significant, which justifies our assumption on a constant IFR in our model. 
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In supplementary, we show the total population of the 20 Brazilian cities in Table S1, and the 

prior ranges or values for the main parameters used in our model in Table S2. The detailed results of 

the model in two scenarios in Table S3. Model simulations for all cities are shown in Figures S1 

where π = 0.15, nβ = 8. In the main text, we assume π = θ, nβ = 8, and there is little difference 

between the results of these two scenarios. 

4. Discussion and conclusions 

Brazil was severely impacted by the COVID-19 outbreak that began largely in March 2020 and 

subsequently experienced two large-scale deadly waves, the first dominated by the wild-type virus 

and the second by the Gamma P.1 variant. The Gamma P.1 variant was substantially more infectious 

than the wild-type virus, which led to the second wave with more severe cases and deaths. However, 

conclusions about the IFR, effect of reinfection and the effectiveness of vaccination of the two waves 

had not been reached. 

Based on the seroprevalence survey of blood donors, and reported COVID-19 deaths and SARI 

deaths, Buss et al. [6] concluded that the IFR were 0.28% in Manaus, and 0.72% in São Paulo. 

However, the latest research found a different conclusion. In a large-scale sample and scope survey, 

Marra et al. [13] found that the average IFR for Brazil was 1.03% (95% CI 0.88–1.22%). The latter 

study was more convincing because of the larger sample and the consideration of effect of fading 

antibody levels. Based on model prediction, Mellan et al. [12] predicted the IFR was 0.7–1.2% in 16 

states of Brazil. The median IFR in this study was predicted to be around 1.2%, which was slightly 

higher than the previous works that concluded to be about 1%. Here, we completely ignored 

reinfection and breakthrough infection, which could have led to a higher IFR. However, if we add a 

minor extent of reinfection (e.g., 10–20%), our model can also be fitted and we will get a slightly 

lower IFR. In addition, the IFR in this study was applied to two waves of COVID-19 covering both 

wild-type virus and the P.1 variant, and the later could have a higher risk of mortality and the medical 

system in many hardest hit cities had almost collapsed during both waves, in particularly the second 

wave. These factors explained a slightly higher IFR in this study. 

Sabino et al. [18] put forward several hypotheses to explain why COVID-19 made a comeback 

in Manaus. One hypothesis was that P.1 variant may evade the immune response of previous 

infections other than P.1 variant, and may reinfect patients who were recovering from previous 

infection with the wild type virus. Based on epidemiological model, 28% of infections in the second 

wave of the COVID-19 were caused by reinfection with the P.1 variant [9]. However, the number of 

reported reinfection cases were still few [14–16], thus it is widely believed that the extent of 

reinfection was minor. Using the prevalence dynamics of the Bayesian model, it was estimated that 

the P.1 variant escaped immunity 25–61% [20]. Under the assumption that there was little reinfection, 

using phylogenetic methods, the infectivity of the P.1 variant was at least twice that of the parent 

strain [42]. In addition, He et al. [43] showed a two-strain SEIR model can fit the two wave in 

Manaus reasonably well without significant reinfection (the fitting in the sequence of P.1 proportion 

is much better than previous studies). This study re-confirms the argument that reinfection likely 

played weak role in causing any epidemic waves. Even if a significant proportion (e.g., 10–20%) of 

the population may be immunity boosted due to reinfection, their contribution to further transmission 

and to deaths are lower than the same amount of first time infection. Thus the attack rate of 

SARS-COV-2 in Manaus after the first wave was overestimated, and the IFR 0.28% is an 
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underestimate ignoring the medical system breakdown [6].  

Before this study, the population level effect of vaccines against SARS-CoV-2 variants in Brazil is 

unclear. A study claimed that at least one dose of CoronaVac had been shown to be effective against 

symptomatic SARS-COV-2 infection in the context of P.1 variant transmission [22]. The IAR was 

relatively high and vaccination rates were relatively low comparing to other developed countries [21]. 

Gazit et al. [44] concluded that compared with two doses of BNT162b2 vaccine induced immunity, 

infection induced immunity had a longer duration and stronger protective effect on symptomatic 

diseases caused by delta variant. Although it was not a study of the P.1 variant, one would expect 

similar effects. The limitation of vaccination was highlighted in a recent study that showed 

vaccination was not enough to prevent transmission in household settings exposed to the delta 

variant, but there was no mention of P.1 variant [45]. 

By setting the extreme situation of without reinfection, the simulated death toll curve matched 

the actual reported deaths. Thus, we demonstrate that reinfection was not the key to these two waves 

of COVID-19. The difference between the green and black curve for each city in Figure 2 was 

evident and varied across cities. These hit-hardest cities show smaller population effects of 

vaccination, since most of the population had naturally immunized before vaccination. In cities 

where the epidemic was relatively mild, the effect of vaccination was better.  

The strengths of our study include that this is a large-scale multiple city study in Brazil. Prior to this, 

most studies are limited to a single city. In addition, we further elucidated the impact of time varying 

transmission rate and vaccination on the two waves of COVID-19 in Brazil bases on model simulation. 

Even though reinfection was ignored, our model can reproduce the two waves with slightly higher IFR 

than previous believed. But the breakdown of medical systems in many cities could have led to such an 

IFR. In addition, we only focused on overall protection of the second-dose of vaccination, but in fact the 

first-dose also provided partial protection although it was much weaker [22].  

Overall, we conclude that reinfection was not the key factor in the two waves of COVID-19 in 

Brazil, and vaccination saved substantial number of lives. Correctly assessing the risk of reinfection 

and the scale of reinfection-led mortality is very important and very challenging, we argue that to 

achieve this goal, large-scale control-case study or household study is needed. Assessing the 

effectiveness of vaccination campaign is also very important and challenging. In this work, we 

demonstrated that reinfection-led mortality is unlikely a major factor in Brazil and vaccination 

prevented a large number of deaths, and the effects are not uniform across cities.  
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Table S1. Total population of 20 Brazilian cities in 2020. 

city Pop (2020) 

SAO PAULO 12325232 

RIO DE JANEIRO 6747815 

BELO HORIZONTE 2521564 

RECIFE 1653461 

FORTALEZA 2686612 

BRASILIA 3055149 

CURITIBA 1948626 

SALVADOR 2886698 

GOIANIA 1536097 

MANAUS 2219580 

CAMPINAS 1213792 

PORTO ALEGRE 1488252 

SAO JOSE DO RIO PRETO 464983 

GUARULHOS 1392121 

SAO BERNARDO DO CAMPO 844483 

BELEM 1499641 

CAMPO GRANDE 906092 

TERESINA 868075 

LONDRINA 575377 

JOAO PESSOA 817511 

Table S2. Prior ranges/values for the main parameters used in our model. 

Parameter Symbol Prior range/value 

Transmission rate 𝛽(𝑡) <608 

Rate at which exposed showing infectiousness 𝜎 0.5/day 

Rate at which infectious losing infectiousness 𝛾 0.33/day 

Rate at which hospitalized leaving the hospitalized stage 𝜅 0.125/day 

Ratio of infectious individuals entering hospitalized stage 𝜋 𝜃 or 0.15 

Ratio of hospitalized individuals entering death stage 𝜃 
(0.090664, 0.145647) 

or (0.0548, 0.141421) 

Vaccination efficacy after second-dose 𝜂 0.85 

Number of nodes of an exponential cubic spline 𝑛𝛽 8 
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Table S3. The detailed results of determined parameters of the model corresponding to 

20 Brazilian cities in two scenarios. 

 loglik.1 loglik.2 diff_loglik IFR.1 IFR.2 

SAO.PAULO -553.4918 -553.4808 -0.011 0.0212 0.0212 

RIO.DE.JANEIRO -531.5078 -531.5882 0.0804 0.0099 0.01 

BELO.HORIZONTE -416.3607 -416.8723 0.5117 0.0207 0.0129 

RECIFE -385.3031 -385.346 0.0429 0.0157 0.0157 

FORTALEZA -396.84 -396.8842 0.0442 0.0098 0.0098 

BRASILIA -403.0766 -403.0966 0.02 0.0083 0.0082 

CURITIBA -420.2897 -420.3855 0.0958 0.0185 0.0158 

SALVADOR -366.712 -366.1312 -0.5808 0.0082 0.0082 

GOIANIA -410.2133 -410.668 0.4547 0.0156 0.015 

MANAUS -397.4874 -398.2648 0.7774 0.0082 0.0082 

CAMPINAS -371.4368 -371.3761 -0.0608 0.018 0.0203 

PORTO.ALEGRE -394.5856 -395.424 0.8384 0.0113 0.0112 

GUARULHOS -338.6575 -338.1193 -0.5382 0.0092 0.0097 

SAO.JOSE.DO.RIO.PRETO -350.3752 -350.8219 0.4467 0.0212 0.0212 

SAO.BERNARDO.DO.CAMPO -315.6685 -315.7307 0.0622 0.0139 0.0134 

CAMPO.GRANDE -321.0268 -320.6764 -0.3504 0.0116 0.012 

BELEM -336 -336.1543 0.1543 0.01 0.0102 

TERESINA -287.7254 -287.191 -0.5345 0.0109 0.0111 

LONDRINA -331.6809 -331.4184 -0.2625 0.0167 0.0171 

JOAO.PESSOA -320.6502 -320.657 0.0068 0.0121 0.0123 

Min. -553.4918 -553.4808 -0.5808 0.0082 0.0082 

1st Qu. -404.8608 -404.9894 -0.1112 0.0098 0.0099 

Median -378.37 -378.361 0.0436 0.0119 0.0122 

Mean -382.4545 -382.5143 0.0599 0.0135 0.0132 

3rd Qu. -334.9202 -334.9703 0.2274 0.0171 0.0157 

Max. -287.7254 -287.191 0.8384 0.0212 0.0212 
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