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Abstract: We consider cancer cytotoxic drugs as an optimal control problem to stabilize a
heterogeneous tumor by attacking not the most abundant cancer cells, but those that are crucial in
the tumor ecosystem. We propose a mathematical cancer stem cell model that translates the hierarchy
and heterogeneity of cancer cell types by including highly structured tumorigenic cancer stem cells
that yield low differentiated cancer cells. With respect to the optimal control problem, under a certain
admissibility hypothesis, the optimal controls of our problem are bang-bang controls. These control
treatments can retain the entire tumor in the neighborhood of an equilibrium. We simulate the bang-
bang control numerically and demonstrate that the optimal drug scheduling should be administered
continuously over long periods with short rest periods. Moreover, our simulations indicate that
combining multidrug therapies and monotherapies is more efficient for heterogeneous tumors than
using each one separately.
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1. Introduction

Recent advances in oncology have demonstrated the existence of a subpopulation of tumor cells
called cancer stem cells (CSCs) that are crucial in the initiation, metastasis, and resistance of
tumors [1, 2]. They have been identified in many types of cancers. For example, in immunodeficient
mice, orthotopic xenografts of CSCs isolated from brain tumors were performed and demonstrated
tumorigenesis properties [3–5].
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CSCs constitute a small cell population within a tumor, divide extremely slowly, are capable of
self-renewal, and can explain the genesis of a tumor. The heterogeneity observed in tumors is
explained as the result of a partial differentiation gradient of different CSCs. These cells possess
distinct genetic and epigenetic characteristics that can resist therapy and may later initiate metastatic
processes [6, 7]. Previous studies have proven that increased genetic instabilities in normal stem cells
may lead to the formation of CSCs, suggesting that stemness is attained from additional genetic
modifications. Currently, biological markers are available to identify these stem cells such as CD34+/
CD38 in leukemia, CD44+/CD24 in breast cancer, CD133+ in brain cancer, colorectal lung cancer,
and endometrial cancer, CD44+/CD24+ in pancreatic cancer, CD44+/CD117+ in ovarian cancer,
CD44+/CD271+ in throat cancer, CD90 in liver cancer, CD105 in kidney cancer, and CD271 in
melanoma [8–12].

Conventional therapies treat all tumor cells similarly. However, CSCs are not always affected.
Indeed, they are generally, highly chemo-resistant, and radio-resistant; therefore, recurrence is almost
inevitable in the near or long term. Targeting CSCs is a major challenge in cancer treatment and might
limit tumor growth and prevent metastasis, offering new hope in anti-cancer treatment (trials have
been conclusive in the fight against melanoma [13]). Several approaches are used in that measure, like
targeted therapy that aims to sensitize CSCs to radiotherapy [1] or also using metronomic scheduling
(MSAT) to affect both the cells and their micro-environment [14–16]. The problem can also be treated
with conventional therapies only with new administration schedules [17]. This approach can be
considered very close to the MSAT just in a more general way. Targeted therapy has also presented a
way of enhancing the results of conventional treatments [18]

In this context, based on the CSC niche model of Jinzhi Lei [19], we propose a CSC mathematical
model that describes the growth of a heterogeneous population of cancer cells and its treatment
response as an optimal control problem. Our model contains two compartments of cancer cell
populations. The first describes the dynamics of different types of CSCs. The second describes the
dynamics of different types of non-stem cancer cells (CCs). Based on the hypothesis that stem cells
are at the origin of cancer, we have assumed that each type of CC is an early progenitor of a certain
type of CSC. These CCs can divide rapidly but in a limited manner in opposition to CSCs. Our goal is
subsequently to identify an optimal multidrug scheduling that aims to stabilize the entire cancer cell
population at a certain competitive equilibrium, by targeting CSCs. This approach allows
transforming cancer into a chronic disease rather than a lethal one. The idea is based on using a
tumor’s own heterogeneity against it. In fact, stabilizing cancer around certain equilibrium that are not
lethal but are sufficient to maintain competition presents an interesting way to treat cancer, whether
from a health pointy of view or an economic one. A mathematical model was used to investigate this,
as mathematical modeling has always been present in cancer studies [20, 21].

The paper is organized as follows. In Section 2, we describe the model in detail and subsequently
analyze it using optimal control theory, to identify optimal drug scheduling that may control the tumor
by stabilizing and targeting CSCs. In Section 3, we present our numerical computations using an
indirect method of optimal control theory. Finally, in Section 4, we discuss our results and present
some perspectives and eventual extensions of the model.
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2. Model description and mathematical analysis

We herein propose a mathematical model structured into two compartments: one for the CSC
population and the other one for the non-stem CCs. We assume that the CC compartment growth is
stimulated by the differentiation of CSCs. Indeed, during the cell cycle, CSCs may undergo apoptosis
or divide to yield two daughter cells indefinitely (no natural mortality) or differentiate to a CC.
However, CCs do not proliferate indefinitely owing to the aging process (a growth rate less than a
mortality rate), do not differentiate, and are not subjected to apoptosis.

Suppose that the tumor heterogeneity is due to CSC population heterogeneity. Thus, the CSC
population is structured by n types. Through the differentiation process, each CSC of type i yield
a CC of the same type. It should also be emphasized that, in some cases, the CC can acquire the
ability to de-differentiate and regain the CSC population with all stem cell properties [22]. However,
we ignore this de-differentiation process and assume that the CSC compartment is independent of the
CC compartment (see Figure 1 for the conceptual model overview). In the following, we present the
description of the two compartments separately.

Figure 1. Illustration of the model-Overview for different types i of CSCs and CCs with two
compartments: the CSCs’ one where βi, µi, 1−µi and δi are respectively the proliferation, the
apoptosis, the mitosis and the differentiation rates; and the CCs’ one where βLi and µLi are
respectively their proliferation and natural death rates.

2.1. CSC compartment model

Let ∀ i ∈ {1, .., n}, and Mi(t) denotes the number of resting phase cancer stem cells of type i at time
t. During the cell cycle, each cell of type i can either proliferate with βi rate or differentiate with δi rate.

Subsequently, the CSC of type i that has entered the proliferative state and escaped apoptosis with a
rate (1 − µi), divide and yield two daughter CSCs. Thus, the total number of daughter CSCs from type
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i is
2 Mi(t) βi(1 − µi).

Considering that the daughter cells of type i may come from a mother cell of type j with a
probability p(i, j), the quantity of cells added to type i is then

2
n∑

j=1

M j(t) β j(1 − µ j)p(i, j).

The evolution of the different classes of CSCs is therefore given, ∀ i ∈ {1, .., n}, by
dMi(t)

dt
= −Mi(t)(βi + δi) + 2

n∑
j=1

M j(t)β j(1 − µ j)p(i, j),

Mi(0) = Mi0

(2.1)

with M = (M1, . . . ,Mn) representing the state vector of all CSC populations.
The CSC compartment model as an optimal control problem. It is typical in cancer treatment

to deliver not just one drug, but a combination of therapeutic agents that act on different pathways.
We herein propose a combination of drugs, each targeting one specific CSC type. Basically, the
sensitivity of cells to treatment is not absolute, but it depends significantly on the drugs administered.
Moreover, cell culture experiments suggest that the treatment-induced cell response rate
(dose-response relationship) is proportional to the drug concentration [23, 24]. Subsequently, let ui(t)
be the cell-type specific response rate owing to drug concentration at time t.

We therefore formulate an optimal control problem for the system (2.1), where we consider n
controls u = (u1, . . . , un)T corresponding to n dose rate. Drugs administered are performed under a
homologous stem cell treatment (cytapheresis). Thus, ui(t) might be either positive (i.e., ui(t) > 0,
corresponding to the death rate) or negative (i.e., ui(t) < 0, corresponding to the recruitment term).

The evolution of the different classes of CSC population under treatment is therefore given, ∀ i ∈
{1, . . . , n}, by

dMi(t)
dt

= Fi(M(t), ui(t)) = −Mi(t)(βi + δi + ui(t)) + 2
n∑

j=1

M j(t)β j(1 − µ j)p(i, j),

Mi(0) = Mi0

(2.2)

where M = (M1, . . . ,Mn) the state vector of all CSC populations.
The treatment principle consists in maintaining a certain competition between the resistant and

sensitive cancer cells in a way that keeps the tumor small enough for the patient to live with it. This
principle aims at transforming cancer from a lethal disease to a chronic one. Subsequently, our goal is
to obtain the control û = (û1, . . . , ûn)T , for each CSC type, to minimize the following functional of the
form:

J(u) =
∫ T

0

n∑
j=1

λ j

(
M j(t) − M∗j

)2
dt (2.3)

with T the final time of the therapeutic protocol, λ j are positive weights relative to each CSC type, and
M∗i a positive constant. This functional measures the difference between the CSC populations and the
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constant M∗i during the therapy interval. Therefore, minimizing J results in the minimization of this
distance

∣∣∣Mi(t) − M∗i
∣∣∣. Thus, the primary objective is to stabilize the volume of the CSC population∑n

i=1 Mi(t) at a certain competitive equilibrium
∑n

i=1 M∗i . We assume that the total amount of each drug
to be given is specified a priori based on a medical assessment represented by constrained values. In
fact, any kind of drug can become toxic for the patient if the dose crosses a certain maximal threshold
and is of no benefit to the body if given below a certain minimal dose. This results in the following
mathematical condition, ∀ i ∈ {1, . . . , n}:

umin
i ≤ ûi(t) ≤ umax

i ∀ t ∈ [0,T ]

Thus, the optimal control problem (OCP) can be stated as follows: minimize the functional J over
all Lebesgue measurable functions u = (u1, . . . , un)T , such that ui : [0,T ] → [umin

i , umax
i ], i ∈ {1, . . . , n},

subject to the dynamic (2.2).
Existence of an optimal control. We examine sufficient conditions for the existence of a solution

to the quadratic optimal control problem. The necessary conditions for existence are stated and verified
as follows [25].

Theorem 2.1. There exists control functions û = (ûi), i ∈ {1, ..., n} so that

J(t, û) = min
u∈U

J(t, u)

where U is the set of admissible controls.

Proof. To prove the existence of an optimal control pair, it is easy to verify that:

• The set of controls and corresponding state variables, V = {(u,Mu(t))}, where u = (ui) is the
control vector and Mu = (Mi u) is the corresponding state variables vector, is nonempty, convex
and closed.
• The right-hand side of the state system is a linear function of the state variables as well as the

control.

• The integral L =
n∑

j=1

λ j

(
M j(t) − M∗j

)2
in the objective functional is positive quantity in Eq (2.3)

is convex. This condition holds, because the integral L is quadratic.
• There exist constants ω1 > 0, ω2 > 0 and ρ > 1 such that the integral L of the objective functional

satisfies:
L ≥ ω1 + ω2 ||u||

ρ
2

In fact, since L > 0, there exists l > 0 such that L > l, then, for ω1 =
l

2 n (umax)2 where umax =

max
1≤i≤n

umax
i and ω2 =

l
2 one has the previous equation.

These conditions provide the existence of an optimally controlled trajectory (M̂i, ûi) for the problem
(OCP) defined over the interval [0,T ], that minimizes Eq (2.3). □

Characterization of the optimal control. In order to characterize the optimal control, we use the
Pontryagin maximum principle [26, 27]. This principle allows transforming the optimality problem
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into a mere study of the Hamiltonian variations. So, we start by giving the Hamiltonian defined as:

H(t,M(t), u(t)) = < ψ(t), F(t,M(t), u(t)) > −
n∑

j=1

λ j

(
M j(t) − M∗j

)2
= −

n∑
j=1

λ j

(
M j(t) − M∗j

)2
+

n∑
k=1

ψk(t)Fk(t,M(t), uk(t))
(2.4)

where ψ = (ψ1, ..., ψn) is the vector of co-state (adjoint) variables and
F(t,M(t), u(t)) = (F1(t,M(t), u(t)), ..., Fn(t,M(t), u(t))) is the vector of state variables.

Theorem 2.2. Given optimal controls ûi and solutions Mi of the corresponding state system , there
exist co-state variables ψi that satisfy

ψ̇i = −2βi(1 − µi)
n∑

k=1

ψk p(k, i) + 2λi(Mi − M∗i ) + ψi (βi + δi + ui) (2.5)

with terminal condition:
ψi(T ) = 0 , ∀i ∈ {1, ..., n}

Furthermore, the optimal controls ûi are given by

ûi =


umin

i if ψi > 0,
umax

i if ψi < 0,
u∗i if ψi = 0,

where

u∗i = −(βi + δi) + 2
n∑

k=1

Mk

Mi
βk(1 − µk)p(i, k)

+

−βi(1−µi)

n∑
k=1

(p(k, i)
n∑

j=1

ψ j p( j, k) + 2λk(Mk − M∗k))

2λi(Mi−M∗i )−2βi(1−µi)

n∑
k=1

ψk p(k, i)

Proof. Using the Pontryagin maximum principle conditions, we obtain the co-state variables equations
given by

ψ̇i = −
∂H
∂Mi
= −2βi(1 − µi)

n∑
k=1

ψk p(k, i) + 2λi(Mi − M∗i ) + ψi (βi + δi + ui) (2.6)

with terminal condition:
ψi(T ) = 0 , ∀i ∈ {1, ..., n}.

Furthermore, the optimality conditions state that the optimal control û(.) maximizes the Hamiltonian
function H. By using them, one has the switching function:

Γi =
∂H
∂ui
= −ψiMi
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As Mi is assumed positive, the sign of the switching function γi is determined by the sign of the
co-state vector ψi . According to the previous condition, the Hamiltonian function H is linear with
regard to ui, thus, the maximization property implies that ∀ i ∈ {1, . . . , n}:

ûi =


umax

i if ψi < 0,
umin

i if ψi > 0,
singular if ψi = 0,

Therefore, the maximum rate umax
i of the drug should be administered whenever ψi is negative, and

the minimum rate umin
i of the drug should be injected whenever ψi is positive. If we do not consider the

singular solution, these types of controls are called bang-bang controls, while they assume values only
in the boundary points of the control interval.

Now, we investigate the singular solution. This solution is considered if, over some interval Ii ⊂

[0, T ], one has Γi(t) = 0 for all t ∈ Ii. Note that over this interval, it is assumed that Mi > 0 and
ψi = 0 since Mi = 0 means that the patient is perfectly healthy and does not require any treatment. To
compute the singular control, one needs to differentiate the switching function Γi(t), it is well-known
that the control can appear for the first time only in an even numbered derivative, and thus we need to
compute the first two derivatives.

Γ̇i = −
(
Ṁi ψi + Mi ψ̇i

)
Γ̈i = −

(
M̈i ψ̇i + 2Ṁi ψ̇i + Mi ψ̈i

)
= −2

−Mi(t)(βi + δi + u∗i (t)) + 2
n∑

j=1

M j(t)β j(1 − µ j)p(i, j),


−2βi(1 − µi)

n∑
k=1

ψk p(k, i) + 2λi(Mi − M∗i )


−2Miβi(1 − µi)

n∑
k=1

p(k, i) 2βk(1 − µk)
n∑

j=1

ψ j p( j, k) + 2λk(Mk − M∗k).

This expression obtained by replacing Ṁ, M̈, ψ̇ and ψ̈ by their dynamics expressions can be written
as follows:

Γ̈i = χiu∗i (t) + θi

where

χi = 2Mi

−2βi(1 − µi)
n∑

k=1

ψk p(k, i) + 2λi(Mi − M∗i )


and

θi = −2

−Mi(t)(βi + δi) + 2
n∑

j=1

M j(t)β j(1 − µ j)p(i, j),


−2βi(1 − µi)

n∑
k=1

ψk p(k, i) + 2λi(Mi − M∗i )


−2Miβi(1 − µi)

n∑
k=1

p(k, i) 2βk(1 − µk)
n∑

j=1

ψ j p( j, k) + 2λk(Mk − M∗k).
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Since Γ̈i = 0, the singular control is then given by:

u∗i =
−θi
χi

= −(βi + δi) + 2
n∑

k=1

Mk

Mi
βk(1 − µk)p(i, k)

+

−βi(1−µi)

n∑
k=1

(p(k, i)
n∑

j=1

ψ j p( j, k) + 2λk(Mk − M∗k))

2λi(Mi−M∗i )−2βi(1−µi)

n∑
k=1

ψk p(k, i)

under the following admissibility hypothesis:

umin
i ≤ u∗i ≤ umax

i (2.7)

□

In the following, we elaborate the CC compartment model and analyze the asymptotic behavior of
the entire tumor population when the CSC equilibrium M∗i is reached for each i ∈ {1, . . . , n}.

2.2. CC compartment model

Let ∀ i ∈ {1, . . . , n}, Ci denote the density of the CC of type i. Each type i of CC is subject to natural
mortality with a rate µLi, and to proliferation with a rate βLi. Moreover, the growth of each type i of CC
is stimulated by the differentiation of the type i of CSC with rate δi. Considering the aging process, we
assume that for each type of CC, we have 2βLi − µLi < 0. In fact, unlike CSCs which have very low
apoptosis rate, fully differentiated CCs are more likely subject to natural mortality than to proliferation
and the renewing of the population depends on CSCs. Therefore, the CC equations are as follows:{

Ċi = (2βLi − µLi)Ci + δi Mi

Ci(0) = Ci0
,∀ i ∈ {1, . . . , n} (2.8)

The solution of the Eq (2.8) is given by:

Ci(t) = Ci0e(2βLi−µLi)t + δi

∫ t

0
e(2βLi−µLi)(t−s)Mi(s)ds. (2.9)

If Mi is equal to M∗i , subsequently the Eq (2.9) resumes to

Ci(t) =

 e(2βLi−µLi)t(Ci0 +
δi M∗i

2βLi−µLi
) − δi M∗i

2βLi−µLi
if (2βLi − µLi) , 0,

Ci0 + δiM∗i t if (2βLi − µLi) = 0.

Therefore, considering the aging process, i.e., (2βLi − µLi) < 0, we have

lim
t→∞

Ci(t) =
δiM∗i

µLi − 2βLi
.

This proves that the optimal control of the CSC population results in the stabilization of the entire
tumor.

In the following section, we describe the numerical computations with two type of CSCs. Our
aim is to identify the switching times for the bang bang solutions with different scenarios of cancer
aggressiveness.
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3. Numerical computations

For the numerical simulations, we consider our model as qualitative, rather than quantitative, such
that the parameter values cannot be claimed as being entirely realistic. They are not based on medical
data, but merely reflect some qualitative biological tumor properties.

We assume that the cells are structured by two types of CSCs: Type 1 (type 2) exhibits a high (low)
proliferation rate with a lower (higher) differentiation and apoptosis rate. The treatment administered
was performed under a homologous stem cell treatment (i.e cytapheresis). Time was normalized to
set the boundary points of the control interval to umax

i = 1 and umin
i = −1. As explained above, we

seek to determine a control that can stabilize CSC populations at M∗i equilibrium; therefore, we chose
M∗1 = 2500 and M∗2 = 1500. Moreover, we considered the aging process for different types of CCs;
therefore, ∀ i ∈ {1, . . . , n}, 2βLi − µLi < 0.

We numerically solved the following Hamiltonian system using the single shooting method [27],
as the problem is a two-point boundary value problem for which both the initial states of the state
variables and the final states of the co-state variables are known. The control was chosen in accordance
with the sign of the corresponding switching function, Γ = −ψiMi (i.e., we did not consider the MRAP
solution): 

Ṁi = Fi(M, ui)

ψ̇i = −2βi(1 − µi)
n∑

k=1

ψk p(k, i) + 2λi(Mi − M∗i ) + ψi (βi + δi + ui)

Mi(0) = Mi0

ψi(T ) = 0

(3.1)

(a) Type 1 CSC population. (b) Type 2 CSC population.

Figure 2. Figure 2(a) (respectively Figure 2(b)) shows in blue the dynamic of the total
density of type 1 CSC (resp. type 2), and in red the optimal drug scheduling. (T = 5 weeks
, β1 = 0.7, β2 = 0.3, δ1 = 0.15, δ2 = 0.3, µ1 = 0.15, µ2 = 0.4, p(1, 1) = p(1, 2) = p(2, 1) =
p(2, 2) = 0.5, λ1 = λ2 = 1).
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Figures 2(a),(b) illustrate the therapeutic protocol adapted to both type 1 and type 2 CSCs. The
protocol adapted starts with a constant maximal dose over a 1.2 unit of time period for type 1 and
2.8 for type 2; which results in both cases in a decreasing of the population density. This shot is
followed by a recess in both cases that causes the populations to regrow. The cycle is then maintained
until reaching the equilibrium values. The generated protocols succeeded in rebalancing these cell
populations in the neighborhood of M∗1 and M∗2 (i.e., prescribing a lifetime treatment for the patient that
will control the cancer without completely eliminating it). The principle is to maintain the competitive
environment between resistant and sensitive cancer cells. The optimal treatments obtained by the
simulations postulate that courses should be increasingly more dense (i.e., chemotherapy treatments
are closer together) and progressively less intense (i.e., intake duration).

However, the equilibrium M∗2 for the type-2 CSC is reached faster compared to the other type (see
Figure 2(b)). Indeed, we observed that the dynamic of type-2 CSC indicates less important
oscillations than that of type 1. This can be explained by the fact that type-1 CSCs are more
aggressive than type-2 CSCs, considering our parameter configuration. Moreover, the ratio

Cytotoxic drug amount
cytapheresis drug amount for type-2 CSC is larger than that for type 1. This is consistent with the hypothesis,
in that with not extremely aggressive cancers, relativity large doses of cytotoxic treatment can be
administered without an extended rest period.

Monotherapy against multidrug therapy. Monotherapy refers to medical treatment that relies on
only one drug administration (i.e., one agent) at a time, unlike a multidrug therapy that is a treatment
comprising several agents simultaneously. Although the response rates and survivals observed in
multidrug therapy programs appear to be higher than those observed with monotherapy, few
randomized trials have been conducted for this purpose [28, 29].

Figure 3 shows that the two optimally generated scheduling of the two drugs overlap several times
(i.e., the two drugs should be injected simultaneously). Indeed, at 45% of the treatment period, we
have to administer both types of drugs simultaneously. However, for 52% of this treatment period,
we alternate between these two drugs. This suggests that combining the two strategies: multidrug
therapies and monotherapies, is essential for heterogeneous cancers. Moreover, the efficiency of these
two strategies depends on their scheduling.

Influence of CSC population treatment on the entire tumor. We herein propose to study the
effect of targeting CSCs and CCs on the whole tumor. We study three scenarios depending on the sign
of µLi − (δi + 2βLi), for i = 1, 2, thus ensuring that at the beginning (i.e., initial conditions), the density
of the CC is much higher than that of the CSC. Figure 4 represents the densities of CSCs and their
corresponding CCs in three different cases. In all cases (see Figure 4), we observed that targeting the
CSC using the optimal drug scheduling can control and stabilize all the tumors.

However, we observed that we can even reduce the size of the CC populations to less than those of
the CSC in both cases where µLi > δi + 2βLi, for all i = 1, 2, and µLi > δi + 2βLi, for i = 1 or i = 2
(see figure 4c). In the latter case, we can reduce the size of only the non-aggressive CC population,
allowing the size of the aggressive CC population to be relatively high and subsequently rendering
the tumor homogenous. Nonetheless, if µLi < δi + 2βLi, for all i = 1, 2, we cannot reduce the size of
CC populations to less than those of the CSC. In this case, it would be advisable to add a cytotoxic
treatment to kill the remaining CCs (see figure 4b). Moreover, we observed in Figure 4 a significant
delay between the CSC and CC. This is because the stabilization of CSC induces CC stabilization.
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Figure 3. From top to bottom: optimal drug scheduling for type-1 drug, optimal drug
scheduling for type-2 drug, overlapping of both types of drugs (multidrug therapy), only
one type of drug administered (monotherapy).

4. Discussion

In this study, we created a controlled mathematical model for the treatment of CSCs and CCs where
drug doses are the control. Optimal control allows determining the optimal dose and schedule for
the delivery of treatment. The mathematical model includes an n ordinary differential equations of
first order for both the CSCs and the CCs.The model describes the dynamics of CSCs and CCs when
applying the optimal combination. Other than describing the dynamics, the model yields the best
schedule according to the parameters used. The mathematical analysis of the problem was followed by
numerical simulations using the single shooting method. The optimal drug scheduling generated by our
optimal control problem suggests that drugs should be administered continuously over relatively long
periods without extended rest periods and in a chronic manner. This optimal scheduling joins strongly
the new modality of drug administration called “metronomic chemotherapy” that creates reference
to the schedule [14, 16]. It is a new therapeutic approach that began to evolve in the early 2000s,
when Fidler and Ellis reported, “Cancer is a chronic disease and should be treated like other chronic
disease [15]”. This approach appeared after a reflection regarding the side effects caused by traditional
therapies. Because targeting a CSC is not a typical practice, we subsequently compared the optimal
drug scheduling generated by our model with traditional ones.

Traditional therapies (i.e., chemotherapy) have been designed to kill as many tumor cells as
possible by treating them with the “maximum tolerated doses” (MTDs) of cytotoxic agents. Many of
these therapies are effective and result in regression, or at least stabilization, of the tumor. However,
these responses are typically short-lived and relapses are often marked by more aggressive and
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(a) Both types of non-aggressive CC populations (µL1 = µL2 = 1, βL1 = βL2 = 0.1, δ1 = 0.15 and
δ2 = 0.3).

(b) Both types of aggressive CC populations (µL1 = µL2 = .8, βL1 = βL2 = 0.1 and δ1 = δ2 = 0.8).

(c) Only one type of aggressive CC population (µL1 = .8, βL1 = 0.1, δ1 = 0.8, µL2 = 1, βL2 = 0.1,
δ2 = 0.3).

Figure 4. Dashed line represents the dynamic of the total density of type-1 CC; solid line
represents the dynamic of the total density of type-1 CSC. The normalized final time is fixed
at (T = 20 weeks).
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resistant cancers. In addition, these traditional therapies seriously affect the quality of life of the
patient. Moreover, the MTDs has been proven not to be optimal [30]

It is noteworthy that metronomic dosing has been performed in a clinical setting. Indeed, dozens
of chemotherapeutic agents have been administered by metronomic infusion [17]. Nevertheless, it
remains a rare practice owing to the lack of a standard planning of metronomic infusions. Hence, our
study attempts to partially solve this problem, by focusing on the switching times between cytotoxic
treatment and recovery time.

Another result of our model suggests that combining multidrug therapies and monotherapies is
more efficient for heterogeneous cancers than using only either one. It contributes to the therapeutic
controversy that aims to determine the best manner to administer drugs. In this context, the
Goldie–Coldman hypothesis predicted that alternating two drugs (i.e., monotherapy) would be the
most effective strategy. This hypothesis was tested negatively in Italy in women with mammary
carcinoma [31]. This negative result is also supported by the experimental study performed by
Alberto et al. [32]. Alberto et al. demonstrated an unquestionably higher objective response rate when
four drugs were injected simultaneously, followed by the same four agents injected separately.

Moreover, our simulations confirm the fact that by controlling and targeting only the CSC, we
manage to control the entire tumor, thus preventing possible tumor recurrences. We also noticed a
certain delay between the CSC and CC; the CSC reached equilibrium faster than the CC, thus
supporting the fact that CCs are dependent on CSCs. Therefore, an optimal protocol should target
cells that are critical in the tumor ecosystem instead of the most abundant ones.

Few studies have been conducted on the development of molecules specifically targeting CSCs.
However, it has been shown that the signaling pathways: Wnt, Notch, and Shh, are involved in the
regulation of CSC differentiation and proliferation, and are necessary for the survival of these cells [33].
The Wnt signaling pathway has been shown to be selectively expressed in colon CSCs and promotes
their maintenance and proliferation [34]. In addition, the over-expression of the Wnt pathway would
promote the tolerance of DNA damages in mammary CSCs, thus resulting in their survival [1] from
a transformation of stem cells into neoplastic cells [35]. In addition, the inhibition of Shh and Notch
pathways in glioblastoma cell lines results in the increased sensitivity of CSCs to temozolimide [36].

Finally, the exact origin of these CSCs has not been clearly established. Genetic alterations could
occur during different stages of cell maturation, resulting in the de-differentiation of different
precursors to CSCs [2]. For example, it has been shown in mice that neural stem cells or mutated
neural progenitors may be responsible for gliomas formation [37]. This will render the task of
balancing the stem cell population even more difficult owing to the new term of recruitment to this
population. Several hypotheses suggest that this term of recruitment could be induced by the
treatment that explains the effect of resistance and tumor recurrence. Thus, it would be wise to extend
our model, considering the assumption that in some cases the normal cancer cells (i.e., the non-stem
cancer cells or poorly differentiated cells) acquire the ability to de-differentiate and regain its
stemness. We will thus be able to study the resistance to treatment and the phenomenon of recurrence.
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Appendix

Parameters

Table A1. Table of parameters.

Parameter β1 β2 δ1 δ2 µ1 µ2 p(i, j) µL1 βL1 µL2 βL2

value 0.7 0.3 0.15 and 0.8 0.3 and 0.8 0.15 0.4 0.5 1 and 0.8 0.1 1 and 0.8 0.1

Note: where i, j ∈ {1, 2}
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