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Abstract: Lowering the dose in single-photon emission computed tomography (SPECT) imaging to 
reduce the radiation damage to patients has become very significant. In SPECT imaging, lower 
radiation dose can be achieved by reducing the activity of administered radiotracer, which will lead to 
projection data with either sparse projection views or reduced photon counts per view. Direct 
reconstruction of sparse-view projection data may lead to severe ray artifacts in the reconstructed 
image. Many existing works use neural networks to synthesize the projection data of sparse-view to 
address the issue of ray artifacts. However, these methods rarely consider the sequence feature of 
projection data along projection view. This work is dedicated to developing a neural network 
architecture that accounts for the sequence feature of projection data at adjacent view angles. In this 
study, we propose a network architecture combining Long Short-Term Memory network (LSTM) and 
U-Net, dubbed LU-Net, to learn the mapping from sparse-view projection data to full-view data. In 
particular, the LSTM module in the proposed network architecture can learn the sequence feature of 
projection data at adjacent angles to synthesize the missing views in the sinogram. All projection data 
used in the numerical experiment are generated by the Monte Carlo simulation software SIMIND. We 
evenly sample the full-view sinogram and obtain the 1/2-, 1/3- and 1/4-view projection data, 
respectively, representing three different levels of view sparsity. We explore the performance of the 
proposed network architecture at the three simulated view levels. Finally, we employ the 
preconditioned alternating projection algorithm (PAPA) to reconstruct the synthesized projection data. 
Compared with U-Net and traditional iterative reconstruction method with total variation 
regularization as well as PAPA solver (TV-PAPA), the proposed network achieves significant 
improvement in both global and local quality metrics. 
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1. Introduction 

Single-photon emission computed tomography (SPECT) has been widely used in clinical 
diagnosis of cardiovascular diseases, bone scans, lung perfusion imaging and lung ventilation 
imaging [1]. In a SPECT imaging system, a certain concentration of radioactive tracer is administered 
to the patient. SPECT might provide estimate of the spatial distribution of radioactive tracer inside the 
patient’s body through tomographic reconstruction from the detected emission events. The detector 
revolving around the human body records the number of single events due to gamma photons emitted 
by SPECT radioactive tracer distributed inside the body. The gamma photons are detected only if they 
travel along directions well defined by a collimator. The collection of such emission events can be 
processed into a set of projection data that has sequence feature along the direction of projection angle. 
The estimated radiotracer distribution, whose representation under appropriate basis is widely known 
as the reconstructed image, can provide clinical diagnosis information. However, SPECT radioactive 
tracer can cause specific radiation damage to the human body and even increase the risk of radiation-
induced cancer. Hence, there is a real need to reduce the radiation dose in SPECT studies. Lower 
radiation dose can be achieved by lowering the activity of administered radiotracer. Under these 
circumstances, the reconstructed image suffers from various degradations, such as high Poisson noise, 
severe artifacts, and low spatial resolution, thereby affecting the accuracy of clinical diagnosis [2]. As 
a result, how to reduce the radiation dose in SPECT imaging under the premise of maintaining the 
quality of the reconstructed image has become a crucial clinical problem. Model-based iterative 
reconstruction (MBIR) is one of the major handcrafted methods for reconstructing low-dose projection 
data [3–5]. The MBIR methods have fine mathematical explanation, and make good use of the 
projective geometry and physical principle during the data acquisition process. However, the 
traditional iterative reconstruction methods with certain model parameters, such as the transform filters, 
the nonlinear shrinkage operator, and the regularization parameters, which need to be determined 
empirically via prior knowledge, may not adapt to projection data of various phantoms or with various 
dosage. For instance, the optimal regularization function determined for some body region or 
normal-dose projection data may not apply to another region or low-dose study. In other words, the 
traditional iterative methods lack automated means for the optimization of regularization in image 
reconstruction models.  

Over the past several years, the development of deep learning technology has greatly promoted 
the progress of medical image reconstruction research. In addition to the traditional analytic and 
iterative image reconstruction methods [6], the combination of handcrafted and learning-based 
methods has become a promising and attractive trend. In learning-based methodology, the model 
parameters of either traditional handcrafted framework or neural network architecture are often 
optimized on given data sets via parallel computing. In the presence of large, balanced image data sets 
with high-quality labels, the optimized parameters determine robust handcrafted/deep models that can 
advance the state-of-the-art of many image reconstruction tasks. At present, deep learning techniques 
can be applied to medical image reconstruction in the following three categories. 

(1) Post-processing methods using the reconstructed images as network input to improve image 
quality. For instances, in the study of low-dose SPECT myocardial perfusion imaging, Ramon et al. [7] 
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adopted a supervised learning approach to train a convolutional neural network (CNN) with the aim 
of suppressing imaging noise and thus improving diagnostic accuracy of low-dose SPECT projection 
data. In reference [8], Chen et al. combined the autoencoder, deconvolution network, and shortcut 
connection technique into the residual encoder-decoder CNN for low-dose CT image restoration. 
Based on the encoder-decoder architecture, Zhang et al. [9] further applied the cells of DenseNet to 
formulate the encoder module, where the reusing of features can increase the depth of a neural network 
while enhancing its expression ability. The encoder-decoder architecture is capable of stepwise 
compressing the input image into a feature representation, and then stepwise rebuilding the 
representation into a full dataset. This architecture is flexible for developing deep models that are 
effective in noise suppression, streaking artifact removal and structure preservation in low-dose CT 
study. The image denoising for low-dose CT has also been investigated with a generative adversarial 
network (GAN) with Wasserstein distance and perceptual similarity [10]. As for MR image processing, 
Basty et al. [11] proposed a super resolution network based on the U-Net architecture and long short-
term memory layers to exploit the temporal aspect of the dynamic cardiac cine MRI data with the aim 
of recovering a high-resolution cine MRI sequence from low-resolution long-axis images. 

(2) End-to-end reconstruction methods generating high-quality images directly from the input 
projection data or k-space data. In references [12,13], Yang et al. proposed a novel deep network 
architecture defined over a data flow graph. This architecture was derived from the iterative procedures 
in Alternating Direction Method of Multipliers (ADMM) for optimizing a compressed sensing (CS)-
based MRI reconstruction model, and thus was known as ADMM-Net. In the training phase, all 
parameters of ADMM-Net, e.g., transform filters and regularization parameters originating from the 
MRI reconstruction model, and shrinkage operators originating from the ADMM iterative scheme, 
were discriminatively learned end-to-end using training pairs of under-sampled k-space data and 
reconstructed image of fully-sampled data. In the testing phase, ADMM-Net had similar computational 
overhead as ADMM algorithm, but adopted optimized model and algorithm parameters learned from 
the training data set for CS-based reconstruction task. ADMM-Net was one of the earliest works 
employing algorithm unrolling in medical image reconstruction. Algorithm unrolling has good 
potential in medical imaging where large training data sets are difficult to collect and thus conventional 
deep networks are intractable to train. As another work in this direction, Adler et al. [14] unrolled the 
primal-dual hybrid gradient algorithm into a deep architecture (PD-Net) for low-dose CT 
reconstruction task. In particular, the PD-Net substituted primal and dual proximity operators with 
conventional neural networks, e.g., CNNs, and jointly trained both network and algorithm parameters 
in an end-to-end fashion. With the similar regard, Zhang et al. [15] unrolled the joint spatial-radon 
domain reconstruction (JSR) algorithm and approximated the involved inverse operators and proximity 
operators by CNNs with the same architecture but different set of trainable parameters. The JSR-Net 
can simultaneously improve the data consistency in both image and Radon domains, which may lead 
to better image quality for CT reconstruction from incomplete data. Besides algorithm unrolling, there 
are also literatures discussing end-to-end reconstruction with conventional neural networks. In 
particular, Häggström et al. [16] presented an end-to-end PET image reconstruction technique 
(DeepPET) based on a deep encoder-decoder network, which took PET sinogram data as input and 
directly output high-quality reconstructed images. The DeepPET approach required the use of large 
and diverse training data sets since this type of model-free approach can result in generalization errors 
that heavily depend on data sets and do not have a well-defined bound.  

(3) Pre-processing methods utilizing pairs of low-dose and normal-dose projection data both in 
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the sinogram domain for network training. In low-tube current and sparse-view CT imaging, the 
measured projection data suffers from high-level noise and data deficiency, respectively. Pre-
processing approaches such as sinogram denoising and interpolation, followed by advanced iterative 
reconstruction algorithms, can alleviate the severity of image noise and artifacts to some extent. There 
are preliminary studies exploring deep neural networks for sinogram pre-processing [17–19,24]. These 
works mainly combined the residual learning with U-Net architecture to reduce the imaging noise in 
the low-count sinogram or to synthesize the missing data in the sparse-view sinogram. Later, Shiri et 
al. [20] followed the similar philosophy and performed PET sinogram interpolation using the 
convolutional encoder-decoder architecture. In reference [21], Tang et al. proposed a novel sinogram 
super-resolution generative adversarial network (GAN) model to generate high-resolution sinograms 
from the low-resolution counterparts. In later references [22,23], GAN was further applied to CT 
sinogram interpolation. Since the raw projection data is difficult to collect, most existing deep learning-
based low-dose studies still focus on the post-processing category. The deep learning-based post-
processing methods generally establish a hierarchical architecture composed of many layers and are 
capable of learning mappings from low-quality reconstructed images to the high-quality counterparts 
(i.e., labels). This category of reconstruction methods requires sufficient training set of reconstructed 
images, and thus is often used in conjunction with the low-computational overhead analytic 
reconstruction algorithms (such as the filtered back-projection algorithm). Under these circumstances, 
the probabilistic models of the noise and the image usually incorporated in the iterative reconstruction 
algorithms cannot be fully exploited. The deep learning-based pre-processing methods, on the contrary, 
can address the above issue, since the image reconstruction is only performed on testing data sets after 
the time-consuming network training process. The pre-processing category generally learns mappings 
from low-dose projection data to the normal-dose counterpart. However, the existing deep learning-
based pre-processing reconstruction methods seldom exploit the sequence features of sinogram data at 
adjacent projection view angles. 

In this study, we remark that the sequence feature of projection data at adjacent view angles in a 
sinogram is crucial for synthesis of sparse-view SPECT projection data. With the aim of retaining the 
sequence continuity of sinograms, we shall propose a novel neural network architecture based on the 
combination of U-Net and Long Short-Term Memory network (LSTM), dubbed LU-Net. The LSTM 
modules are added to the down-sampling layers of U-Net to capture the sequence features of the 
projection data before it is input to the convolution operations. The proposed LU-Net not only exploits 
the projection data at neighboring view angles, but also makes moderate use of the data at distant view 
angles, which is more in line with the global property of sinograms and thus may better synthesize the 
missing data in the sinogram of sparse-view tomographic imaging, as compared to the conventional 
U-Net. The neural network’s learning ability and data fitting ability are fully exploited to determine a 
mapping from sparse-view projection data to the full-view counterpart. The missing data in the 
sinogram collected under the sparse-view SPECT imaging is synthesized using the proposed neural 
network, and then is reconstructed by the preconditioned alternating projection algorithm (PAPA) 
previously proposed in [4], leading to reconstructed images of superior quality to the iterative 
reconstruction approach and the conventional neural network-based pre-processing method. 

2. Materials and methods 

2.1. Problem description 
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In clinical application, the radiation dose of SPECT imaging can be reduced by lowering the 
activity of administered radiotracer. In a fixed period of SPECT scanning time, lower radioactivity will 
inevitably lead to detected count rate reduction on the detector. Low count rates in the sinogram domain 
are usually accompanied by measured projection data with high Poisson noise, which in turn yield 
radioactivity distribution estimation with high noise and low contrast if directly reconstructed by 
conventional image reconstruction approaches. Such low-quality images might not meet the diagnostic 
criteria. On the other hand, the issue of low count rates may be addressed by reducing the number of 
projection views during SPECT scanning. Indeed, more imaging time at one projection view leads to 
higher count rates of this view angle, and thus to projection data with lower Poisson noise. However, 
we remark that the total SPECT imaging time should not be further lengthened in clinical practice 
since more total imaging time still brings extra disadvantages, including worse image quality due to 
more patient motion, more patient discomfort, and less patient throughput. As a result, in a fixed period 
of SPECT scanning, more imaging time at each projection view can only be achieved by setting fewer 
projection view angles. 

The sparse-view setting of projection view angles in SPECT imaging will lead to incomplete 
sinogram, and thus the resulting reconstructed images are usually prone to streak artifacts that heavily 
depend on the amount of sparsity. In order to synthesize the missing view data in the sinogram domain, 
we develop a U-Net and LSTM-based neural network. The resulting synthetically full-view data can 
then be reconstructed by the recently proposed PAPA. The combination of neural-network-enabled 
pre-processing method and PAPA can take advantage of both sinogram synthesis and image prior, 
thereby providing reconstructed image of low noise, few artifacts and high accuracy. 

2.2. Proposed neural network 

2.2.1. LU network structure 

A deep neural network combining LSTM and U-Net is proposed to synthesize sparse-view 
sinogram. U-Net is a classical network with encoding and decoding structures. Down-sampling 
comprises multiple continuous convolution layers and pooling layers, while Up-sampling comprises 
multiple continuous convolution layers and deconvolution layers. There is concatenation between 
corresponding layers. It is an effective network structure for medical image processing and is 
particularly used in medical image segmentation [25]. 

Conventional U-Net has a problem in sparse-view sinogram synthesis. It does not pay special 
attention to the sequence feature of projection data which is sequential along the projection view in the 
sinogram. In order to better utilize the sequence feature of projection data at adjacent view angles, a 
network architecture combining LSTM and U-Net is proposed. The proposed neural network 
architecture is shown in Figure 1. The LU network architecture consists of 7 convolution modules 
and 4 LSTM modules. Each convolution module is composed of two consecutive convolution layers, 
and an extra convolution layer with one channel is added to the last convolution module. In order to 
keep the size of input image consistent with that of output image in training process, a zero-padding 
scheme is used in the convolution process. At the same time, the filter size of each convolution layer 
is 3 × 3, followed by batch normalization layers. The activation function is ReLU. The maximum 
pooling is used to reduce the size of input image in down-sampling, and the deconvolution is used to 
expand the image size in up-sampling. Residual learning is applied to accelerate convergence and 
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reduce streak artifacts in medical images [26,27]. 

 

Figure 1. The architecture of LU-Net. 

 

Figure 2. The data flow of sinogram in each LSTM module. 

As shown in Figure 1, LSTM modules are added in down-sampling, which can effectively process 
sequence data. Projection data at each projection view angle in the sinogram can be regarded as time 
series data and be input into LSTM module for recurrent processing. The detail of sinogram data flow 
in LSTM module is shown in Figure 2, where 𝑥  is the projection data at projection view angle 𝑡. 
The output of the last recurrent unit is regarded as the output of LSTM module and as the input of 
convolution layer. In this way, sequence feature of projection data at adjacent view angles can be 
included in convolution layer, and sparse-view sinogram can be better synthesized. 
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2.2.2. LSTM module for projection data 

LSTM [28] is a special kind of recurrent neural networks (RNN), which is appropriate for 
processing time series data and learning long-term dependencies. A sinogram is a 2D representation of 
tomographic scan, where each row represents a single row in the detector array arranged in increasing 
angular order and thus the whole sinogram is a sequence with respect to projection angle. Moreover, 
each image pixel generates a sine wave in the sinogram. Therefore, the gray value of each detector 
element has strong correlation along specific sine curve, instead of with neighbored elements. The 
sequence feature and sinusoid dependency of sinogram make it a proper candidate for LSTM. The 
structure of each LSTM unit is shown in Figure 3, which takes 𝑥 , ℎ  and 𝐶  as inputs and is 
composed of several different functional modules. The details of each module processing the 
projection data are shown as follows. The variable 𝑓   represents the output of forgetting gate at 
projection view angle 𝑡, which is defined in Eq (1): 

𝑓 𝜎 𝑊
ℎ

𝑥 𝑏 .         (1) 

Here 𝑥  is the projection data at projection view angle 𝑡 as the input to forgetting gate, ℎ  is 
the hidden state at projection view angle 𝑡 1, 𝑊  and 𝑏  are the weight and bias of forgetting gate, 
respectively, and the activation function 𝜎  of forgetting gate is a nonlinear mapping sigmoid 
function. The variable 𝑖  represents the output of input gate at projection view angle 𝑡, which is 
defined in Eq (2): 

                        𝑖 𝜎 𝑊
ℎ

𝑥 𝑏 ,                          (2) 

𝑔 𝑡𝑎𝑛ℎ 𝑊
ℎ

𝑥 𝑏 .                            (3) 

Here the activation function 𝜎 is sigmoid function,  𝑊  is the weight of input gate, 𝑏  is the 
bias of input gate, 𝑔  is a new candidate value vector created in the input gate, which will be added 
to the cell state later, 𝑊  is the weight of the candidate, 𝑏  is the bias of the candidate. The variable 
𝐶  represents the cell state at projection view angle 𝑡, which is defined in Eq (4): 

𝐶 𝑓 ∗ 𝐶 𝑖 ∗ 𝑔 .          (4) 

Here the forgetting gate controls long-term memory, ensuring that the previous projection data 
saves the information we need, and the input gate controls the current memory, ensuring that irrelevant 
projection data is not allowed in the cell state. The variable 𝑜  represents the output of output gate at 
projection view angle 𝑡, which is defined in Eq (5). 

𝑜 𝜎 𝑊
ℎ

𝑥 𝑏 ,                        (5) 

     ℎ 𝑜 ∗ 𝑡𝑎𝑛ℎ 𝐶 .                         (6) 

Here 𝑊  and 𝑏  are weight and bias of the output gate, respectively, while ℎ  is the hidden 
state of 𝑥 . Note that 𝐶  and ℎ  are outputs of the underlying LSTM unit. 
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Figure 3. LSTM unit structure. 

3. Simulation studies 

3.1. Reconstruction methods 

In single-photon emission computed tomography (SPECT) system, if the detector dead time can 
be neglected and no corrections are applied to the raw data, the gamma photon detection at a detector 
element is a random process that follows the temporal Poisson distribution. In SPECT data acquisition 
process, the photon detections at different detector elements are independent random events described 
by Bernoulli process. Hence, the projection data can be modeled as a set of independent Poisson 
random variables. Indeed, the projection data 𝑔 detected at 𝑚 detector elements, which relates to 
the expected radioactivity distribution representation (i.e., image) 𝑓 at 𝑑 pixels in the reconstruction 
space, can be approximated by the Poisson model [29,30]: 

𝑔 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝐴𝑓 𝛾 .                     (7) 

In Eq (7), A is the 𝑚 𝑑 SPECT system matrix with the 𝑖, 𝑗 th entry equal to the probability 
of detection of the photon emitted from pixel 𝑗 of image 𝑓 by the 𝑖th detector element, and 𝛾 is the 
𝑚-dimensional vector of expected counts resulting from the background activity. 

Given a realization of the projection data 𝑔, the SPECT reconstruction aims to estimate an image 
𝑓 meanwhile suppressing Poisson noise and reducing image artifacts. The reconstruction problem can 
be formulated via the penalized maximum likelihood criterion, which pursues a regularized estimate 
by maximizing the sum of log-likelihood function of image 𝑓 and a negative penalty term [5,10,14]. 
Since underlying likelihood function is assumed to be Poisson model, the optimization model for 
SPECT reconstruction usually has the following form [4]: 

𝑓 𝑎𝑟𝑔 min 〈𝐴𝑓, 𝟏〉 〈ln 𝐴𝑓 𝛾 , 𝑔〉  𝜆𝜑 𝐵𝑓 .          (8) 

In optimization model Eq (8), λ is positive penalty parameter, 𝜑 is convex nonnegative function, 
and 𝐵  is the regularization operator. Regularization term 𝜆𝜑 ∘ 𝐵  is introduced to strengthen 
smoothness of the estimate. Data fidelity function 〈𝐴𝑓, 𝟏〉 〈ln 𝐴𝑓 𝛾 , 𝑔〉, denoted by 𝐹 below, 
is the Kullback-Leibler (KL) divergence. Notation 〈 , 〉 denotes the inner product in Euclidean space, 
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and 𝟏 is a 𝑚-dimensional vector with element values of 1. 
The iterative algorithm proposed in [4], which is known as PAPA, can be applied to SPECT 

reconstruction under the penalized maximum likelihood criterion: 

⎩
⎪
⎨

⎪
⎧ ℎ ∶ 𝑃 𝑓 𝑆∇F 𝑓 𝜇𝑆𝐵⊺𝑏 ,

𝑏 Ι 𝑝𝑟𝑜𝑥 ⁄ 𝑏 𝐵ℎ ,

𝑓 𝑃 𝑓 𝑆∇F 𝑓 𝜇𝑆𝐵⊺𝑏 .

     (9) 

In above iterative scheme, S is a 𝑑 𝑑 diagonal, positive-definite preconditioning matrix that 
can accelerate convergence of the algorithm, and 𝜇 is a positive algorithm parameter. In the case of 
isotropic total variation regularization, the dual iterate 𝑏   is defined in the first-order difference 
transform domain, and 𝐵⊺𝑏  is regarded as noise in the image domain. The preconditioning matrix 
𝑆 is selected as diagonal matrix 𝑆 ∶ 𝑑𝑖𝑎𝑔 𝑓 𝐴⊺𝟏⁄  at the 𝑘th iteration of PAPA. The operator 
𝑃  in the iterative scheme is a projection to the first octant. In particular, for any 𝑥 ∈ ℝ , we have 

𝑃 𝑥 𝑚𝑎𝑥 𝑥 , 0  . Finally, motivated by [30], the components of vector 𝑦 ∶ 𝑝𝑟𝑜𝑥 ⁄ 𝑧  

can be computed by the following formula: 

𝑦 , 𝑦 ⊺ 𝑚𝑎𝑥 ‖ 𝑧 , 𝑧 ⊺‖ , 0 , ⊺

‖ , ⊺‖
,    (10) 

𝑖 1,2, … , 𝑑. 

3.2. Data preparation 

Experimental data used in this study is obtained by Monte Carlo simulation software SIMIND, 
which simulates a SIEMENS E.CAM gamma camera with low energy high resolution (LEHR) 
parallel-beam collimator to image various phantoms based on Monte Carlo simulation method. To 
generate labeled datasets, three digital phantoms are simulated using SIMIND, which are the whole 
body of human (Mdp WB), the human trunk (Mdp ECT) and the Jaszczak phantom consisting of 
multiple geometric structures. The detector orbit is circular covering 360°, and the radius of rotation 
is set to 15 cm. The parallel-collimated SPECT projection data for this simulation consists of 120 
projection views in a 128-dimensional detector array with detector element size 2.2 mm. We use an 
18% main energy window centered at 141 keV. The gamma photons within this energy window are 
considered as primary or first-order scattered photons. Moreover, we simulate 1.8 × 108 photon 
histories per projection view for each phantom to suppress the photon-flux fluctuation. The total numbers 
of photon counts detected in 120 projection views for three phantoms are presented in Table 1. 
Projection data at two specific view angles for three phantoms are further shown in Figure 4. 

A total of 790 2D sinograms are extracted from the projection data of above three phantoms. 
Among them 625 sinograms with clear data distribution are selected to ensure that the detected 
projection data has good quality. The performance of proposed neural network at multiple levels of 
projection view angles is explored. The sparse-view sinograms are of size 60 × 128, 40 × 128 and 30 
× 128, respectively. The full-view sinogram (120 × 128) is regarded as the reference image and the 
mapping from sinogram with the size of 60 × 128, 40 × 128, 30 × 128 to full-view sinogram is learned 
by LU-Net. The selected 625 sinograms are divided into training set and test set. The training set 
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contains 528 sinograms, accounting for 84.5%, and the test set contains 97 sinograms, accounting 
for 15.5%. The details of datasets are also summarized in Table 1. 

Mdp WB Mdp ECT Jaszczak 

 

 

 

 

 

 

Figure 4. The projection data at coronal (top row) and sagittal (bottom row) view angles 
of Mdp WB, Mdp ECT and Jaszczak phantoms, respectively. 

Table 1. Details of datasets. 

Phantom The size of 3D 
projection data 

The total number 
of photon counts 

The number of 
sinograms in training 
set 

The number of 
sinograms in test 
set 

Mdp WB 128 × 342 × 120 2.81 × 108 219 52 
Mdp ECT 128 × 320 × 120 1.16 × 108 280 40 
Jaszczak 128 × 128 × 120 8.30 × 108 29 5 
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3.3. Network training and implementation 

The sparse-view sinograms are obtained by sampling the full-view sinograms in an interleaved 
fashion, during which one row of projection data corresponding to one view angle is collected in every 
few rows. Since multiple sparse-view levels (one-half, one-third and one-quarter) are analyzed in this 
paper, in order to maintain the unification and convenience, the size of sinogram for each sparse-view 
level is unified as 120 × 128. The performance of sparse-view sinogram synthesis is mainly studied in 
this paper, therefore, interpolation algorithm is not employed to fill blank rows to avoid interference. 
Indeed, zeros are padded in the blank rows of sparse-view sinograms to maintain the size of full-view 
sinogram. With above procedure, sinograms with one-half, one-third and one-quarter of full view 
angles are generated. Example sinogram of each sparse-view level is shown in Figure 5. 

    

Figure 5. (a) Full-view (120 views) sinogram, (b) 60 views sinogram, (c) 40 views 
sinogram, (d) 30 views sinogram. 

The proposed LU-Net is based on Pytorch neural network framework. Mean square error (MSE) 
function is used as loss function: 

ℒ ∑ 𝑥 𝑦 ,                                                  (11) 

where 𝑥   is the image processed by LU-Net, 𝑦   is the label image and Adam optimizer is used to 
optimize loss function. Learning rate is set to 0.0001 and weight attenuation is 0.95. Network training is 
completed in NVIDIA Tesla P40 24GB graphical processing unit with training time of nearly 8 hours. 

3.4. Quantification of reconstruction 

To evaluate the performance of proposed neural network, we use three global image quality 
metrics such as normalized mean square error (NMSE), peak signal-to-noise ratio (PSNR), structural 
similarity (SSIM), and two local image quality metrics such as contrast recovery coefficient (CRC) 
and coefficient of variation (COV) to measure the quality of reconstructed images. Details of these 
performance metrics are described as follows. 

3.4.1. Global image quality metrics 

NMSE is a global image quality metric to evaluate the quality of reconstructed images. Its 
definition is as follows: 
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                   𝑁𝑀𝑆𝐸 ∶
∑

∑
,                           (12) 

where 𝑓  and 𝑔  are the pixel activity of reconstructed image and the ground truth respectively, 𝑁 
is the number of all pixels in the image. 

PSNR is an objective metric to measure the degree of image distortion or noise level. Its definition 
is as follows: 

𝑃𝑆𝑁𝑅 ∶ 10 ∙ log ,                          (13) 

where 𝑀𝑆𝐸 is the mean square error between reconstructed image and ground truth, 𝐼 is the ground 
truth, 𝑀𝐴𝑋  is possible maximum pixel value in the image. 

SSIM is a commonly used metric to measure the similarity of two images in the field of medical 
images. Its definition is as follows: 

𝑆𝑆𝐼𝑀 𝑥，𝑦 ,                     (14) 

where 𝑥 and 𝑦 are reconstructed image and ground-truth, respectively, 𝜇  is the average of 𝑥, 𝜇  is 
the average of 𝑦, 𝜎  and 𝜎  represent the variance of 𝑥 and 𝑦, 𝜎  is the covariance of 𝑥 and 𝑦. 

3.4.2. Local image quality metrics 

CRC can be used to reflect the recovery of surrounding media, so it is often used in image 
processing tasks as a measure of local recovery, which is defined as follows [31]: 

 𝐶𝑅𝐶𝑚𝑒𝑎𝑛 ,                             (15) 

where k = 1,2..., n denotes the index of region of interest (ROI), 𝑚  denotes the average of the 𝑘th 
ROI, and 𝑓  is the true distribution of the 𝑘th ROI. 

In image processing task, the coefficient of variation is usually used to represent the pixel-to-pixel 
variability in the image, which is defined as follows: 

𝐶𝑜𝑣 ,                               (16) 

where 𝑆𝑡𝑑  and 𝑚  represent standard deviation and average value of the 𝑘th ROI, respectively. 

4. Results 

4.1. Reconstructed image 

The sinogram of each sparse-view level in test set is input into the trained LU-Net network, and 
the output is obtained as the synthesized sinogram. In Figure 6, we show the sinograms of chest slice 
from Mdp ECT phantom and those of Jaszczak phantom after LU-Net synthesis, respectively. 
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 30 views LU-Net Label 

chest 

 

Jaszczak 

 

Figure 6. From left to right: 30 views sinogram, sinogram based on LU-Net, full-view sinogram. 

The proposed method is compared with TV-PAPA and U-Net. Reconstructed images of the chest 
slice from Mdp ECT phantom are shown in Figure 7, where the label is the reconstructed image of 120 
views(full-view) sinogram, the second column is the iterative reconstruction of 30 views sinogram 
using TV-PAPA, the latter two columns are reconstructed image results of 30 views sinogram 
synthesized by U-Net and LU-Net, respectively. In order to observe more intuitively, the contrast of 
yellow box is enhanced in Figure 7. The LU-Net shows superior performance in terms of preserving 
smooth regions, as compared to other methods. Both U-Net and LU-Net exhibit better staircase artifact 
reduction performance than traditional TV-PAPA. Furthermore, some global and local quantitative 
metrics of LU-Net are improved inordinately compared to U-Net structure. More details will be 
discussed later. 

Label TV-PAPA U-Net LU-Net 

 

 

Figure 7. Reconstructed chest images. left to right: Image reconstruction of full-view 
sinogram, TV-PAPA with 30 views, U-Net with 30 views, LU-Net with 30 views. 
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Label TV-PAPA U-Net LU-Net 

    

Figure 8. Reconstructed Jaszczak images. left to right: Image reconstruction of full-view 
sinogram, TV-PAPA with 30 views, U-Net with 30 views, LU-Net with 30 views. 

 

 

 

 

Figure 9. Surface and contour plots of reconstructed Jaszczak image. 
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Figure 8 shows the reconstructed image of a Jaszczak phantom. Yellow rectangular ROI is used 
for COV calculation and four red spherical ROIs are used for CRCmean calculation in section 4.2.2. 
To better show reconstruction performance, surface plot and corresponding contour plot of yellow 
rectangular ROI in each reconstructed Jaszczak image are shown in Figure 9. The less the artifacts and 
noise of reconstructed image, the smoother the corresponding surface plot and the less the closed-loops 
of contour plot. In this study, since 120 views sinograms are regarded as label data, the surface plot of 
reconstructed image from label data is still slightly steep, and the corresponding contour plot may also 
have a closed loop. In Figure 9, it can be seen that there are a large number of closed-loops in contour 
plot of reconstructed image with TV-PAPA. Closed-loops of reconstructed image with U-Net have 
significantly been reduced. It is obvious that the proposed network further reduces closed-loops, 
indicating that LU-Net achieves better performance in suppressing image artifacts and noise. 

4.2. Quality analysis of reconstructed image 

Three metrics including NMSE, PSNR and SSIM are calculated respectively for reconstructed 
chest images to evaluate the global quality of reconstructed images. Meanwhile, specific ROIs are 
selected on the reconstructed Jaszczak image, as well as contrast recovery coefficient and variation 
coefficient of selected ROIs are calculated, respectively. 

4.2.1. Global quality analysis of image reconstruction 

In order to make the quantitative comparison more intuitive, NMSE, PSNR and SSIM of 
reconstructed images at different projection view levels are calculated. The results are summarized in 
Tables 2 to 4. As shown in Table 2, we calculate SSIM, PSNR, and NMSE of reconstructed images 
at 30 projection view with three methods: TV-PAPA, sinogram synthesis with U-Net, and sinogram 
synthesis with LU-Net. All global metrics are averaged over the test set for Jaszczak phantom as well 
as for the chest region of Mdp WB and Mdp ECT phantoms, respectively. In Table 2, it can be observed 
that the results with TV-PAPA are the lowest in terms of SSIM and PSNR, while U-Net performs better 
than TV-PAPA and LU- Net performs best among these three methods. For NMSE, the results with 
LU-Net are the lowest, while those with U- Net and TV-PAPA are significantly higher, furthermore, 
TV-PAPA performs worst. These results indicate that the proposed network can maintain high quality 
of reconstructed images in low dose SPECT reconstruction task. There are similar conclusions in 
Tables 3 and 4. 

Table 2. Global quality metrics of images reconstructed by three competing methods from 
30-view projection data. 

 Methods SSIM NMSE PSNR 

Chest of WB 
and ECT 

TV-PAPA 0.5643 0.01268 37.52 
U-Net 0.8928 0.01141 37.91 
LU-Net 0.9293 0.00823 39.33 

Jaszczak TV-PAPA 0.5359 0.00889 36.88 

U-Net 0.8442 0.00612 38.50 

LU-Net 0.9117 0.00593 38.70 
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Table 3. Global quality metrics of images reconstructed by three competing methods from 
40-view projection data. 

 Methods SSIM NMSE PSNR 
Chest of WB 
and ECT  

TV-PAPA 0.6888 0.00666 40.27 
U-Net 0.9032 0.00539 41.14 
LU-Net 0.9573 0.00476 41.73 

Jaszczak TV-PAPA 0.6537 0.00859 37.03 

U-Net 0.8574 0.00550 39.02 
LU-Net 0.9375 0.00472 39.63 

Table 4. Global quality metrics of images reconstructed by three competing methods from 
60-view projection data. 

 Methods SSIM NMSE PSNR 
Chest of WB 
and ECT 

TV-PAPA 0.8443 0.00300 43.90 
U-Net 0.9115 0.00219 45.04 
LU-Net 0.9691 0.00146 46.81 

Jaszczak TV-PAPA 0.8100 0.00340 41.16 

U-Net 0.8685 0.00193 43.51 
LU-Net 0.9470 0.00175 43.93 

4.2.2. Local quality analysis of image reconstruction 

To further evaluate local performance of proposed network in image reconstruction, five ROIs 
are selected in each image reconstructed by TV-PAPA, U-Net, and LU-Net, respectively. Five different 
reconstructed cross-sectional images of the Jaszczak phantom are selected in each of the three 
competing methods. 

 

Figure 10. Average CRCmean over four circular ROIs in each reconstructed cross-
sectional image of the Jaszczak phantom. The x-axis represents image number, and y-axis 
represents average CRCmean. 
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Four spherical ROIs are selected in Figure 8, which are marked in red for CRCmean calculation. 
CRCmean of each spherical ROI is calculated and average value over four CRCmeans for each 
reconstructed cross-sectional slice is shown in Figure 10. It can be observed that CRCmean of each 
reconstructed slice with TV-PAPA is much lower than that with U-Net and LU-Net. Furthermore, LU-
Net consistently outperforms U-Net on CRCmeans of all five reconstructed slices. 

Meanwhile, specific ROI is selected for reconstructed Jaszczak image at three projection view 
angle levels respectively, and coefficient of variation of ROI is calculated. Selected ROI is shown in 
Figure 8, which is marked in yellow. The results are summarized in Table 5, which indicate that the 
COV of reconstructed image with TV-PAPA is worse than those of other two methods in each 
projection view angle level, and the COV of reconstructed image with LU-Net is the best in each 
projection view angle level. 

Table 5. Coefficients of variation for three competing reconstruction methods. 

Method 30-view 40-view 60-view 
TV-PAPA 9.34% 7.24% 6.03% 
U-Net 7.47% 4.78% 4.69% 
LU-Net 4.56% 4.33% 3.89% 

4.3. Test results of different phantoms 

In order to verify the generalization performance of proposed LU-Net, we further introduce 
three 2D phantoms with different statistics from the training data, which are shown in Figure 11. The 
parallel-collimated projection data of these three test phantoms are generated using SIMIND, all of 
which consist of 120 projection views in the 128-dimensional detector array. The total numbers of 
photon counts detected in 120 views for Brain-Lesion, Lumpy and Brain-HighResolution phantoms 
are 3.99 × 105, 2.78 × 105 and 4.41 × 104, respectively. The simulated full-view (120 views) data is 
then evenly sampled to generate sparse-view (30 views) sinograms for data synthesis. Three 
competing reconstruction methods are applied to above sparse-view test data for comparison. We 
calculate global metrics SSIM and PSNR of reconstructed images to evaluate reconstruction 
accuracy of each method on the test data with different statistics. The results are summarized in Table 
6. This simulation shows that for test phantoms with different statistics from the training dataset, 
learning-based sinogram synthesis methods still outperform the traditional iterative reconstruction 
method TV-PAPA in terms of reconstruction accuracy. The LU-Net architecture proposed in this 
work performs the best in this category. 

Brain-Lesion Lumpy Brain-HighResolution 

Figure 11. Three 2D phantoms with different statistics from training data. 
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Table 6. PSNR and SSIM of images reconstructed by three competing methods from 30-
view projection data. 

Phantom Method PSNR SSIM 

Brain-Lesion 
TV-PAPA 16.12 0.7390 
U-Net 26.70 0.8246 
LU-Net 30.74 0.8345 

Lumpy 
TV-PAPA 18.21 0.7989 
U-Net 29.07 0.8320 
LU-Net 35.66 0.8539 

Brain-HighResolution 
TV-PAPA 16.88 0.7971 
U-Net 25.88 0.8213 
LU-Net 29.93 0.8419 

4.4. Comparison between sparse-view and reduced-photon count 

Table 7. PSNR and SSIM of images reconstructed with sparse-view and low-photon count 
sinograms. 

Phantom Method PSNR SSIM 
Chest of WB and ECT U-Netsparse-view 41.94 0.8926 

U-Netlow-count 42.02 0.9083 
LU-Netsparse-view 44.17 0.9492 
LU-Netlow-count 44.23 0.9514 

Jaszczak U-Netsparse-view 40.01 0.8510 
U-Netlow-count 40.05 0.8573 
LU-Netsparse-view 41.75 0.8820 
LU-Netlow-count 41.83 0.8823 

In SPECT imaging, lower radiation dose can be achieved by reducing the radiotracer activity, 
which inevitably leads to projection data with either sparse projection views or reduced photon counts 
per view. In order to evaluate the feasibility of both low-dose cases with learning-based methodology, 
we generate two sets of projection data and perform network training in respective case. Indeed, a 
SIEMENS E.CAM gamma camera with LEHR parallel-beam collimator is simulated. The parallel-
collimated SPECT projection data in this simulation consists of 120 projection views in a 128-
dimensional detector array with detector element size 2.2 mm and is generated using SIMIND. The 
first projection dataset corresponds to sparse-view (60 views) case with full-count per view, which is 
generated via evenly sampling the full-view data. The second projection dataset corresponds to full-
view case with reduced-count per view, which is obtained via dividing the number of photon counts in 
original simulated full-view data by 2. The comparable low-count levels of sinogram are realized by 
means of both ways. Indeed, the total numbers of photon counts detected in 60 projection views (or 
in 120 views with one-half counts per view) for Mdp WB, Mdp ECT and Jaszczak phantoms are 
1.41 × 108, 5.81 × 107 and 4.15 × 107, respectively. Based on above noise-free projection data, we 
implement Poisson noise for each projection dataset (i.e., sparse-view projection data with full-count 
per view and full-view projection data with reduced-count per view). We follow the same procedure 
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in Section 3.2 to prepare training and test datasets, and perform LU-Net and U-Net training in 
respective case. SSIM and PSNR of reconstructed images in test dataset are calculated and summarized 
in Table 7. This evaluation shows that sparse-view sampling and reduced-photon count collection are 
comparable approaches to achieve low-dose imaging, in some sense, both approaches produce 
reconstructed images of comparable quality at low-count level. Moreover, the proposed LU-Net 
performs better than U-Net in every aspect. 

5. Conclusions 

In this study, the synthesis performance of LU-Net for sparse-view projection data at various 
projection view levels (1/2, 1/3, 1/4 of full-view) is explored, as well as compared with traditional TV-
PAPA and U-Net. The experimental results show that learning-based method is superior to traditional 
iterative reconstruction method. Compared with conventional U-Net, LU-Net performs better in global 
and local metrics, indicating that the missing views of sinogram may be better synthesized after 
considering the sequence feature of projection data at adjacent projection view angles. At the same 
time, the results also show that the proposed network architecture performs better in suppressing noise 
and image artifacts. Overall, this study shows that the proposed network architecture has the potential 
to reduce the dose of radiotracers required by SPECT imaging without compromising the reconstructed 
image quality. 
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