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Abstract: The resting HR is an upward trend with the development of chronic obstructive 
pulmonary disease (COPD) severity. Chest computed tomography (CT) has been regarded as the 
most effective modality for characterizing and quantifying COPD. Therefore, CT images should 
provide more information to analyze the lung and heart relationship. The relationship between HR 
variability and PFT or/and COPD has been fully revealed, but the relationship between resting HR 
variability and COPD radiomics features remains unclear. 231 sets of chest high-resolution CT 
(HRCT) images from “COPD patients” (at risk of COPD and stage I to IV) are segmented by the 
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trained lung region segmentation model (ResU-Net). Based on the chest HRCT images and lung 
segmentation images, 231 sets of the original lung parenchyma images are obtained. 1316 COPD 
radiomics features of each subject are calculated by the original lung parenchyma images and its 
derived lung parenchyma images. The 13 selected COPD radiomics features related to the resting HR 
are generated from the Lasso model. A COPD radiomics features combination strategy is proposed to 
satisfy the significant change of the lung radiomics feature among the different COPD stages. Results 
show no significance between COPD stage Ⅰ and COPD stage Ⅱ of the 13 selected COPD 
radiomics features, and the lung radiomics feature Y1Y4 (P > 0.05). The lung radiomics feature F2 
with the dominant selected COPD radiomics features based on the proposed COPD radiomics 
features combination significantly increases with the development of COPD stages (P < 0.05). It is 
concluded that the lung radiomics feature F2 with the dominant selected COPD radiomics features 
not only can characterize the resting HR but also can characterize the COPD stage evolution. 

Keywords: lung radiomics feature; resting heart rate; COPD radiomics features; COPD stage 
(GOLD); chest HRCT images; medical image analysis 
 

1. Introduction  

The resting heart rate (HR， beats per minute) variability is an important marker of the 
heart’s neurophysiologic condition [1]. The resting HR can be measured to 
reflect the level of cardiopulmonary. Lung disease is a complex and diverse disease. As a common 
and non-infectious lung disease, chronic obstructive pulmonary disease (COPD) presents a 
preventable, treatable and progressive chronic disease with debilitating lung conditions characterized 
by persistent airflow limitation [2,3]. Due to the persistent airflow limitation of COPD, autonomic 
regulation of resting HR can be influenced [4]. Compared with people without COPD, patients with 
COPD cannot get enough air, which may increase the resting HR to get enough oxygen supply. As a 
result, the resting HR is an upward trend with the development of COPD severity [5]. After using a 
bronchodilator, the pulmonary function test (PFT) can assess COPD severity. The assessment 
parameters in PFT are the forced expiratory volume in 1 second/forced vital capacity (FEV1/FVC), 
and FEV1 % predicted [6]. The HR variability in COPD patients has been deeply studied [1,5,7,8]. 
There is no correlation between resting HR variability and FEV1 in COPD patients [1]. However, the 
COPD stage is determined by FEV1/FVC, and FEV1% predicted, and the relationship between the 
resting HR variability and the COPD stage is not revealed. Because the resting HR is an upward 
trend with the development of COPD severity, the resting HR can improve the risk prediction in 
COPD patients beyond that of PFT alone [5]. The HR is analyzed in the process of the Chester step 
tests to determine reliability and correlation with PFT results in COPD patients, according to 
advanced stages of the Chester step test and the number of steps [7], respectively. The effect of 
pulmonary rehabilitation on HR variability at peak exercise is revealed in COPD patients [8]. 
Symbolic analysis and complexity index of the HR variability are analyzed to assess cardiac 
autonomic modulation in COPD patients [9]. Association between the predictors of functional 
capacity and HR off-kinetics is also studied in COPD patients [10]. The relationship of the HR 
variability and the severity of COPD in PiZ alpha1-antitrypsin deficiency has also been revealed [11]. 
As the gold standard, PFT can only diagnose and evaluate COPD [6], but it cannot get the anatomical 
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structure of the lung region. PFT may cause missed diagnosis of early-stage COPD or overdiagnosis 
in primary care [12]. Compared with PFT, chest computed tomography (CT) images can provide 
more information, such as the specific anatomical structure of the lung, the location, and the 
morphology of diseases. Chest CT images can provide the lung anatomical structure, including the 
trachea, the blood vessels, pulmonary lobes, and lung texture information. The lung anatomical 
structure and texture information can be quantitatively calculated from chest CT images to further 
analyze COPD [1315]. Therefore, CT has been regarded as the most effective modality for 
characterizing and quantifying COPD [16]. 

Lung radiomics features calculated from chest CT images have been used in the spirometric 
assessment of emphysema presence and COPD severity [17]. The emerging role of radiomics in 
COPD has also been proposed [18]. The COPD radiomics features can provide feature classes about 
COPD extracted from original and derived images. Although the HR variability in COPD [1,5,710] 
has been fully studied, the relationship between the resting HR variability and COPD radiomics 
features remains unclear. Our contributions in this paper are briefly described as follows: 

 The relationship between the COPD radiomics features and the resting HR is revealed.  
 A new COPD radiomics feature combination algorithm is proposed to improve the 

significance among different COPD stages. 
 A novel lung radiomics features with the dominant selected COPD radiomics features 

characterize both the resting heart rate and the COPD stage evolution. 

2. Materials and methods 

This Section describes the Materials in Section 2.1 and methods in Section 2.2 (Figures 14, 
Eqs (1)(3) and Table 1). 

2.1. Materials 

Figure 1 shows the Chinese subjects selection flow diagram, the number of subjects at different 
COPD stages, and the changing trend of resting HR with COPD stage evolution. 231 Chinese 
subjects aged 4079 are included in this study. The 231 subjects who rigorously followed the 
inclusion and exclusion criteria were enrolled in the national clinical research center of respiratory 
diseases [21]. The 231 subjects with full inspiration underwent chest high-resolution CT (HRCT) 
scans (manufacturer: TOSHIBA, kVp:120 kV, X-ray tube current:40 mA, slice thinkness:1.0 mm, 
window center: 600, window width: 1250) from May 25, 2009, to January 11, 2011, are included in 
this study. In addition, the 231 subjects, after 15 minutes of rest, underwent 12 Leads of ECG 
on the same day for the resting HR measurement.  

The resting HR of all subjects affected by COPD and the abnormal resting HR caused by other 
diseases were excluded in our study. Diagnosis of COPD classification was from stage I to IV 
according to Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2008 criteria accepted 
by the American Thoracic Society and the European Respiratory Society. According to our definition, 
at risk of COPD (stage 0) was diagnosed. The definition for stage 0 is that chronic cough and sputum 
production are for at least three months in each of two consecutive years without any other condition 
explaining the cough and a post-bronchodilator FEV1/FVC ≥ 0.7 and FEV1 ≥ 80% predicted [21]. 
The resting HR of the 231 subjects need further screening to exclude the abnormal resting HR 
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outside the interval ([60,100], beats per minute) [5]. After excluding the abnormal resting HR, 196 
subjects are used to determine a lung radiomics feature for characterizing resting heart rate and COPD 
stage evolution in this study. COPD stage 0IV has 50, 46, 58, 32 and 10 subjects, respectively.  
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Figure 1. Subjects selection flow diagram and the number of subjects at different COPD 
stages. Figure 1(A): subjects selection flow diagram, Figure 1(B): number of subjects at 
different COPD stages, and Figure 1(C): the changing trend of resting HR with COPD 
stage evolution. 

The ethics committee had approved this study of the national clinical research center of 
respiratory diseases in Guangzhou medical university, China. Each subject had been provided written 
informed consent by the first affiliated hospital of Guangzhou medical university before chest HRCT 
scans and 12 Leads of ECG. 

2.2. Methods 

This Section describes the methods including the lung region segmentation (Section 2.2.1), 
COPD radiomics features calculation (Section 2.2.2), COPD radiomics features selection (Section 2.2.3), 
and COPD radiomics features combination strategy (Section 2.2.4) in detail. 

Figure 2 shows the overall block diagram of this study. Figure 2(A) shows that the trained 
segmentation model segments the lung parenchyma mask images (512 × 512 × N) from the original 
chest HRCT images (512 × 512 × N). Figure 2(B) shows the calculation of the radiomics features 
based on the lung parenchyma images. The original lung parenchyma images are obtained based on 
the original chest HRCT images and lung parenchyma mask images. Then, the original lung 
parenchyma images are filtered to get the derived lung parenchyma images. The original chest 
HRCT images and the derived lung parenchyma images are used to calculate the COPD radiomics 
features according to a predetermined class of radiomics features. Figure 2(C) shows the selection of 
lung radiomics features related to HR and the selected COPD radiomics features combination to 
obtain lung radiomics features that characterize HR and COPD stage evolution. The COPD 
radiomics features and the corresponding resting HR data of 196 subjects are normalized together 
before importing the Lasso model. 13 selected COPD radiomics features are generated by the Lasso 
model. Finally, a COPD radiomics features feature is constructed by the proposed radiomics 
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combination strategy for fully characterizing the resting HR and COPD stage evolution. 
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Figure 2. Overall block diagram of this study. Figure 2(A) shows the lung region 
segmentation, Figure 2(B) shows the calculation of the radiomics feature, and Figure 2(C) 
shows the selection, features combination, and statistical analysis of COPD radiomics 
features, respectively. 

2.2.1. Lung region segmentation 

The lung region needs to be accurately segmented from the chest HRCT images to calculate the 
COPD radiomics features. U-Net has been widely used to segment biomedical images [2224]. 
Some new convolution networks also are proposed, such as a PedNet for image segmentation [25]. 
Similarly, some networks have made innovations in the application, such as residual networks for the 
image quality assessment [26]. Based on U-Net and residual networks, a fully automatic 
segmentation model [27] named U-net (R231) is used to segment the lung region from the chest 
HRCT images in Figure 2(A). The U-net (R231), which had been trained by human chest CT images, 
is a U network model with residual building block (ResU-Net) [28]. The architecture of the 
ResU-Net model is described in detail in our previous study [28]. The trained ResU-Net is available 
on the website https://github.com/JoHof/lungmask. 

Figure 3 shows the typical lung region segmentation results from the original chest HRCT 
images in the coronal, transverse, and sagittal planes. The images without red and green color are the 
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original chest HRCT images, and the images with red and green colors are the corresponding lung 
region segmentation results. All slices of lung region segmentation results have been carefully 
checked and modified by three experienced radiologists using a tool named ITK-SNAP. The 
ITK-SNAP can be available on the website, http://www.itksnap.org/pmwiki/pmwiki.php?n= 
Downloads.SNAP3. The three experienced radiologists consider that all lung region segmentation 
results are acceptable for calculating COPD radiomics features. 

 

Figure 3. Typical lung region segmentation results from the original chest HRCT images 
in the coronal, transverse, and sagittal planes. Figure 3(A)(C) shows the original chest 
HRCT images in the coronal, transverse, and sagittal planes. Figure 3(D)(F) shows the 
lung region segmentation results in the corresponding plane. The red mask is the right 
lung parenchyma mask, and the green one is the left. 

2.2.2. COPD radiomics features calculation 

COPD radiomics features are calculated based on the original and derived lung parenchyma 
images. Therefore, the lung parenchyma images should be extracted from the chest HRCT images. 
The method of extracting original lung parenchyma images is based on the chest HRCT images and 
can refer to our previous study [28,29]. 

Wavelet provides the different scales of the chest images for the image analysis by using its 
multi-resolution decomposition [30,31]. Laplacian of Gaussian filter (LoG) [32,33] as an edge 
enhancement filter can emphasize areas of gray level change in images which is crucial for COPD 
chest images. Because of their advantages, the wavelet filter and LoG filter are considered for 
generating the derived lung parenchyma images in this study. 

Figure 4 shows the detailed process of the COPD radiomics features calculation features. First, 
the wavelet and LoG filters are applied to the original lung parenchyma images. Specifically, the 
wavelet filter yields 8 (23) decompositions per level with all possible combinations of applying either 
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a high pass filter (H) or low pass filter (L) in each of the three dimensions. Therefore, the wavelet 
filter can derive eight types of derived lung parenchyma images. The LoG filter with sigma 1.0 to 5.0. 
can derive five types of derived lung parenchyma images. Finally, the COPD radiomics features are 
calculated based on the original and the 13 derived lung parenchyma images shown in Figure 3. 
Specifically, PyRadiomics (version 3.0., a radiomics calculation model) [34] is applied to calculate 
the COPD radiomics features. The PyRadiomics is available on the website 
https://pyradiomics.readthedocs.io/en/latest/index.html, and the website also has given detailed 
explanations of radiomics. Finally, 1316 COPD radiomics features of each subject are obtained. 

 

Figure 4. The detailed process of the COPD radiomics features calculation. The COPD 
radiomics features are calculated by the predetermined classes of radiomics features and 
the two types of lung region images. 

2.2.3. COPD radiomics features selection 

This paper uses the Lasso model [35,36] to select the COPD radiomics features related to HR. 
The mathematical form of the Lasso model is shown in expression (1): 

2

* *
0

1 1 0

 
p pn

i j ij j
i j j

a y xrg min    
  

       
   

    (1)

where *
ijx  is the value of the independent variable after normalization, *

iy  is the value of 

the dependent variable, λ is a penalty parameter (λ ≥ 0), and βj is the regression coefficient vector, i∈
[1, n], and j∈[0, p]. 

A standard R package “lars 1.2” (parameter: type = “lasso”, and use.Gram = FALSE) is performed 
by an operating environment RStudio to select the independent variable. A tenfold cross-validation (a 
standard R package “cv. Lars” with parameter: type = “lar”, K = 10, and use.Gram = FALSE) is used to 
select the fraction (the minimus cross-validated MSE). The dependent variable is the resting HR∈
[60,100], and the independent variable is the COPD radiomics features. The size of COPD radiomics 
features is 196 × 1316 (196 subjects and 1316 COPD radiomics features of each subject). However, the 



4152 

Mathematical Biosciences and Engineering  Volume 19, Issue 4, 4145-4165. 

resting HR and the COPD radiomics features should be normalized before importing the Lasso model. 
The mathematical form of the normalization is shown in Eq (2): 
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where ijx is the independent variable (COPD radiomics features) before normalization, iy  is the 

dependent variable (the resting HR) before normalization, jx is the mean of the independent variable 

ijx , jmaxx  is the maximum of the independent variable ijx , jminx  is the minimum of the 

independent variable ijx , iy is the mean of the dependent variable iy , imaxy  is the maximum of the 

dependent variable iy , and iminy  is the minimum of the dependent variable iy .  

2.2.4. COPD radiomics features combination strategy 

The COPD stages Ⅲ and Ⅳ are taken as one stage (stage Ⅲ & Ⅳ) in this paper to balance the data 
at different COPD stages and meet the statistical need. The lung radiomics feature Yk is constructed by 
the following combination Eq (3) to observe the significant change among the different types of lung 
parenchyma images. 

1 1 2 2
1

N

k i i N N
i

Y x x x x   


     (3)

where k is the type of lung parenchyma images, N is the number of the selected COPD radiomics 
features belonging to one type of lung parenchyma images, and βi is the coefficient of the selected 
radiomics xi generated by the Lasso model. K = 1 denotes all types of lung parenchyma images. K 
= 2 denotes the original lung parenchyma images. K = 3 and 4 denote the derived lung parenchyma 
images generated from the LoG and wavelet filters. 

A COPD radiomics features combination strategy is proposed in this paper to improve the 
significance among the COPD stages. Table 1 shows the specific algorithm of the COPD radiomics 
features combination strategy. The idea of the algorithm is to use the least COPD radiomics features to 
reflect the significances among different COPD stages and retain COPD radiomics features with the 
maximum coefficient array, which can reflect the resting HR. 

Specifically, the coefficient array is the coefficients generated from the Lasso model. After 
initializing the preset significant condition, each coefficient in the coefficient array is changed to an 
absolute value. The coefficient array [β1, β2, …., βi] turns to [|β1|, |β2|, …., |βi|]. The absolute values are 
sorted from largest to smallest, getting the pending coefficient array [max {|β1|, |β2|, …., |βi|}, …., min 
{|β1|, |β2|, …., |βi|}]. Next, the selected number N is initialized to 2, which means that the first two 
coefficients are chosen in the pending coefficient array. The N-selected coefficients from the pending 
coefficient array form a new coefficient array N


. Then a candidate lung radiomics feature NZ  is 

constructed by the new coefficient array N


 and its COPD radiomics features using the linear 

combination. The linear combination Eq (4) is shown in Table 1. In the linear combination Eq (4) ix  

is the selected COPD radiomics features. Finally, the candidate lung radiomics feature’s significances 
among different COPD stages are calculated. Dunn’s multiple comparisons test in the statistical 
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software GraphPadPrism (8.0.1) calculates all significances among different COPD stages. If all 
significances among different COPD stages ＜  the preset significant condition (P = 0.05), the 
candidate lung radiomics feature NZ  is considered as the lung radiomics feature, which characters the 

resting HR and COPD stage evolution. 

Table 1. The algorithm of the COPD radiomics features combination strategy. 

 Detailed implementation process 

Input Coefficient array [β1, β2, …., βi] 

Initialization: preset significant condition (P = 0.005) 

Output 
Lung radiomics feature  lung radiomicsF ; N 

Computation Absolute value operation for the coefficient array [|β1|, |β2|, …., |βi|] 

Sorting operation for the coefficient array [max {|β1|, |β2|, …., |βi|}, …., min {|β1|, |β2|, …., |βi|}] 

for N = 2; N ≤ 13; N ← N + 1 do 

   {  

Form a new coefficient array 

1 2 1 2,  ,  .,  , ., ,  [ {| } ,  .,  { |}]N

N

i imax min         



 

Construct the candidate lung radiomics feature 
1

N

NN i
i

Z x




  (4)  

Calculate the significances of NZ  among different COPD stages  

if all significances ＜ (P = 0.05) 

     lung rad NiomicsF Z  

         break from for 

end if   

} 

end for 

return {  lung radiomicsF ;  N } 

3. Results 

All the significances of the 13 selected COPD radiomics features, the constructed lung radiomics 
features Y1Y4, and the constructed lung radiomics features F1 and F2 among different COPD stages 
are analyzed in this Section. 

3.1. The selected COPD radiomics features based on Lasso 

Figure 5 shows the cross-validated mean square error (MES) with the fraction of final L1 norm by 
standard R package “cv. Lars” (K = 10, tenfold cross-validation). The optimal fraction (0.0909) is 
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determined when the cross-validated MSE takes the minimum value. After the tenfold cross-validation, 13 
COPD radiomics features of each subject are selected from the 1316 COPD radiomics based on Lasso. 

Table 2 shows the name, class, definition and coefficient of the 13 selected COPD radiomics 
features. We rename the 13 selected COPD radiomics features as Radiomics 113 for convenient 
description in this paper. The coefficients of the 13 selected COPD radiomics features are generated 
from the Lasso model. Radiomics 13 are the radiomics of the original lung parenchyma images, and 
radiomics 48 are the radiomics of the derived lung parenchyma images generated by the LoG filter 
with the sigma 1.05.0. Radiomics 913 are the radiomics of the derived lung parenchyma images 
generated by the wavelet filter.  

 

Figure 5. The cross-validated MES with the fraction of final L1 norm based on the Lasso. 

Table 2. Name, class, coefficient and definition of the 13 selected COPD radiomics features. 

Name of the selected COPD radiomics features Class  Coefficient Definition 

original_shape_Elongation Shape Features 0.0502 Radiomics1 

original_shape_MajorAxisLength Shape Features 0.0128 Radiomics2 

original_shape_Maximum2DDiameterColumn Shape Features 0.0715 Radiomics3 

log.sigma.2.0.mm.3D_firstorder_Kurtosis First Order Features 0.0024 Radiomics4 

log.sigma.2.0.mm.3D_firstorder_Maximum First Order Features 0.0038 Radiomics5 

log.sigma.2.0.mm.3D_glszm_GrayLevelVariance GLSZM 1 Features 0.0231 Radiomics6 

log.sigma.4.0.mm.3D_glszm_GrayLevelVariance GLSZM 1 Features 0.0132 Radiomics7 

log.sigma.5.0.mm.3D_glszm_SizeZoneNonUniformity GLSZM 1 Features 0.0149 Radiomics8 

wavelet.HLH_firstorder_Skewness First Order Features 0.0069 Radiomics9 

wavelet.HLH_glcm_MCC GLCM 2 Features 0.0094 Radiomics10 

wavelet.HLH_glrlm_LongRunLowGrayLevelEmphasis GLRLM 3 Features 0.0156 Radiomics11 

wavelet.HLH_glszm_LargeAreaLowGrayLevelEmphasis GLSZM 1 Features 0.0590 Radiomics12 

wavelet.LLL_firstorder_10Percentile First Order Features 0.2494 Radiomics13 

*Note: 1 Gray Level Size Zone Matrix. 2 Gray Level Cooccurrence Matrix. 3 Gray Level Run Length Matrix. 
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Table 2 gives the relationship (coefficient) between the 13 selected COPD radiomics features and 
resting HR. The symbol “-” indicates a positive correlation of the selected COPD radiomics feature 
and resting HR, and the omitted symbol “+” indicates a positive correlation. Since all COPD radiomics 
features have been normalized before the selection, the coefficient can represent the importance of its 
corresponding COPD radiomics features. Figure 6 shows the coefficient of the 13 selected COPD 
radiomics features and the number of the selected COPD radiomics features in each class. Figure 6(A) 
shows the order of importance is Radiomics13, 3, 12, 1, 6, 11,8, 7, 2, 10, 9, 5, 4. Therefore, 
Radiomics13 is the dominant COPD radiomics feature to affect the resting HR. Figure 6(A) shows 
the number of the selected COPD radiomics features in each class. Although the numbers of the first 
order and GLSZM features are the same, the dominant COPD radiomics feature Radiomics13 belongs 
to the first order features. Therefore, the first order features have a greater impact on the resting HR 
than GLSZM features. 
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Figure 6. The picture of the coefficient of the 13 selected COPD radiomics features and 
the number of the selected COPD radiomics features in each class. Figure 6(A): the 
coefficient of the 13 selected COPD radiomics features, and Figure 6(B): the number of 
the selected COPD radiomics features in each class. 

Figure 7(A)(M) shows the changing trend with a boxplot of the 13 selected COPD radiomics 
features among different COPD stages. Table 3 shows significant differences in the selected COPD 
radiomics features among some different COPD stages, including Radiomics1, 3, 4, 6, 8, 9, 11, 12 
and 13. However, there are no significant differences among all COPD stages in Radiomics2, 5, 7 
and 10. Therefore, the results of Radiomics1, 3, 4, 6, 8, 9, 11, 12 and 13 are further analyzed.  
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Figure 7. The changing trend of the 13 selected COPD radiomics features among 
different COPD stages. 
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Table 3. Using Dunn’s multiple comparisons test, the adjusted P-value of the13 selected 
COPD radiomics features among different COPD stages. 

COPD stage comparison Radiomics1 Radiomics2 Radiomics3 Radiomics4 Radiomics5 

Stage 0 vs. Stage Ⅰ 0.0067 0.0675(ns) < 0.0001 0.0018 > 0.9999 (ns) 
Stage 0 vs. Stage Ⅱ 0.0034 0.0951(ns) 0.0001 0.0062 > 0.9999 (ns)
Stage 0 vs. Stage Ⅲ & Ⅳ < 0.0001 > 0.9999 (ns) 0.0003 > 0.9999 (ns) > 0.9999 (ns)
Stage Ⅰ vs. Stage Ⅱ > 0.9999 (ns) > 0.9999 (ns) > 0.9999 (ns) > 0.9999 (ns) > 0.9999 (ns)
Stage Ⅰ vs. Stage Ⅲ & Ⅳ 0.0495 0.0700(ns) > 0.9999 (ns) 0.0425 > 0.9999 (ns)
Stage Ⅱ vs. Stage Ⅲ & Ⅳ 0.03318 0.0987(ns) > 0.9999 (ns) 0.1213(ns) > 0.9999 (ns)

COPD stage comparison Radiomics6 Radiomics7 Radiomics8 Radiomics9 Radiomics10

Stage 0 vs. Stage Ⅰ > 0.9999 (ns) > 0.9999 (ns) 0.0295 > 0.9999 (ns) > 0.9999 (ns)
Stage 0 vs. Stage Ⅱ 0.06115 (ns) > 0.9999 (ns) 0.3687 (ns) > 0.9999 (ns) > 0.9999 (ns)
Stage 0 vs. Stage Ⅲ & Ⅳ > 0.9999 (ns) > 0.9999 (ns) > 0.9999 (ns) 0.0014 0.5143 (ns)
Stage Ⅰ vs. Stage Ⅱ 0.0508 (ns) > 0.9999(ns) > 0.9999 (ns) > 0.9999 (ns) > 0.9999 (ns)
Stage Ⅰ vs. Stage Ⅲ & Ⅳ > 0.9999 (ns) > 0.9999 (ns) 0.3202 (ns) 0.0070 0.8122 (ns)
Stage Ⅱ vs. Stage Ⅲ & Ⅳ 0.0480 0.8283 (ns) > 0.9999 (ns) 0.0125 > 0.9999 (ns)

COPD stage comparison Radiomics11 Radiomics12 Radiomics13  

Stage 0 vs. Stage Ⅰ > 0.9999 (ns) 0.0002 < 0.0001  
Stage 0 vs. Stage Ⅱ > 0.9999 (ns) 0.0081 (ns) < 0.0001  
Stage 0 vs. Stage Ⅲ & Ⅳ 0.0330 < 0.0001 < 0.0001  
Stage Ⅰ vs. Stage Ⅱ > 0.9999(ns) > 0.9999 (ns) 0.4088 (ns)  
Stage Ⅰ vs. Stage Ⅲ & Ⅳ 0.4837(ns) 0.3096 (ns) < 0.0001  
Stage Ⅱ vs. Stage Ⅲ & Ⅳ 0.1819(ns) 0.0089 0.0030  
*Note: ns: no significance. 

Figure 7(A) shows that Radiomics 1 increases with the development of COPD stages. The mean 
± the standard error of mean (SEM) of Radiomics 1 from the COPD stage 0 to Ⅲ & IV is 0.8068 
± 0.0105, 0.8575 ± 0.0088, 0.8585 ± 0.0081, and 0.8950 ± 0.0084, respectively. However, 
there is no significant change only between COPD stage I and COPD stage Ⅱ (P > 0.9999). Figure 
7(C) shows that Radiomics 3 increases with the COPD stages evolution. Compared to COPD stage 0, 
Radiomics 3 in COPD stage I, Ⅱ, Ⅲ & IV rises. The mean ± SEM of Radiomics 3 from the 
COPD stage 0 to Ⅲ & IV is 314.5 ± 3.289, 336.1 ± 2.425, 332.7 ± 2.580 and 333.5 ± 
2.607, respectively. The significant change exists only between COPD stage 0 and COPD stage I, Ⅱ, 
Ⅲ & IV (P < 0.0001, P = 0.0001, P = 0.0003). Figure 7(D) and Table 3 show that Radiomics 4 
significantly increases form COPD stage 0 to COPD stage I, Ⅱ (P = 0.0018 and 0.0062). The mean 
± SEM of Radiomics 4 from the COPD stage 0 to Ⅲ & IV is 6.552 ± 0.0781, 6.919 ± 0.0691, 
6.884 ± 0.0644 and 6.662 ± 0.0576, respectively. Figure 7(F) shows that the mean of Radiomics 
6 reaches the maximum at COPD stage Ⅱ (32.67 ± 0.3414) among all the COPD stages. The 
mean ± SEM of Radiomics 6 at the COPD stage 0, COPD stage I, and COPD stage Ⅲ & IV is 
31.41 ± 0.3988, 31.55 ± 0.4403, 31.42 ± 0.4855, respectively. There are significant changes of 
Radiomics 6 between COPD stage Ⅱ and Ⅲ & IV (P = 0.0480) shown in Table 3. Figure 7(H) and 
Table 3 show that Radiomics 8 significantly arises only from COPD stage 0 to COPD stage I (P = 
0.0295). The mean ± SEM of Radiomics 8 from the COPD stage 0 to Ⅲ & IV is 6559 ± 235.6, 
7466 ± 234.5, 7139 ± 202.7 and 6851 ± 191.4, respectively. Figure 5(J) and Table 3 show that 
Radiomics 9 significantly arises from COPD stage 0, I, Ⅱ to COPD stage Ⅲ & IV (P = 0.0014, P 
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= 0.0070, P = 0.0125). The mean ± SEM of Radiomics 9 from the COPD stage 0 to Ⅲ & IV is 
0.1388 ± 0.0085, 0.1458 ± 0.0074, 0.1512 ± 0.0072 and 0.1875 ± 0.0096, respectively. 
Figure 7(K) and Table 3 show that Radiomics 11 significantly arises from the COPD stage 0 to Ⅲ 
& IV (P = 0.0330). The mean ± SEM of Radiomics11 at the COPD stage 0 and Ⅲ & IV is 0.1868 
± 0.0064 and 0.2140 ± 0.0102, respectively. Figure 7(L) and Table 3 show that Radiomics 12 
significantly arises from the COPD stage 0 to COPD stage I (P = 0.0002) and from COPD stage 0, 
Ⅱ to COPD stage Ⅲ & IV (P < 0.0001, P = 0.0089). The mean ± SEM of Radiomics 12 from 
the COPD stage 0 to Ⅲ & IV is 2.956×107 ± 0.3952 × 107, 6.869 × 107 ± 1.006×107, 
4.515 × 107 ± 0.3997×107 and 10.83 × 107 ± 1.797×107, respectively. Figure 5(N) shows that 
Radiomics 13 decreases with the development of COPD stages. The mean ± SEM of Radiomics 13 
from the COPD stage 0 to Ⅲ & IV is 　2575 ± 9.006, 　2624 ± 6.475, 　2662 ± 6.043 and 　2718 ± 
8.700, respectively. However, there is no significant change between COPD stage I and COPD stage 
Ⅱ (P = 0.4088). 

3.2. The lung radiomics features based on the proposed combination strategy 

Four lung radiomics features Y1Y4 are constructed using the Eq (3). Specifically, the lung 
radiomics feature Y1 is constructed with all Radiomics 113 and their coefficients. Next, the lung 
radiomics feature Y2 is constructed with Radiomics 13 and their coefficients belonging to the original 
lung parenchyma images. Then, the lung radiomics feature Y3 is constructed with Radiomics 48 and 
their coefficients belonging to the derived lung parenchyma images generated from the Log filter. 
Finally, the lung radiomics feature Y4 is constructed with Radiomics 913 and their coefficients 
belonging to the derived lung parenchyma images generated from the wavelet filter. Figure 8 shows 
the significance of the lung radiomics features Y1Y4 among different COPD stages. Table 4 shows 
the adjusted P-value of the lung radiomics features Y1Y4 among different COPD stages.  
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Figure 8. The changing trend of the lung radiomics features Y1Y4 among different 
COPD stages using Dunn’s multiple comparisons test. Figure 8(A) shows the changing 
trend of the lung radiomics feature Y1 constructed by all the 13 selected COPD 
radiomics features. Figure 8(B) shows the changing trend of the lung radiomics feature 
Y2 constructed by Radiomics 13. Figure 8(C) shows the changing trend of the lung 
radiomics feature Y3 constructed by Radiomics 48. Finally, figure 8(D) shows the 
changing trend of the lung radiomics feature Y4 constructed by Radiomics 913. 
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Table 4. The adjusted P-value of the lung radiomics features Y1Y4 among different 
COPD stages using Dunn’s multiple comparisons test. 

COPD stage comparison Y1 Y2 Y3 Y4 

Stage 0 vs. Stage Ⅰ 0.0542 (ns) 0.0641 (ns) > 0.9999 (ns) < 0.0013 

Stage 0 vs. Stage Ⅱ < 0.0001 0.1686 (ns) 0.0686 (ns) < 0.0001 

Stage 0 vs. Stage Ⅲ & Ⅳ < 0.0001 > 0.9999 (ns) > 0.9999 (ns) < 0.0001 

Stage Ⅰ vs. Stage Ⅱ 0.0718 (ns) > 0.9999 (ns) 0.3835 (ns) 0.1287 (ns) 

Stage Ⅰ vs. Stage Ⅲ & Ⅳ < 0.0001 0.0729 (ns) > 0.9999 (ns) < 0.0001 

Stage Ⅱ vs. Stage Ⅲ & Ⅳ < 0.0039 0.1851(ns) 0.1143 (ns) 0.0619 (ns) 

*Note: ns: no significance. 

Table 4 shows no significant change in lung radiomics feature Y2 and Y3 among the COPD stages. 
Therefore, the lung radiomics feature Y1 and Y4 are further analyzed. Figure 8(A) shows that lung 
radiomics feature Y1 increases with the development of COPD stages. The mean ± SEM of lung 
radiomics feature Y1 from the COPD stage 0 to Ⅲ & IV is 0.1960 ± 0.0303, 0.0507 ± 0.0268, 
0.04254 ± 0.0201 and 0.2302 ± 0.0311, respectively. However, there is no significant change 
between COPD stage 0 and COPD stage I (P = 0.0542) and between COPD stage I and COPD stage 
Ⅱ (P = 0.0718) shown in Table 4. Like lung radiomics feature Y1, Figure 8(D) shows that the lung 
radiomics feature Y4 also increases with the development of COPD stages. The mean ± SEM of lung 
radiomics feature Y4 from the COPD stage 0 to Ⅲ & IV is 0.2234 ± 0.0320, 0.0272 ± 0.0235, 
0.0651 ± 0.0220 and 0.2058 ± 0.0327, respectively. There is no significant change between COPD 
stage I and COPD stage Ⅱ (P = 0.1287) and between COPD stage Ⅱ and COPD stage Ⅲ & IV (P 
= 0.0619) shown in Table 4. 
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Figure 9. The changing trend of the lung radiomics features F1 and F2 among different 
COPD stages. Figure 9(A) shows the changing trend of the lung radiomics feature F1 
constructed by Radiomics13 and Radiomics3. Figure 9(B) shows the changing trend of 
the lung radiomics feature F1 constructed by Radiomics 13, Radiomics 3, and 
Radiomics 12. 
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Table 5. The adjusted P-value of the lung radiomics features F1 and F2 among different 
COPD stages using Dunn’s multiple comparisons test. 

COPD stage comparison F1 F2 

Stage 0 vs. Stage Ⅰ 0.0031 0.0479 

Stage 0 vs. Stage Ⅱ < 0.0001 < 0.0001 

Stage 0 vs. Stage Ⅲ & Ⅳ < 0.0001 < 0.0001 

Stage Ⅰ vs. Stage Ⅱ 0.0646 (ns) 0.0085 

Stage Ⅰ vs. Stage Ⅲ & Ⅳ < 0.0001 < 0.0001 

Stage Ⅱ vs. Stage Ⅲ & Ⅳ < 0.0014 0.0342 

*Note: ns: no significance. 

Two lung radiomics features, F1 and F2, are constructed using the other COPD radiomics 
combination strategy seen in Table 5. Figure 9 shows the changing trend of the lung radiomics features 
F1 and F2 constructed by the COPD radiomics features combination strategy (Section 2.2.4) among 
different COPD stages. Figure 9(A) shows the changing trend of the lung radiomics feature F1 
constructed by Radiomics 13 with the coefficient 0.2494 and Radiomics 3 with the coefficient 
0.0715. Figure 9(B) shows the changing trend of the lung radiomics feature F1 constructed by 
Radiomics 13, Radiomics 3, and Radiomics 12 with the coefficient 0.2494, 0.0715, 0.0590, 
respectively. Figure 9(A) and Table 5 show that except for the significance between COPD stage Ⅰ 
and Ⅱ (P = 0.0646), the lung radiomics feature F1 significantly increases with the development of 
COPD stages. The mean ± SEM of the lung radiomics feature F1 from the COPD stage 0 to Ⅲ & IV is 
0.1990 ± 0.0259, 0.0433 ± 0.0218, 0.0398 ± 0.0177, and 0.2294 ± 0.0268, respectively. Figure 9(A) 
and Table 5 also show that the lung radiomics feature F2 significantly increases with the development 
of COPD stages. The mean ± SEM of the lung radiomics feature F2 from the COPD stage 0 to Ⅲ & IV 
is 0.1739 ± 0.0255, 0.0502 ± 0.0215, 0.0521 ± 0.0183, and 0.1901 ± 0.0280, respectively.  

4. Discussion 

The selected COPD radiomics features, the lung radiomics features Y1Y4, and the lung 
radiomics features F1F2 related to the resting HR are discussed in Figures 69 and Tables 35.  

From the above results, a single selected COPD radiomics features related to the resting HR 
cannot characterize the significant changes of COPD stage evolution among different COPD stages, 
especially from COPD stage I to COPD stage Ⅱ. Although Radiomics 1 and Radiomics 13 can reflect 
significant changes in most COPD stages, they only fail to characterize the significant changes from 
COPD stage I to COPD stage Ⅱ. Compared to Radiomics 1, the significance from COPD stage I to 
COPD stage Ⅱ in Radiomics 13 (P = 0.4088) is better than that of Radiomics 1(P > 0.9999). Radiomics 3 
with significance (P < 0.0001) is the sensitive COPD radiomics feature related to resting HR from the 
risk of COPD (COPD stage 0) to suffering from COPD (COPD stage IⅢ & IV). At the same time, the 
significance of Radiomics 13 among other COPD stages is also better than that of Radiomics 1. Most 
importantly, Radiomics 13 is the dominant COPD radiomics feature affecting the resting HR. 
Therefore, the dominant COPD radiomics feature Radiomics 13 not only characterizes the resting HR 
but also characterizes COPD stages evolution (except for the significance between COPD stage I and 
COPD stage Ⅱ). 

The selected COPD radiomics features obtained by different types of lung parenchyma images are 
also further discussed in this paper. Unfortunately, the lung radiomics feature Y2, calculated by the 
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original lung parenchyma images, fails to characterize the evolution of COPD stages. Likewise, the 
lung radiomics feature Y3, calculated by the derived lung parenchyma images (LoG filters), only 
characterizes the COPD stage 0 to COPD stage Ⅱ. However, the lung radiomics feature Y4, calculated 
by the derived lung parenchyma images (wavelet filter), only fails to characterize the COPD stage I to 
COPD stage Ⅱ. Therefore, the selected COPD radiomics features calculated based on wavelet filter 
can better characterize COPD stage evolution than the LoG filter. At the same time, it can be seen from 
the lung radiomics feature Y1, which fully characterizes the resting HR, that it improves the overall 
significance among the different COPD stages. In particular, Radiomics 13 is also calculated from the 
derived lung parenchyma images based on the wavelet filter. The lung radiomics feature F1 and F2 are 
also discussed. The lung radiomics feature F2 constructed by Radiomics13, Radiomics 3, and 
Radiomics12 improves the significance from COPD stage I to COPD stage Ⅱ (P = 0.0085 < 0.05). 
Although Radiomics13 is the dominant COPD radiomics feature, other selected COPD radiomics 
features Radiomics 3 and Radiomics 12 are also needed to characterize the COPD evolution. No matter 
what, finding a lung radiomics feature is a competitive process between different COPD stages. 

The COPD radiomics features are calculated based on chest HRCT images with different COPD 
stages. The selected COPD radiomics features related to the resting HR are further determined. The 
selected COPD radiomics features can reflect the resting HR variability. Therefore, the relationship 
between the COPD radiomics features and the resting HR is revealed. The selected COPD radiomics 
features and/or the lung radiomics feature F2 may be a predictor of the resting HR variability of the 
subjects with COPD. The resting HR at different COPD stages may be predicted by the selected COPD 
radiomics features and/or the lung radiomics feature F2. Clinically, the resting HR variability has 
many causes. Although the abnormal resting HR caused by other diseases and outside the interval [5] 
was excluded in our study, it will also be more meaningful to analyze the patients with 
cardiopulmonary disease in future research. 

The COPD radiomics features are calculated from the lung parenchyma images, reflecting the 
state of “COPD patients” at stages 0IV. Compared with chest HRCT images, the COPD radiomics 
features can express the hidden information at different COPD stages. This hidden information is more 
helpful to characterize the differences of varying COPD stages and releases the relationship between 
resting HR and COPD evolution. There are also some limitations of this study. First, when chest 
HRCT images are collected, the patient's inspiratory state can be controlled, but the heart's 
movement cannot be controlled. Therefore, the blood state in pulmonary vessels must impact the 
calculation of the COPD radiomics features. Second, the number of subjects with COPD stage IV is 
only 10. Therefore, we take COPD stage Ⅲ and IV as one COPD stage, affecting the analysis of 
the results. 

5. Conclusions 

Massive COPD radiomics features are calculated based on the lung region segmented by the 
trained ResU-Net. The 13 selected COPD radiomics features related to the resting HR are selected 
from the massive COPD radiomics features using the Lasso model. A COPD radiomics features 
combination strategy is proposed to provide a lung radiomics feature for characterizing the resting HR 
and the COPD stage evolution. Because the lung radiomics feature Y1 is constructed by all the selected 
COPD radiomics features, it is considered that it can fully characterize the resting HR. However, the 
lung radiomics feature Y1 fails to characterize the COPD stage evolution from COPD stage 0 to I, and 
from COPD stage I to Ⅱ. Compared with the P-value of Y1, that of the lung radiomics feature F2 has 
been improved 0.63% between COPD stage 0 and stage Ⅰ, and 6.33% between COPD stage Ⅰ and 



4162 

Mathematical Biosciences and Engineering  Volume 19, Issue 4, 4145-4165. 

stage Ⅱ, resulting in the P-value of F2 less than 0.05. Based on the COPD radiomics features 
combination strategy, the lung radiomics feature F2 with the dominant selected COPD radiomics 
features not only can characterize the resting HR but also can characterize the COPD stage evolution.  
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