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Abstract: Combinatorial auction is an important type of market mechanism, which can help bidders
to bid on the combination of items more efficiently. The winner determination problem (WDP) is one
of the most challenging research topics on the combinatorial auction, which has been proven to be
NP-hard. It has more attention from researchers in recent years and has a wide range of real-world
applications. To solve the winner determination problem effectively, this paper proposes a hybrid ant
colony algorithm called DHS-ACO, which combines an effective local search for exploitation and an
ant colony algorithm for exploration, with two effective strategies. One is a hash tabu search strategy
adopted to reduce the cycling problem in the local search procedure. Another is a deep scoring strategy
which is introduced to consider the profound effects of the local operators. The experimental results
on a broad range of benchmarks show that DHS-ACO outperforms the existing algorithms.

Keywords: ant colony algorithm; local search; combinatorial auction; winner determination
problem; tabu search

1. Introduction

The winner determination problem (WDP) in combinatorial auction aims to determine a bid-
winning scheme according to the combination of items submitted by various bidders as well as their
bids. The object of WDP is to maximize the revenue of auctioneers, where the revenue is measured by
the total price of the selected bids. Compared with traditional auction mechanisms, WDP can improve
the efficiency of the auction process and reduce the number of failure bids [1]. WDP is widely used in
cloud computing [2], online reverse auctions [3,4], spectrum license sales by America’s Federal Com-
munications Commission (FCC)∗, e-commerce [5], wireless network [6], production management [7],

∗http://wireless.fcc.gov/auctions
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game theory [8], and multi-agent system resource allocation [9, 10], etc. Solving the winner deter-
mination problem effectively can improve the utilization of items, which is conducive to sustainable
development. However, the process of determining the winning criterion is NP-hard problem [11].
How to solve WDP effectively has become a hot topic in the field of combinatorial optimization.

Nowadays, the memetic algorithm which integrates the population-based method and the heuris-
tic or meta-heuristic method performs well on many combinatorial optimization problems [12–15].
The population-based methods, which can expand the search space of the problem, include genetic
algorithm [16], ant colony algorithm [17], bee colony algorithm colony [18], and so on.

Among the population-based methods, the ant colony algorithm (ACO), which uses the pheromone
model and heuristic information of the problem to construct solutions in a probabilistic way [19].
Pheromone trails are the result of a learning mechanism that tries to identify the solution components
that, when appropriately combined, lead to high-quality solutions. However, as well known, ACO and
other population-based methods have strong robustness, but its convergence speed is slow and is easy
to fall into the local optima.

Therefore, in many combinatorial problems, the heuristic or meta-heuristic methods are essential for
obtaining competitive solutions, which can be used to prevent the search from premature convergence,
including local search [20], tabu search [21], and simulated annealing [22], etc. Tabu search (TS) is
a widely studied heuristic method for its distinguishing features of adaptive memory and responsive
exploration [23]. This method maintains a short-term memory of the specific changes in some recent
moves within the search space, and prevent future moves from undoing those changes. Due to its
capacity of searching effectively, TS has been applied to solve various combinatorial problems, such
as minimum weight vertex independent dominating set problem [24], the multi-compartment vehicle
routing problem [25], and multi-AGV routing problem [26].

Consequently, in this paper, we focus on improving the basic ACO by blending an effective local
search procedure for solving WDP. To be specific, a hash tabu method is proposed to prevent the revis-
iting of those crucial solutions marked in the search history. As the searching direction is guided by the
scoring function of the local search, we further propose a deep scoring strategy, which not only con-
siders the environment of incumbent solutions, but also takes subsequent operations into account. We
present the computational results of the proposed algorithm on 44 basics and 13 extended benchmark
instances commonly used in the literature, and compare our results with those of the state-of-the-art al-
gorithms for WDP. The results indicate that DHS-ACO is quite efficient on basic benchmark instances
and outperforms other competitors on extended test suits. Furthermore, the verification experiments on
different components of DHS-ACO are conducted to verify the effectiveness of the hash tabu strategy,
the deep scoring strategy, the local search, and the ant colony algorithm.

The remainder of this paper is organized as follows. In the next section, we introduce the related
work of practical algorithms for solving the WDP. In Section 3, we introduce some preliminary knowl-
edge about both DHS-ACO and WDP. Section 4 describes the details of the components in the local
search. Based on the above, DHS-ACO is presented. Then, we carry out comparison and verifica-
tion experiments to evaluate DHS-ACO in Section 5. In the last section, we conclude the paper and
introduce some future work.

Mathematical Biosciences and Engineering Volume 19, Issue 3, 3202–3222.
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2. Related work

In recent years, WDP and its variants have been well studied due to their extensive applications.
Vangerven et al. [27] adapted the winner determination problem for geometrical combinatorial auc-
tions. Then, a new subclass of WDP, i.e., the network winner determination problem (NWDP), was
proposed in [28], which characterized different problems in NWDP class and analyzed their computa-
tional complexity. Afterwards, Remli et al. [29] addressed the winner determination problem for TL
transportation procurement auctions under uncertain shipment volumes and uncertain carriers’ capac-
ity. It extended an existing two-stage robust formulation proposed for WDP with uncertain shipment
volumes. In the same year, Qian et al. [30] conducted a research on winner determination of loss-
averse buyers with incomplete information in multi-attribute reverse auctions for clean energy device
procurement. It was the same team that further studied a revised winner determination problem with
disruption risk of bidders for a fourth party logistics (4PL) provider to purchase transportation services
via combinatorial reverse auction [31]. In 2020, Lee et al. [32] resolved the integration difficulty be-
tween scheduling and routing aspects of the multiple automated guided vehicle (AGV) problem that
were modelled by the winner determination problem.

For the WDP studied in this work, a number of exact algorithms have been proposed. Fujishima et
al. [33] proposed a method, which is guaranteed to be optimal, to reduce the running time by structuring
the search space. Nisan [34] suggested an approach based on linear programming (LP) and proved that
the LP approach finds an optimal allocation if and only if prices can be attached to single items in
the auction. Leyton-Brown et al. [35] proved the correctness of a branch-and-bound algorithm, which
incorporates a specialized dynamic programming procedure. Sandholm and Suri [36] presented a
more sophisticated search algorithm, including several technologies, for determining winners in many
generalizations. Günlük and Ladányi [37] presented a column generation-based algorithm to solve
the WDP given in the XOR-of-OR language and a methodology to generate realistic test problems.
Escudero et al. [38] proposed a new and tighter formulation of WDP and new valid inequalities; then
they presented a branch-and-cut algorithm which shows its efficiency in a big number of instances.

However, the exact methods can obtain the optimal solution of WDP, while they may fail to return
a high-quality solution within a reasonable time or for large-scale of instances. Therefore, Hoos and
Boutilier [39] proposed a stochastic local search algorithm (named Casanova), which added a bid to
the current solution by considering bids’ scores and history information. Based on the basic framework
of the simulated annealing algorithm, Guo et al. [40] introduced the SAGII algorithm with three hybrid
moving operators, i.e., the branch-and-bound move, the greedy local search move and the exchange
move. Experimental results showed that SAGII performed better than Casanova algorithm. A new
strategy was proposed in [41], in which a bid was added randomly with probability p at each local
iteration, and the bid with maximum profits was added into the solution with probability 1 − p. Exper-
imental results showed that this strategy had a remarkable effect on the improvement of the algorithm.
Wang [42] proposed a new super-heuristic algorithm (named SHH) by combining the selection func-
tion and random strategy. Based on the framework of the ant colony algorithm, Dowlatshahi et al. [43]
performed a multi-neighborhood local search algorithm. By combining a stochastic local search com-
ponent with a specific crossover operator, Boughaci et al. [44] presented a memetic algorithm for the
winner determination problem. An efficient local search algorithm (named abcWDP) was proposed
in [45], which used a pattern monitoring strategy to guide the search. Experimental results illustrated
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Figure 1. A scene of WDP.

that this algorithm was the state-of-the-art heuristic algorithm for WDP. In addition, Lin et al. [46]
raised to transform the combinatorial auction optimization problem into an unconstrained integer pro-
gramming problem, and proposed a DCM algorithm to solve it.

3. Preliminaries

3.1. Definition and notations

Before we give the formulation of WDP, some notations are firstly introduced. Suppose that the
collection of items auctioned is MS = {M1,M2, ...,Mt}, where t is the quantity of items. The set of bids
provided by all bidders is BS = {B1, B2, ..., Bn}, where n is the number of bids. Each bid B j = {S j, P j}

has two properties: S j is a non-empty subset of MS that represents the combination of items to bid B j,
while P j is the bid price of B j and P j ≥ 0. Assume that a Boolean array X = {x1, x2, ..., xn} is a feasible
solution of WDP, where x j ∈ {0, 1}. x j = 1 means that the bid B j is selected by the auctioneer, i.e., B j

is the winning bid, i.e., B j is selected in the solution; otherwise, x j = 0 indicates that B j is not selected
by the auctioneer, i.e., it is a losing bid. Given above, the constraint of WDP is described as follows:

max f (x) =

n∑
j=1

P jx j (3.1)

subject to:
n∑

j=1

ai jx j ≥ 1 i ∈ {1, 2, 3, ..., t}, ai j ∈ {0, 1} (3.2)

where ai j = 1 represents Mi ∈ S j, otherwise, Mi < S j, i ∈ [1, t]. Constraint 3.2 guarantees that each
item can be allocated at most once. Therefore, Eq (3.1) aims to maximize the auctioneer’s revenue by
selecting a set of winning bids.

In order to make the auction process clearly, Figure 1 shows the composite auction scene. Note
that two bids containing at least a same item are considered as conflicting bids, which cannot exist
simultaneously in the solution. For example, in this scene, B2 and B3 conflict with each other as
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they both contain M1. All feasible solutions of WDP are composed of different non-conflicting bids.
Therefore, all feasible solutions in this example are : C1 = {{B1}, 12}, C2 = {{B2}, 6}, C3 = {{B3}, 8},
C4 = {{B4}, 6}, C5 = {{B2, B4}, 12}, C6 = {{B3, B4}, 14}. Among all feasible solutions, C6 is the optimal
solution, as it brings maximum benefit to the auctioneer. That is, when the auctioneer selects B3 and
B4, the auctioneer will get the highest income $14.

3.2. Ant colony algorithm

Ant colony algorithm (ACO) constructs the solution step by step in the way of selecting probability.
For WDP, the specific calculation method of selection probability can be calculated as follows. An
initial solution C is given to store all winning bids. Let FB = {B|CB(B) ∩ C = ∅} ∩ {BS \C} collect all
bids without any conflict bids in C, where CB(B) represents all bids that conflict with B in BS . Given
the candidate bid set FB, the chosen probability of bid B j ∈ FB is:

p j =
(τ j)α × (η j)β∑

Bk∈FB
(τk)α × (ηk)β

(3.3)

where α and β represent the influence factors of pheromone and heuristic information of the ant
colony algorithm respectively, and η j is the heuristic factor for solving WDP. Considering the goal of
WDP, which is to maximize the auctioneer’s revenue, we use the bid price P j to replace the heuristic
factor η j.

The basic process of ACO for solving WDP is as follows: firstly, initialize the pheromone vector of
each element τ j = pvi, where pvi is the initial pheromone concentration. Then, the algorithm enters
the search phase. At each iteration, every ant chooses bids from FB according to Eq (3.3). Then, the
colony pheromones are updated as Eq (3.4) shows.

τ j = (1 − ρ) × τ j + ∆ × x j,∀ j ∈ {1, 2, ..., n} (3.4)

where ρ ∈ [0, 1] represents the volatility of the pheromone. ∆ is defined as:

∆ =
Fitness(C)∑n

k=1 Pk
(3.5)

where Fitness(C) represents the fitness of solution C, calculated as:

Fitness(C) =
∑
B j∈C

P j (3.6)

After the pheromone updating process is completed, ACO judges whether the stop condition is met.
If not, the algorithm enters the next iteration. Otherwise, ACO ends in outputting the best solution ever
found.

4. Hybrid ant colony algorithm for WDP

In this section, the proposed algorithm named DHS-ACO is introduced. Firstly, the main strategies
of the local search are described with detailed explanations. Then, the whole profile of the local search
is introduced. Finally, the framework of DHS-ACO is given.

Mathematical Biosciences and Engineering Volume 19, Issue 3, 3202–3222.
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4.1. Local search procedure

Local search is an effective method to enhance the quality of the newly generated solutions by
exploiting their surroundings. In this section, two key methods for the local search are introduced,
including the hash tabu method and the deep scoring strategy. Then, the description of the move
operator used in the local search is given. Finally, the local search framework is summarized.

4.1.1. Hash tabu method

To avoid the repeated visiting of the same solution in the local search procedure, the hash tabu
strategy is designed to efficiently determine whether the current solution has been visited. Given a
solution C and a prime number pr, the hash value corresponding to solution C is defined as:

hash(C) = (
∑

Bi∈C
2i−1) mod pr, i ∈ {1, 2, ..., n} (4.1)

The hash tabu strategy employs a Boolean hash table HT , whose length is pr. The larger the pr
value is, the longer the hash table length is, and the less the possibility of hash clash is. Specifically,
the method uses a hash table to judge whether the algorithm returns to the visited solution again. In
other words, HTh = 1 indicates that the solution with a hash value of h has been marked in the search
history, while HTh = 0 indicates that the solution has not been marked. At the beginning of the
algorithm, each element in HT is set to 0, and a hash secondary array H with length n (n is the number
of bids) is created, in which each element Hi = 2i−1 mod pr. In the initialization, we first set H1 = 20

(mod pr) = 1, and the subsequent elements are calculated according to the following equation:

Hi = 2Hi−1 mod pr, i ∈ {2, 3, ..., n} (4.2)

When adding or removing the bid Bi to the solution C, the corresponding hash value of C is updated
according to the following equations:

hash(C ∪ {Bi}) = [hash(C) + Hi] (mod pr) (4.3)

hash(C \ Bi) =
[
hash(C) + pr − Hi

]
(mod pr) (4.4)

Then, the specific usage of the hash tabu strategy is introduced. In the local search procedure, if
the quality of the local search solution decreases in the previous step, while improved in the current
step, one of the following situations which will be executed determined by the value of HTh, and
h = hash(C).

1) If HTh = 1, the last move will be cancelled with probability ph. In this case, the selected bid Bwin

will be removed and prohibited from being added to the current solution until any of its conflicted
bids are removed from C. With probability 1 − ph, the algorithm will rebuild C according to Eq
(3) and restart the local search to avoid repeated visiting.

2) Otherwise, the algorithm will set HTh = 1 and continue to search.

Mathematical Biosciences and Engineering Volume 19, Issue 3, 3202–3222.
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4.1.2. Deep scoring strategy

The deep scoring strategy is applied in the bid selection of the local search. The main idea of this
mechanism is that if FB , ∅, then a bid with the largest S S core value is selected from FB to be
added to the current solution. FB stores those bids that are not conflicted with the current solution and
S S core is calculated as follows:

S S core(Bi) = S core(Bi) − S ubscore(Bi) (4.5)

where S core() reflects the fitness value change of C after Bi is added:

S core(Bi) = Pi −
∑

B j∈C∩B j∈CB(Bi)
P j (4.6)

Clearly, if Bi ∈ FB and CB(Bi) = ∅, the time complexity of the Eq (4.6) will reduce to O(1). The
S core() reflects the greedy degree of the local search, because it only considers the impact of adding
one bid to the current solution and does not consider the impact on subsequent local search operators.
Regarding this, we introduce the S ubscore() evaluation function to estimate the loss of FB set after
adding one bid to C, which is calculated as follows:

S ubscore(Bi) =
∑

B j∈FB∩CB(Bi)

P j

|S j|
(4.7)

On the one hand, the deep scoring strategy ensures that the local search can choose those bids in FB
first. Since there are no conflict bids between FB and C, it is unnecessary to conduct conflict detection
process and remove the conflicting bid when a bid in FB is added. Therefore, giving priority to select
bids in FB will significantly reduce the selecting time. On the other hand, when selecting bids in FB,
the deep scoring strategy uses S S core() to comprehensively consider the impact on the solution and
the impact on FB loss, which makes the bid selection more reasonable.

4.1.3. Move operator

Algorithm 1: Move
Input: the current solution C,configuration checking table CC
Output: A feasible solution of given auction

1 if FB , ∅ then
2 select Bpick ∈ FB with the greatest SScore ;

3 else
4 rn← find a number form [0,1] randomly;
5 if rn < p then
6 L = {B|B ∈ BS \C ∩CC(B) = 1};
7 Bpick = OldestGoodBid(L);

8 else
9 Bpick = RandomBid(BS \C);

10 add Bpick into C;
11 remove all conflicting bids from C except Bpick;
12 return C;

Mathematical Biosciences and Engineering Volume 19, Issue 3, 3202–3222.
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The local search procedure exploits the neighborhoods of the current solution by performing the
move operator, whose pseudo-code is shown in Algorithm 1.

In algorithm 1, the input data includes the current solution C and the configuration checking vector
CC. CC was proposed by [45], whose updating method is as follows: at the beginning of the local
search, all elements of CC are initialized to 1. When a bid is removed from the current solution C, the
bid CC value is set to 0, and all bids that conflict with the bid CC value are set to 1.

The algorithm first detects whether FB is empty. If FB , ∅, the bid with the largest S S core will be
selected into C. Otherwise, the following steps are executed:

1) In the case of probability p, the algorithm puts the bid with CC = 1 into a temporary set L
and calls OldestGoodBid(). The OldestGoodBid() function performs the following operations:
if L = ∅, then the bid to be added into C will be randomly selected from BS \C. Otherwise, c
T = {B|B ∈ L ∩ S core∗ − S core(B) ≤ δ · stdB}, where S core∗ is the maximum score of all bids in
L, δ is the parameter that controls the scale of T , and stdB is the standard deviation of all bids’
prices. Finally, the bid with the longest iterations outside C will be selected into C.

2) Randomly select a bid from BS \C with probability 1− p and add it into C to enhance the diversity
of the algorithm.

After completing any of the above cases, the algorithm removes all bids that conflict with Bpick in C
and returns C.

Algorithm 2: Local search
Input: current solution C
Output: the best solution C∗ found

1 C∗ = C, N = 0, lastS tepImproved = 1;
2 init(CC);
3 while N = max no improved do
4 oldC = C, C = Move(C);
5 if Fitness(C) ≤ Fitness(oldC) then
6 lastS tepImproved = 0, N = N + 1;

7 else
8 N = 0, C∗ = best(C,C∗);
9 if lastStepImproved = 0 then

10 h = hash(C);
11 if HT (h) = 1 then
12 if rand(0, 1) < ph then
13 C = oldC, CC(Bpick) = 0;

14 else
15 C = newAnt(), init(CC), N = 0;

16 else
17 HT (h) = 1;

18 lastS tepImproved = 1;

19 return C∗;

Mathematical Biosciences and Engineering Volume 19, Issue 3, 3202–3222.
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Based on the ideas proposed above, the pseudo-code of the local search is given in Algorithm 2.
At the beginning, the local search procedure initializes the best solution C∗ as the current solution
C, the non-improved number of the fitness N = 0, and the boolean variable lastS tepImproved = 1,
presenting the condition that the fitness of C has been improved after the last move (line 1). Moreover,
all elements in CC are initialized to 1 to allow the case that all bids are enabled to be added (line 2).
Then, the algorithm iterates until N reaches the limit max no improved (lines 3–25). At each iteration
of the loop, the Move operator is applied to exploit the neighborhood of C (line 5). If the Move
operator failed to find a better solution, the algorithm will set N = N + 1 and mark lastS tepImproved
as 0 (lines 6–8). Otherwise, the algorithm will refresh N = 0 (line 10), and attempt to update C∗ (line
11). Afterwards, the hash tabu strategy described in Section 4.1.1 is executed (lines 12–23). Finally,
the best solution C∗ found during the search will be returned (line 25).

4.2. The DHS-ACO algorithm

In this section, we design a hybrid ant colony algorithm called DHS-ACO to solve WDP. The
pseudo-code of the DHS-ACO algorithm is given in Algorithm 3.

At the start of the algorithm, DHS-ACO initializes the pheromone vector τ, the hash table HT ,
the hash auxiliary array H and the best solution bestC (lines 1–2). In each subsequent iteration, the
algorithm firstly builds each ant by using the pheromone (line 5). Then, the local search procedure
is adopted to exploit the neighborhood of the new ant (line 6). After all ants have finished the local
search, DHS-ACO updates the pheromone vector τ (line 8). The loop will end when the running time
exceeds the time limit (line 3). Finally, DHS-ACO outputs the best solution bestC (line 9).

Algorithm 3: DHS-ACO
Input: bids set BS , items set MS
Output: the best solution found bestC

1 init(τ,H,HT );
2 bestC = ∅;
3 while stopping criteria is not satisfied do
4 for each ant do
5 C = newAnt(τ);
6 C = Local search(C);
7 bestC = best(C, bestC);

8 τ = update pheromone();

9 return bestC;

4.3. Time complexity of DHS-ACO

In this section, the complexity of the key components of DHS-ACO are calculated, including the
ant construction, the pheromone updating, and the local search procedure. For a brief instruction, some
notations are recalled: AntNum = pa, |FB| = s f .

The ant construction process builds an ant by selecting bids from FB one by one until FB = ∅.
The selected bids are determined within O(s f ) time. Since |C| ≤ n and s f ≤ n, the time complexity
of constructing one ant is no more than O(n2). As for the pheromone updating, all n elements of τ

Mathematical Biosciences and Engineering Volume 19, Issue 3, 3202–3222.
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are updated according to the fitness of all pa ants. Therefore, it takes O(npa) time. In the local search
procedure, it takes O(n) for the Move operator in each iteration. Besides, at most O(n2) time would
be taken if the hash tabu strategy decides to rebuild the current solution. Thus, the worst case time
complexity of one iteration of the local search is O(n + n2), i.e., O(n2).

5. Experimental evaluation

To show the efficiency of the proposed algorithm, we carry out extensive experiments in this sec-
tion. Firstly, the benchmarks used in the experiments are introduced. Then, we compare DHS-ACO
against a number of state-of-the-art competitors, including abcWDP [45], DCM [46], MA [44] and
HBHSA [47], to show the algorithmic efficiency. Furthermore, the strategy verification experiments
are performed to verify the effectiveness of the hash tabu method, the deep scoring strategy, the ant
colony framework and the local search procedure proposed in this paper.

5.1. Benchmarks

The benchmarks used in this work are selected from a set of LG benchmarks proposed in [48]. As
shown in Table 1, it contains 500 instances and is divided into five classes according to the number of
bids and items. All classes are named as REL X Y , where X represents the number of bids and Y is the
number of items. Each class contains 100 examples. We refer to [44–47] and only select 44 samples
from them as the basic benchmarks.

In addition, due to the small performance gap between DHS-ACO and other competitors on the
basic benchmarks, we use the CATS platform [49] to generate a larger set of 13 extended instances, to
further compare the performance of DHS-ACO and the state-of-the-art solvers on large-scale instances.
Compared with the basic benchmarks, the number of bids and items increases significantly, which will
become the obstruction for algorithms. Note that abcWDP performs best among the competitors and
thus is chosen as the comparison on extended benchmarks. The extended benchmarks are listed in
Table 2. All instances used in this work can be found on the website †.

Table 1. The message of the basic benchmarks.

Class Instances Selected instances

REL 1000 500 in101 - in200 in101 – in110
REL 1000 1000 in201 - in300 in201 – in210
REL 500 1000 in401 - in500 in401 – in410

REL 1500 1000 in501 - in600 in501 – in504
REL 1500 1500 in601 - in700 in601 – in610

†https://github.com/wujunzero/WDP
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Table 2. The message of extended benchmarks.

Name Number of bids Number of items

CATS 2000 2000 2005
CATS 2500 2500 2504
CATS 3000 3000 3004
CATS 3500 3500 3504
CATS 4000 4000 4001
CATS 4500 4500 4504
CATS 5000 5000 5002
CATS 5500 5500 5501
CATS 6000 6000 6000
CATS 6500 6500 6505
CATS 7000 7000 7005
CATS 7500 7500 7505
CATS 8000 8000 8005

5.2. Experiments and analysis

The DHS-ACO is implemented in C++. For DHS-ACO and abcWDP, all experiments are con-
ducted 10 times on a computer with Intel(R) Xeon(R) CPU E7-4820 v4 @ 2.00 GHz, 64 GB. The
experimental results of DCM and MA are taken from [46], while the results of HBHSA are taken
from [47]. The operating environment is Intel i3-2330@2.2 GHz, Intel Pentium IV@2.8 GHz and 3.4
GHz AMD processors, respectively. Obviously, their CPU base frequency is higher than that of the
experimental environment in this paper (2.00 GHz).

5.3. Parameter settings

We use the automatic tuning tool irace [50] to tune the parameters. We randomly select 50 examples
from all the examples as the training set. The parameter tuning process is budgeted to run 2,000 times,
each with a budgeted run time of 1000 seconds. The final values obtained by irace are shown in Table 3.
The results of each experiment will be introduced and analyzed in the following part.

Table 3. Parameter setting of DHS-ACO.

Parameters Description Ranges Final values

AntNum number of ants {6, 8, 10, 12} 10
pvi initial pheromone concentration {5, 10, 15, 20} 10
ρ volatility of pheromone {0, 0.1, . . . , 0.9} 0.1
α influence factors of pheromone {0, 1, . . . , 5} 1
β influence factors of heuristic information {0, 1, . . . , 5} 1
δ parameter that controls the scale of establish set {0.1, 0.2, . . . , 0.9} 0.5
p allow probability of adding a bid into current solution {0.91, 0.92, . . . , 0.99} 0.95
max no improved maximum non-improved steps {80, 90, 100, 110} 100
pr length of the Boolean hash table {109, 109 + 1, . . . , 109 + 10} 109 + 7
ph cancel probability of a move operator {0.90, 0.91, . . . , 0.99} 0.95

Mathematical Biosciences and Engineering Volume 19, Issue 3, 3202–3222.
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5.4. Comparison with state-of-the-art competitors

The experimental results of DHS-ACO and its competitors on basic benchmarks are presented in
Tables 4–8. The columns named f and t stand for the average fitness and the average convergence time,
respectively. Table 9 summarizes the average of the fitness (“avg f ”) and the total time (“total t”, in
seconds) of all algorithms in each class of basic benchmarks shown in Tables 4–8. Figure 2 shows
the average convergence time (“avg t”) and the number of reaching the optimal fitness among all
reference algorithms (“best num”) of the best solution obtained by each compared algorithm on all 44
basic instances.

Since the performance gap between DHS-ACO and abcWDP is small on basic benchmarks, we
use the extended benchmarks to compare the performance of DHS-ACO and abcWDP. As shown in
Table 10, compared with abcWDP algorithm, DHS-ACO algorithm is superior to abcWDP on the
average objective function values obtained, which demonstrates that DHS-ACO performs better than
abcWDP in solving large-scale instances. “Total” in the last row means the execution time of the tested
instances in seconds.

Therefore, according to the results in Tables 4–9 and Figure 2, DHS-ACO algorithm is obviously
superior to HBHSA, DCM and MA regarding the performance on each group of the basic benchmarks.
Compared with the reference algorithms, DHS-ACO can obtain the same fitness values on all basic
benchmarks, owing to the exploration of the heuristic method. And the average convergence time of
DHS-ACO is faster and performs 1–2 orders of magnitude faster than the competitors, which reflects
the effectiveness and efficiency of DHS-ACO on basic benchmarks. Moreover, for the extended bench-
marks (the results of the comparison are shown in Table 10), due to the large-scale of these benchmarks,
it is difficult for DCM, MA and HBHSA to solve them, while DHS-ACO obtains the better solutions
by reducing the convergence time in each search iteration. Note that DHS-ACO can also find the better
solutions on all extended benchmarks than abcWDP, although it requires more execution time than
abcWDP in total. It is because of DHS-ACO explored enlarged feasible search space, benefited of the
population-based framework.

Table 4. Results on subset of REL 1000 500.

Instances
DHS-ACO abcWDP DCM MA HBHSA
f t f t f t f t f t

in101 72724.62 2.41 72724.62 5.55 67330.25 40.46 67101.93 129.62 67973.71 59.51
in102 72518.22 4.19 72518.22 10.31 70186.90 43.67 67797.61 132.18 70706.86 58.16
in103 72129.50 2.35 72129.50 12.51 67496.73 45.38 66350.99 133.34 69151.79 58.28
in104 72709.65 3.77 72709.65 62.78 69791.24 44.60 64618.41 135.14 71184.80 59.24
in105 75646.13 1.78 75646.13 1.35 69274.29 47.05 66376.83 153.96 72725.20 62.98
in106 71258.61 1.40 71258.61 1.49 65110.89 42.82 65481.64 140.96 66461.43 57.67
in107 69713.40 1.32 69713.40 1.93 67026.55 40.11 66245.70 146.40 68476.54 56.38
in108 75813.21 3.32 75813.21 1.54 73357.63 46.34 74588.51 161.03 72729.34 58.18
in109 69475.90 1.16 69475.90 1.36 64548.53 41.34 62492.66 144.71 66023.87 59.74
in110 68295.29 3.72 68295.29 3.73 65547.86 45.32 65171.19 149.01 66405.36 59.11
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Table 5. Results on subset of REL 1000 1000.

Instances
DHS-ACO abcWDP DCM MA HBHSA

f t f t f t f t f t

in201 81557.74 0.22 81557.74 0.17 78856.30 70.34 77499.82 98.26 80079.58 80.92
in202 90708.13 1.37 90708.13 3.93 88850.75 79.42 90464.19 106.68 90490.79 85.73
in203 86239.21 0.99 86239.21 0.89 82551.15 75.48 86239.21 102.28 84491.86 82.22
in204 87075.43 0.78 87075.43 0.55 83666.49 72.00 81969.05 97.40 85057.33 84.55
in205 86515.95 0.92 86515.95 1.87 84130.23 71.92 82469.19 91.26 85422.67 116.05
in206 91518.96 0.48 91518.96 0.69 86333.52 72.40 86881.42 93.99 89211.10 121.07
in207 93129.25 3.03 93129.25 2.18 89753.32 71.05 91033.51 100.90 92042.88 123.39
in208 94904.68 0.46 94904.68 0.48 85927.42 75.51 83667.76 101.29 87803.87 80.96
in209 87268.97 7.16 87268.97 17.45 84752.54 73.26 81966.65 96.42 85265.19 84.45
in210 89962.40 0.73 89962.40 0.61 86229.86 71.30 85079.98 97.78 87917.57 84.54

Table 6. Results on subset of REL 500 1000.

Instances
DHS-ACO abcWDP DCM MA HBHSA

f t f t f t f t f t

in401 77417.48 0.03 77417.48 0.04 75438.49 26.59 72948.07 37.07 76035.94 40.63
in402 76273.34 0.13 76273.34 0.25 75146.65 24.51 71454.78 37.20 76273.34 40.70
in403 74843.96 0.02 74843.96 0.01 71309.10 25.70 74843.96 38.81 72465.39 41.04
in404 78761.69 0.06 78761.69 0.03 76877.34 26.42 78761.68 38.78 77091.37 38.37
in405 75915.90 0.22 75915.90 0.14 75104.28 28.18 72674.25 39.29 75684.28 40.38
in406 72863.32 0.03 72863.32 0.05 72055.10 28.31 71791.03 38.09 72203.10 37.46
in407 76365.72 0.13 76365.72 0.04 74443.52 28.45 73935.28 40.95 73650.63 36.00
in408 77018.83 0.05 77018.83 0.08 74766.64 27.55 72580.04 39.07 74747.72 38.66
in409 73188.62 0.03 73188.62 0.03 71965.11 25.62 68724.53 36.28 71924.64 40.47
in410 73791.66 0.06 73791.66 0.06 73092.48 25.49 71791.57 41.90 73726.39 40.22

Table 7. Results on subset of REL 1500 1000.

Instances
DHS-ACO abcWDP DCM MA HBHSA
f t f t f t f t f t

in501 88656.96 3.13 88656.96 3.75 86353.64 149.28 79132.03 107.82 87341.22 196.18
in502 86236.91 1.33 86236.91 1.09 84207.64 128.05 80340.76 108.71 84896.64 204.67
in503 87812.38 12.80 87812.38 10.51 84547.97 137.57 83277.71 114.15 86313.22 197.64
in504 85600.00 6.70 85600.00 19.69 82742.72 139.61 81903.02 116.11 84604.71 202.92

Mathematical Biosciences and Engineering Volume 19, Issue 3, 3202–3222.



3215

Table 8. Results on subset of REL 1500 1500.

Instances
DHS-ACO abcWDP DCM MA HBHSA
f t f t f t f t f t

in601 108800.45 1.78 108800.45 1.57 103273.33 154.69 99044.32 110.62 104402.60 191.21
in602 105611.48 4.44 105611.48 3.84 102390.49 144.28 98164.23 114.18 103152.40 202.68
in603 105121.02 6.56 105121.02 7.46 98794.90 137.20 94126.96 110.71 104928.00 187.35
in604 107733.81 8.76 107733.81 12.83 103522.86 138.49 103568.86 110.60 106694.10 197.08
in605 109840.98 2.12 109840.98 7.74 103600.76 143.48 102404.76 122.40 106322.10 188.35
in606 107113.07 0.59 107113.07 1.47 102906.98 141.04 104346.07 107.79 104499.70 195.60
in607 113180.28 2.63 113180.28 2.55 103297.49 141.11 105869.44 113.26 108241.00 197.03
in608 105266.11 10.95 105266.11 38.20 100547.10 139.90 95671.77 109.15 104428.30 197.22
in609 109472.33 2.91 109472.33 0.78 102506.90 139.33 98566.94 111.12 106122.20 198.18
in610 113716.97 20.14 113716.97 62.95 109516.88 138.17 102468.60 120.17 113716.97 198.16

Table 9. Results on basic benchmarks.

Class
DHS-ACO abcWDP DCM MA HBHSA

avg f total t avg f total t avg f total t avg f total t avg f total t

REL 1000 500 72028.45 25.42 72028.45 102.55 67967.09 437.068 66622.55 1426.35 69183.89 589.25
REL 1000 1000 88888.07 16.14 88888.07 28.82 85105.16 732.68 84727.08 986.26 86778.28 943.88
REL 500 1000 75644.05 0.76 75644.05 0.73 74019.87 266.814 72950.52 387.44 74380.28 393.93
REL 1500 1000 87076.56 23.96 87076.56 35.04 84462.99 554.518 81163.38 446.79 85788.95 801.41
REL 1500 1500 108585.65 60.88 108585.65 139.39 103035.77 1417.688 100423.2 1130 106250.7 1952.86

Figure 2. Results of best num and avg t on basic benchmarks.
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Table 10. Results on extended benchmarks.

Instances
DHS-ACO abcWDP

f t f t

CATS 2000 92095.11 222.20 88243.66 306.92
CATS 2500 108426.00 382.62 103076.51 350.32
CATS 3000 134062.11 303.03 125171.43 195.10
CATS 3500 154289.60 306.95 143439.39 323.06
CATS 4000 177537.83 301.17 165046.76 297.31
CATS 4500 203493.37 360.22 186831.08 322.06
CATS 5000 223222.27 358.04 204797.15 257.33
CATS 5500 242498.90 314.37 223389.47 271.43
CATS 6000 268460.02 433.72 247635.80 310.24
CATS 6500 286753.35 424.86 262688.31 295.27
CATS 7000 293800.27 428.23 270759.39 402.83
CATS 7500 332319.45 508.10 304366.45 417.81
CATS 8000 339733.32 397.65 309655.66 218.48

Total (s) 4741.16 3968.16

5.5. Validation experiment

In order to verify the effectiveness of each key component of DHS-ACO, we compare DHS-ACO
with its four variants, which are introduced as follows:

• DHS-ACOnoh: DHS-ACO algorithm without using the hash tabu strategy.
• DHS-ACOnofbs: DHS-ACO algorithm without using the deep scoring strategy.
• DHS-ACOnols: DHS-ACO algorithm without local search.
• DHS-ACOnoaco: DHS-ACO algorithm without ant colony framework. This means DHS-

ACOnoaco only uses the local search to solve the benchmarks. When the hash tabu strategy
decides to rebuild the solution, the solution will be initialized randomly rather than use the con-
struction method of ACO.

Since the comparison experiment shows that DHS-ACO algorithm can solve all basic test cases
stably, we select all extended cases in Table 2 to test the effectiveness of each key component. The
comparisons between DHS-ACO and its variants are listed in Table 11 to Table 14.

Table 11 shows that DHS-ACOnoh algorithm gains lower f values than DHS-ACO on 11 instances,
while obtains higher values on the remaining 2 instances. It can be seen that the intervention of the
hash tabu strategy of the local search shows a negative effect, because the local search selects bids with
randomness, which means the subsequent searches for those solutions marked by hash tabu strategy
have little chance to find better solutions. However, in general, the hash tabu strategy makes DHS-ACO
avoid repeated visiting efficiently and improve the local search significantly.

As can be seen from Table 12, DHS-ACO outperforms DHS-ACOnofbs on 10 out of 13 instances.
One can see that the deep scoring strategy is counterproductive in a few test cases, because it focuses
too much on the selection and maintenance of FB, and ignores the bids outside FB. Nevertheless, the
deep scoring strategy improves the performance of DHS-ACO from an overall perspective.
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According to Table 13, DHS-ACOnols obtains worse solutions on all instances without using the
local search. Meanwhile, its convergence time is greatly reduced compared with DHS-ACO. It is clear
that the proposed local search provides a powerful neighborhood search capability for DHS-ACO,
which makes DHS-ACO effective in exploiting the solution space.

Table 14 indicates the effectiveness of the ant colony algorithm framework of DHS-ACO. With-
out the new solutions generated by the ant colony framework, DHS-ACOnoaco performs significantly
worse than DHS-ACO on all test cases. It demonstrates the necessary of using the ant colony frame-
work to provide high-quality solutions for DHS-ACO based on pheromones and heuristics.

Table 11. Results obtained by DHS-ACO and DHS-ACOnoh.

Instances
DHS-ACO DHS-ACOnoh

f t f t

CATS 2000 92095.11 222.20 92053.91 283.39
CATS 2500 108426.00 382.62 108262.94 315.93
CATS 3000 134062.11 303.03 133861.27 328.99
CATS 3500 154289.60 306.95 154234.50 341.62
CATS 4000 177537.83 301.17 177404.69 390.68
CATS 4500 203493.37 360.22 203570.93 397.36
CATS 5000 223222.27 358.04 222909.74 365.98
CATS 5500 242498.90 314.37 242434.70 392.56
CATS 6000 268460.02 433.72 268433.42 418.30
CATS 6500 286753.35 424.86 286460.81 399.11
CATS 7000 293800.27 428.23 294079.34 419.63
CATS 7500 332319.45 508.10 331237.09 446.86
CATS 8000 339733.32 397.65 339644.22 339.03

Table 12. Results obtained by DHS-ACO and DHS-ACOnofbs.

Instances
DHS-ACO DHS-ACOnofbs

f t f t

CATS 2000 92095.11 222.20 92103.01 305.01
CATS 2500 108426.00 382.62 109000.30 202.89
CATS 3000 134062.11 303.03 133422.57 375.12
CATS 3500 154289.60 306.95 154051.85 307.68
CATS 4000 177537.83 301.17 176574.29 213.85
CATS 4500 203493.37 360.22 203507.10 379.32
CATS 5000 223222.27 358.04 222270.79 414.67
CATS 5500 242498.90 314.37 241873.75 375.88
CATS 6000 268460.02 433.72 267820.75 463.77
CATS 6500 286753.35 424.86 286299.25 424.79
CATS 7000 293800.27 428.23 293537.66 437.80
CATS 7500 332319.45 508.10 331171.41 462.54
CATS 8000 339733.32 397.65 338324.77 461.95
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Table 13. Results obtained by DHS-ACO and DHS-ACOnols.

Instances
DHS-ACO DHS-ACOnols

f t f t

CATS 2000 92095.11 222.20 85292.66 2.65
CATS 2500 108426.00 382.62 100334.73 3.14
CATS 3000 134062.11 303.03 122329.02 5.69
CATS 3500 154289.60 306.95 141815.45 7.67
CATS 4000 177537.83 301.17 162805.02 10.27
CATS 4500 203493.37 360.22 188135.22 13.94
CATS 5000 223222.27 358.04 205140.48 19.58
CATS 5500 242498.90 314.37 223106.47 25.55
CATS 6000 268460.02 433.72 249082.54 30.69
CATS 6500 286753.35 424.86 266662.91 35.89
CATS 7000 293800.27 428.23 270262.84 39.84
CATS 7500 332319.45 508.10 305819.14 51.85
CATS 8000 339733.32 397.65 312315.06 56.36

Table 14. Results obtained by DHS-ACO and DHS-ACOnoaco.

Instances
DHS-ACO DHS-ACOnoaco

f t f t

CATS 2000 92095.11 222.20 87859.02 239.43
CATS 2500 108426.00 382.62 102506.50 171.21
CATS 3000 134062.11 303.03 124633.43 199.47
CATS 3500 154289.60 306.95 143283.79 211.61
CATS 4000 177537.83 301.17 165032.62 147.11
CATS 4500 203493.37 360.22 186365.41 240.25
CATS 5000 223222.27 358.04 204715.67 180.20
CATS 5500 242498.90 314.37 223167.11 141.10
CATS 6000 268460.02 433.72 246538.17 251.53
CATS 6500 286753.35 424.86 262135.68 250.56
CATS 7000 293800.27 428.23 270097.45 222.24
CATS 7500 332319.45 508.10 303594.47 309.95
CATS 8000 339733.32 397.65 309485.41 245.40

6. Conclusions

In this paper, we propose a new swarm algorithm called DHS-ACO, which can effectively deal with
the WDP on a wide instances. Based on the ant colony framework, the algorithm combines an effective
local search with a hash tabu method and a deep scoring strategy. Extensive computational evaluations
of the algorithm on two set of benchmarks demonstrated its competitiveness compared to the state-of-
the-art methods. In particular, the algorithm can find the same best solutions on all basic benchmarks
with less time reported in the literature and the best solutions on all extended benchmarks.
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Furthermore, owing to the random nature of the swarm intelligent algorithms, DHS-ACO need more
time than its competitor abcWDP on large-scale benchmarks, although it can give better solutions. It
would be interesting to reduce the consumption time on the large-scale benchmarks in the future.
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18. Ş. Öztürk, R. Ahmad, N. Akhtar, Variants of artificial bee colony algorithm and
its applications in medical image processing, Appl. Soft Comput., 97 (2020), 106799.
https://doi.org/10.1016/j.asoc.2020.106799

19. M. Dorigo, L. M. Gambardella, Ant colony system: a cooperative learning approach
to the traveling salesman problem, IEEE Trans. Evol. Comput., 1 (1997), 53–66.
https://doi.org/10.1109/4235.585892

20. X. Zhang, X. Li, J. Wang, Local search algorithm with path relinking for single batch-
processing machine scheduling problem, Neural Comput. Appl., 28 (2017), 313–326.
https://doi.org/10.1007/s00521-016-2339-z

21. M. Li, J. K. Hao, Q. Wu, Learning-driven feasible and infeasible tabu search for airport gate
assignment, Eur. J. Oper. Res., 2021 (2021). https://doi.org/10.1016/j.ejor.2021.12.019

22. Z. Lu, J. K. Hao, U. Benlic, D. Lesaint, Iterated multilevel simulated annealing
for large-scale graph conductance minimization, Inform. Sci., 572 (2021), 182–199.
https://doi.org/10.1016/j.ins.2021.04.102

23. F. Glover, Tabu search-part i, ORSA J. Comput., 1 (1989), 190–206.
https://doi.org/10.1287/ijoc.1.3.190

Mathematical Biosciences and Engineering Volume 19, Issue 3, 3202–3222.

http://dx.doi.org/https://doi.org/10.1109/TSG.2020.2986468
http://dx.doi.org/https://doi.org/10.1287/mnsc.44.8.1131
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2016.2565622
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2021.116238
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2021.04.001
http://dx.doi.org/https://doi.org/10.1109/CEC.2015.7257275
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2021.108000
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2020.106799
http://dx.doi.org/https://doi.org/10.1109/4235.585892
http://dx.doi.org/https://doi.org/10.1007/s00521-016-2339-z
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2021.12.019
http://dx.doi.org/https://doi.org/10.1016/j.ins.2021.04.102
http://dx.doi.org/https://doi.org/10.1287/ijoc.1.3.190


3221

24. Y. Zhou, J. Li, Y. Liu, S. Lv, Y. Lai, J. Wang, Improved memetic algorithm for solv-
ing the minimum weight vertex independent dominating set, Mathematics, 8 (2020), 1155.
https://doi.org/10.3390/math8071155

25. P. V. Silvestrin, M. Ritt, An iterated tabu search for the multi-compartment vehicle routing prob-
lem, Comput. & Oper. Res., 81 (2017), 192–202. https://doi.org/10.1016/j.cor.2016.12.023

26. L. Xing, Y. Liu, H. Li, C. C. Wu, W. C. Lin, X. Chen, A novel tabu search algorithm for multi-agv
routing problem, Mathematics, 8 (2020), 279. https://doi.org/10.3390/math8020279

27. B. Vangerven, D. R. Goossens, F. C. Spieksma, Winner determination in geometrical combinato-
rial auctions, Eur. J. Oper. Res., 258 (2017), 254–263. https://doi.org/10.1016/j.ejor.2016.08.037

28. M. Kaleta, Network winner determination problem, Arch. Control Sci., 28 (2018).
https://doi.org/10.24425/119077

29. N. Remli, A. Amrouss, I. El Hallaoui, M. Rekik, A robust optimization approach for the winner
determination problem with uncertainty on shipment volumes and carriers’ capacity, Trans. Res.
Part B: Meth., 123 (2019), 127–148. https://doi.org/10.1016/j.trb.2019.03.017

30. X. Qian, S. C. Fang, M. Huang, X. Wang, Winner determination of loss-averse buyers with incom-
plete information in multiattribute reverse auctions for clean energy device procurement, Energy,
177 (2019), 276–292. https://doi.org/10.1016/j.energy.2019.04.072

31. X. Qian, F. T. Chan, M. Yin, Q. Zhang, M. Huang, X. Fu, A two-stage stochastic winner de-
termination model integrating a hybrid mitigation strategy for transportation service procurement
auctions, Comput. Ind. Eng., 149 (2020), 106703. https://doi.org/10.1016/j.cie.2020.106703

32. C. W. Lee, W. P. Wong, J. Ignatius, A. Rahman, M. L. Tseng, Winner determination problem in
multiple automated guided vehicle considering cost and flexibility, Comput. Ind. Eng., 142 (2020),
106337. https://doi.org/10.1016/j.cie.2020.106337

33. Y. Fujishima, K. Leyton-Brown, Y. Shoham, Taming the computational complexity of combinato-
rial auctions: Optimal and approximate approaches, in IJCAI, 99 (1999), 548–553.

34. N. Nisan, Bidding and allocation in combinatorial auctions, in Proceedings of the 2nd ACM Con-
ference on Electronic Commerce, (2000), 1–12. https://doi.org/10.1145/352871.352872

35. K. Leyton-Brown, Y. Shoham, M. Tennenholtz, An algorithm for multi-unit combinatorial auc-
tions, in Aaai/iaai, (2000), 56–61.

36. T. Sandholm, S. Suri, Bob: Improved winner determination in combinatorial auctions and gener-
alizations, Artif. Intell., 145 (2003), 33–58. https://doi.org/10.1016/S0004-3702(03)00015-8
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