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Abstract: Patch models can better reflect the impact of spatial heterogeneity and population mobility
on disease transmission. While, there is relatively little work on using patch models to study the role
of travel restrictions, contact tracing and vaccination in COVID-19 epidemic. In this paper, based on
COVID-19 epidemic propagation and diffusion mechanism, we establish a dynamic model of disease
spread among two patches in which Wuhan is regarded as one patch and the rest of Mainland China
(outside Wuhan) as the other patch. The existence of the final size is proved theoretically and some
model parameters are estimated by using the reported confirmed cases. The results show that travel
restrictions greatly reduce the number of confirmed cases in Mainland China, and the earlier enforced,
the fewer confirmed cases. However, it is impossible to bring the COVID-19 epidemic under control
and lift travel restrictions on April 8, 2020 by imposing travel restrictions alone, the same is true for
contact tracing. While, the disease can always be controlled if the protection rate of herd immunity is
high enough and the corresponding critical threshold is given. Therefore, in order to quickly control
the spread of the emerging infectious disease (such as COVID-19), it is necessary to combine a variety
of control measures and develop vaccines and therapeutic drugs as soon as possible.

Keywords: COVID-19; two patches; population movement; travel restrictions; contact tracing;
vaccination

1. Introduction

In December 2019, the novel coronavirus (COVID-19) was first reported in Wuhan, a city of
Hubei Province with 11.212 million inhabitants [1]. Considering that the coming Chinese Lunar New
Year may lead to the further dispersal of COVID-19, the Chinese government banned travel to and
from Wuhan at 10:00 a.m. on January 23, 2020. With the further development of the epidemic, the
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shortage of doctors and medical resources is becoming more and more serious. To alleviate the
situation, medical teams and a lot of medical resources were dispatched to Wuhan from other places
in China [2]. At the same time, Huo Shen Shan Hospital and Lei Shen Shan Hospital were officially
admitted to the patient on February 3 and February 8, respectively [3]. Since February 4, a number of
fangcang shelter hospitals have been put into use one after another. Then, by the middle of February,
the daily number of new confirmed cases started to decrease. At 00:00 on April 8, the Chinese
government lifted the travel restrictions in Wuhan [4]. As for Mainland China (outside Wuhan), the
early transmission is mainly caused by the cases exported from Wuhan. Due to the timely and
effective prevention and control policy of Chinese government, the epidemic was quickly brought
under control. And some cities of Mainland China (outside Wuhan) began to resume work on
February 10 after extended Spring Festival holiday [5].

However, due to the extreme infectivity of COVID-19, it spread quickly all over the world. The
World Health Organization (WHO) made the assessment that ”COVID-19 could be characterized as a
pandemic” on March 11, 2020 [6]. As of 15 November 2021, there have been 252,902,685 confirmed
cases and 5,094,826 confirmed deaths all over the world [7], of which there have been 98,337 confirmed
cases and 4,636 confirmed deaths in Mainland China [8]. The epidemic posed a severe threat to public
health worldwide and has caused serious damage to global social and economic development. In
order to control the epidemic, many countries have adopted various control measures, such as travel
restrictions, closing entertainment venues, and banning public gathering, isolation of the confirmed
cases, tracing and quarantining the contacts of confirmed cases, and so on.

Meanwhile, many scholars have carried out in-depth scientific research from different perspectives,
in order to reveal some of the inherent transmission mechanisms of the COVID-19 epidemic and
provide a basis for the prevention and control of disease transmission. Some of them studied the
epidemiological characteristics of the COVID-19 epidemic [9–11]; some predict the further
development trend of the COVID-19 epidemic [12, 13]; some focus on studying the supply and
demand of medical resources during the outbreak of the COVID-19 epidemic [14, 15]; some assessed
the effectiveness of prevention and control measures [13, 16–20]; some of them do research on
vaccination [21–24].

However, the interplay between travel restrictions, contact tracing, vaccination and COVID-19
dynamics remains unclear. In order to fill this gap, we establish a SIAHRQ-type patch model. Patch
models can well reflect the influence of spatial heterogeneity and population movement between
different regions on disease transmission which has been applied to the research of many diseases.
Gao et al. [25] proposed a SIRUV-type three-patch model with animal movement to study the spatial
spread of Rift Valley fever in Egypt. Zhang et al. [26] formulated a two-patch model for the spread of
West Nile virus with the host birds migrating between regions. Mukhtar et al. [27] formulated an
SIR-type model that describes the transmission dynamics of malaria disease between multiple
patches. Sun et al. [28] established a SEIYQR-type two-patch model reflecting the mobility of
population between Hubei and regions outside Hubei to study when to lift the lockdown in Hubei
during the COVID-19 epidemic.

In the following, Mainland China is divided into two patches: Wuhan as one patch, is recorded as
patch 1; Mainland China (outside Wuhan) as the other patch, is marked as patch 2. Through theoretical
analysis and numerical simulation, we mainly evaluate the role of travel restrictions, contact tracing
and vaccination in transmission and control of COVID-19 epidemic.
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The structure of this paper is organized as follows. In the next section, the dynamic model is
established. In Section 3, the dynamic analysis is carried out to prove the positivity of the solution and
the existence of the final size. In Section 4, the least square method (LSM) is used to fit some model
parameters, and then the effect of different prevention and control measures on disease transmission is
studied. Section 5 gives a conclusion and discussion of this work.

2. Model formulation and analysis

In this subsection, we will establish two dynamic models, one is in isolated environment model with
contact tracing, the other is in connected environment model with contact tracing. Then carry on the
dynamic analysis.

2.1. The dynamic model in an isolated environment
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Figure 1. The flow chart of epidemic transmission in isolated environment with contact
tracing.

The unit of time is days, and regardless of the birth and death of the population. At time t, the
internal individuals for each patch are divided into six categories according to the state of the disease:
susceptible individuals (S (t)), pre-symptomatic infected individuals (I(t)), hospitalized individuals
(H(t)), recovered individuals (R(t)), quarantined susceptible individuals (S q(t)) and isolated
pre-symptomatic infected individuals (Iq(t)) due to contact with pre-symptomatic infected individuals
who will be diagnosed later. The population is recorded as N(t). In unit time, an individual who is
susceptible can come into contact with pre-symptomatic infected individuals and become infected
with the probability of λ; the pre-symptomatic infected individuals with the proportion of v will be
diagnosed after time 1

α
, the proportion of 1 − v will not be diagnosed and then recover after time 1

η
;

hospitalized individuals will recover after time 1
µ
, and the recovered individuals will no longer be

infected within the length of time taken into account. When conducting an epidemiological
investigation of hospitalized individuals, the close contacts within m days before diagnosis will be
traced and quarantined with probability p, and then will not participate in the spread of the disease.
After the quarantined period 1

γ
, the quarantined susceptible individuals will become susceptible

individuals who can participate in normal social activities. The isolated pre-symptomatic infected
individuals will be diagnosed, or recover after a period of time. The dynamic process of COVID-19
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transmission in an isolated environment is described in the flow chart (Figure 1). According to the
flow chart, the following mathematical models can be established:

dS (t)
dt = −λc S (t)

N(t) I(t) − (1 − λ)vαmpc S (t)
N(t) I(t) + γS q(t),

dI(t)
dt = λc S (t)

N(t) I(t) − λvαmpc S (t)
N(t) I(t) − vαmpc I2(t)

N(t) − vαI(t) − (1 − v)ηI(t),
dH(t)

dt = vα(I(t) + Iq(t)) − µH(t),
dR(t)

dt = µH(t) + (1 − v)η(I(t) + Iq(t)),
dS q(t)

dt = (1 − λ)vαmpc S (t)
N(t) I(t) − γS q(t),

dIq(t)
dt = λvαmpc S (t)

N(t) I(t) + vαmpc I2(t)
N(t) − vαIq(t) − (1 − v)ηIq(t).

(2.1)

For the first equation of system (2.1), λc S (t)
N(t) I(t) represents the number of newly infected

individuals, which can be interpreted as: the number of effective contacts (λc) produced by a
pre-symptomatic infected individual, multiplied by the proportion of susceptible individuals in the
population, λc S (t)

N(t) , indicates the number of susceptible individuals infected by a pre-symptomatic
infected individual. Then, multiplied by the number of pre-symptomatic infected individuals,
λc S (t)

N(t) I(t), indicates the number of susceptible individuals who are infected by all pre-symptomatic
infected individuals. (1 − λ)vαpc S (t)

N(t) I(t) represents the number of newly quarantined susceptible
individuals who are successfully traced as close contacts, which can be interpreted as: (1 − λ)cS (t) I(t)

N(t)
represents the susceptible individuals are not infected after contact with the pre-symptomatic infected
individuals. Then, multiplied by vα means the pre-symptomatic infected individuals with the
proportion of v will be diagnosed and become hospitalized individuals after time 1

α
. Last, multiplied

by mp means to conduct an epidemiological investigation of newly diagnosed pre-symptomatic
infected individuals, tracing the susceptible individuals who are in contact with them within m days
before diagnosis with the probability of p. γS q(t) indicates that the isolated susceptible individual
become susceptible individuals again who can participate in normally social activities after the
isolation period. vαmpc I2(t)

N(t) represents the number of newly quarantined pre-symptomatic infected
individuals who are successfully traced as close contacts due to contact with the other
pre-symptomatic infected individuals. λvαmpc S (t)

N(t) I(t) represents the number of newly quarantined
pre-symptomatic infected individuals, that is the susceptible individuals are infected by
pre-symptomatic infected individuals who will be diagnosed, when conducting epidemiological
investigation the infected susceptible individuals are successfully traced as close contacts. vαI(t)
represents the number of newly hospitalized individuals. (1 − v)ηI(t) represents the number of newly
recovered individuals. The meaning of other items can be obtained in a similar way.

In the following, we first consider the positivity of the solution, and then study the stability of
disease-free equilibrium and give the expression of control reproduction number. Finally, we prove the
existence of final size, which represents the total number of population that have been infected at the
end of the epidemic, namely R(∞) [29].

Lemma 1. All solutions of system (2.1) are in the set

Ω =
{
(S (t), I(t),H(t),R(t), S q(t), Iq(t)) ∈ R6

+ : S (t) + I(t) + H(t) + R(t) + S q(t) + Iq(t) = N(0)
}
,

that is, Ω is a positive invariant set of system (2.1).
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Proof. First of all, there is no birth or death of the population, so

S (t) + I(t) + H(t) + R(t) + S q(t) + Iq(t) = N(0).

It can be obtained from the second equation of system (2.1)

I(t) = I(0)e
∫ t

0

(
λc S (τ)

N(0)−λvαmpc S (τ)
N(0)−vαmpc I(τ)

N(0)−vα−(1−v)η
)
dτ,

then, if I(0) ⩾ 0, I(t) ⩾ 0. Next, we consider the first and fifth equation of system (2.1):dS (t)
dt = −λcS (t) I(t)

N(0) − (1 − λ)vαmpcS (t) I(t)
N(0) + γS

q(t),
dS q(t)

dt = (1 − λ)vαmpcS (t) I(t)
N(0) − γS

q(t).

Based on theorem 3.2.1 of reference [30], we have S (t) ⩾ 0, S q(t) ⩾ 0, if S (0) ⩾ 0, S q(0) ⩾ 0.
By calculating, we have

Iq(t) = e−(vα+(1−v)η)t
(∫ t

0
e(vα+(1−v)η)τ

(
λvαmpcS (τ)

I(τ)
N(0)

+ vαmpcI(τ)
I(τ)
N(0)

)
dτ + Iq(0)

)
,

H(t) = e−µt
(∫ t

0
eµτ (vα(I(τ) + Iq(τ)) dτ + H(0)

)
,

R(t) = R(0) +
∫ t

0
(µH(τ) + (1 − v)η (I(τ) + Iq(τ))) dτ.

And if H(0), R(0), Iq(0) ≥ 0, then H(t), R(t), Iq(t) ≥ 0.
Therefore, all solutions of system (2.1) are in the set

Ω = {(S (t), I(t),H(t),R(t), S q(t), Iq(t)) ∈ R6
+ : S (t) + I(t) + H(t) + R(t) + S q(t) + Iq(t) = N(0)},

that is to say, Ω is a positive invariant set of system (2.1).
Let the right hand of system (2.1) be zero, we obtain the disease-free equilibrium

E00 = (N(0), 0, 0, 0, 0, 0). Through the stability analysis at the disease-free equilibrium point E00, we
have:
Lemma 2. The control reproduction number of system (2.1) is

Rc
00 =

λc
λvαmpc + vα + (1 − v)η

.

If p = 0, we obtain the basic reproduction number

R0 =
λc

vα + (1 − v)η
,

and
Rc

00 =
R0

vαmpR0 + 1
< R0.

Then, we have the following conclusion:
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Theorem 1. If Rc
00 < 1, the disease-free equilibrium E00 is stable, otherwise, E00 is unstable.

The proof of Theorem 1 is given in Appendix A.
Next we will study the existence of final size of system (2.1).

Theorem 2. For the isolated environment system (2.1), I(∞) = 0,H(∞) = 0, S q(∞) = 0, Iq(∞) = 0,
and S (∞),R(∞) exist.
Proof. If we sum all the equation of system (2.1) except the fifth, then the following relationship will
hold

d (S (t) + I(t) + H(t) + S q(t) + Iq(t))
dt

= −µH − η(1 − v)(I + Iq) ≤ 0,

we see that S (t)+I(t)+H(t)+S q(t)+Iq(t) is decreasing. In addition, 0 ≤ S (t)+I(t)+H(t)+S q(t)+Iq(t) ≤
N(0), hence, it has a limit. Moreover, d(S (t)+I(t)+H(t)+S q(t)+Iq(t))

dt is bounded due to −µH−η(1−v)(I(t)+Iq(t))
is bounded. According to the fluctuation Lemma [31], we have

lim
t→∞

d (S (t) + I(t) + H(t) + S q(t) + Iq(t))
dt

= 0.

On the other hand, I(t) ≥ 0,H(t) ≥ 0, Iq(t) ≥ 0, thus we have

I(∞) = 0,H(∞) = 0, Iq(∞) = 0.

Considering I(∞) = 0, (1 − λ)vαmpc S (t)
N(0) is bounded, then we have

lim
t→∞

M = 0,

where M = I(t)(1 − λ)vαmpc S (t)
N(0) . Hence, for any ε > 0, there exists a δ > 0, if |t| > δ, then

|M| < ε.

So, if t is sufficiently large, we have

dS q(t)
dt

< ε − γS q(t).

It can be obtained according to the comparison theorem that

S q(t) <
ε

γ
(1 − e−γt).

Thus
S q(∞) = lim

t→∞
S q(t) = 0.

Sum the first and the fourth equation of system (2.1), we have

d (S (t) + S q(t))
dt

= −λcS (t)
I(t)

N(0)
≤ 0,

that is, S (t) + S q(t) is decreasing. Since S (t) + S q(t)) ≥ 0, lim
t→∞

(S (t) + S q(t)) exists. Considering
lim
t→∞

S q(t) = 0, so, we have S (∞) = lim
t→∞

S (t) exists.
Further more, R(∞) = lim

t→∞
(N(0) − S (t)) = N(0) − S (∞) exists. That is to say the final size exists.
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Figure 2. The flow chart of epidemic transmission in connected environment with contact
tracing.

2.2. The dynamic model in a connected environment

We divide the population into two patches, one is recorded as patch 1, the other is patch 2. The
population of two patches is recorded as N1(t), N2(t) respectively. And we assume only susceptible
individuals, pre-symptomatic infected individuals and recovered individuals can move between two
patches. In addition, the mobility rate of susceptible, pre-symptomatic infected and recovered
individuals from patch 1 to patch 2 are recorded as a12, b12, e12 respectively, and from patch 2 to patch
1 are recorded as a21, b21, e21 respectively. The dynamic process of COVID-19 transmission in a
connected environment is described in the flow chart (Figure 2).

According to the flow chart, the following mathematical models can be established:

dS i(t)
dt = −λiciS i(t)

Ii(t)
Ni(t)
− (1 − λi)viαimpiciS i(t)

Ii(t)
Ni(t)
+ γS q

i (t) − ai jS i(t) + a jiS j(t),
dIi(t)

dt = λiciS i(t)
Ii(t)
Ni(t)
− λiviαimpiciS i(t)

Ii(t)
Ni(t)
− viαimpici

I2
i (t)

Ni(t)
− viαiIi(t) − (1 − vi)ηIi(t)

−bi jIi(t) + b jiI j(t),
dHi(t)

dt = viαi(Ii(t) + Iq
i (t)) − µHi(t),

dRi(t)
dt = µHi(t) + (1 − vi)η(Ii(t) + Iq

i (t)) − ei jRi(t) + e jiR j(t),
dS q

i (t)
dt = (1 − λi)viαimpiciS i(t)

Ii(t)
Ni(t)
− γS q

i (t),
dIq

i (t)
dt = λiviαimpiciS i(t)

Ii(t)
Ni(t)
+ viαimpici

I2
i (t)

Ni(t)
− viαiI

q
i (t) − (1 − vi)ηI

q
i (t).

(2.2)

Here, i, j ∈ 1, 2 and i , j.
In the following, we will study the population dynamics in connected environment with contact

tracing.
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Lemma 3. All the solutions of the system (2.2) are in the set

D =

D1 ∈ R12
+ : 0 ≤

2∑
i=1

(
S i(t) + Ii(t) + Hi(t) + Ri(t) + S q

i (t) + Iq
i (t)

)
= N1(0) + N2(0)

 ,
here, D1 =

(
S 1(t), I1(t),H1(t),R1(t), S q

1(t), Iq
1(t), S 2(t), I2(t),H2(t),R2(t), S q

2(t), Iq
2(t)

)
. That is, D is a

positive invariant set of system (2.2).
Proof. For system (2.2),

2∑
i=1

d
(
S i(t) + Ii(t) + Hi(t) + Ri(t) + S q

i (t) + Iq
i (t)

)
dt

= 0,

the following relationship holds:

2∑
i=1

(
S i(t) + Ii(t) + Hi(t) + Ri(t) + S q

i (t) + Iq
i (t)

)
= N1(t) + N2(t) = N1(0) + N2(0).

Consider solutions with non-negative initial values. Next, we will prove S 1(t) ≥ 0, S q
1(t) ≥ 0, I1(t) ≥

0, S 2(t) ≥ 0, S q
2(t) ≥ 0, I2(t) ≥ 0, if t > 0 and S 1(0) ≥ 0, S q

1(0) ≥ 0, I1(0) ≥ 0, S 2(0) ≥ 0, S q
2(0) ≥

0, I2(0) ≥ 0. According to the continuity of solutions with respect to initial conditions, we have if the
initial value is non-negative there is a very small τ1 such that S 1(t) ≥ 0, S q

1(t) ≥ 0, I1(t) ≥ 0, S 2(t) ≥
0, S q

2(t) ≥ 0, I2(t) ≥ 0 for t ∈ (0, τ1). Let

t1 = min
t∈(0,τ1)

{S 1(t) = 0}, t2 = min
t∈(0,τ1)

{S q
2(t) = 0}, t3 = min

t∈(0,τ1)
{S 2(t) = 0}, t4 = min

t∈(0,τ1)
{S q

2(t) = 0},

t5 = min
t∈(0,τ1)

{I1(t) = 0}, t6 = min
t∈(0,τ1)

{I2(t) = 0}, t∗ = min {t1, t2, t3, t4, t5, t6},

and assume S 1(t∗) = 0, then from the first equation of system (2.2), we have at t = t∗

dS 1(t)
dt

= γS q
1(t) + a21S 2 > 0.

Thus, there is a t11 such that S 1(t) > 0 for t ∈ (t1, t11) and S 1(t11) = 0. So, S 1(t) ≥ 0, S q
1(t) ≥ 0,

I1(t) ≥ 0, S 2(t) ≥ 0, S q
2(t) ≥ 0, I2(t) ≥ 0 for t ∈ (0, t11]. In this way, we finally get

S 1(t) ≥ 0, S q
1(t) ≥ 0, I1(t) ≥ 0, S 2(t) ≥ 0, S q

2(t) ≥ 0, I2(t) ≥ 0, if S 1(0) ≥ 0, S q
1(0) ≥ 0, I1(0) ≥ 0,

S 2(0) ≥ 0, S q
2(0) ≥ 0, I2(0) ≥ 0.

Similar to the proof of Iq(t) in Lemma 1, we can get
Iq
1(t) ≥ 0, Iq

2(t) ≥ 0, if Iq
1(0) ≥ 0, Iq

2(0) ≥ 0.

Further more, we have H1(t) ≥ 0,H2(t) ≥ 0, if H1(0) ≥ 0,H2(0) ≥ 0.
Next, we consider the forth and tenth equation of system (2.2): dR1(t)

dt = µH1(t) + (1 − v1)η(I1(t) + Iq
1(t)) − e12R1(t) + e21R2(t),

dR2(t)
dt = µH2(t) + (1 − v2)η(I2(t) + Iq

2(t)) − e21R2(t) + e12R1(t),
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Based on theorem 3.2.1 of reference [30], we have R1(t) ⩾ 0,R2(t) ⩾ 0, if R1(0) ⩾ 0,R2(0) ⩾ 0.
Thus, all solutions of system (2.2) are in the set

D =
{

D1 ∈ R12
+ : 0 ≤

2∑
i=1

(
S i(t) + Ii(t) + Hi(t) + Ri(t) + S q

i (t) + Iq
i (t)

)
= N1(0) + N2(0)

}
, namely, D is

a positive invariant set of system (2.2).
Let the right hand of system (2.2) be zero, then we have E0 = (N1(0), 0, 0, 0, 0, 0,N2(0), 0, 0, 0, 0, 0)

and
a12N1(0) = a21N2(0). (2.3)

Next, we have the following conclusion:
Theorem 3. The control reproduction number of system (2.2) is:

Rc
0 =

λ1c1 − b12 + λ2c2 − b21 +

√((
λ1c1 −

λ1c1
Rc

01
− b12

)
−

(
λ2c2 −

λ2c2
Rc

02
− b21

))2
+ 4b12b21

λ1c1
Rc

01
+ λ2c2

Rc
02

.

Here, Rc
0i =

λici
λiviαimpici+viαi+(1−vi)η

, i = 1, 2. And if Rc
0 < 1, the disease-free equilibrium E0 is stable.

Otherwise, E0 is unstable.
Proof. The Jacobin matrix of system (2.2) at disease-free equilibrium E0 is given by

J1 =

[
D11 D12

D21 D22

]
,

here,

D11 =



−a12 −λ1c1 − (1 − λ1)v1α1mp1c1 0 0 γ 0
0 λ1c1 − λ1v1α1mp1c1 − v1α1 − (1 − v1)η − b12 0 0 0 0
0 v1α1 −µ 0 0 v1α1

0 (1 − v1)η µ −e12 0 (1 − v1)η
0 (1 − λ1)v1α1mp1c1 0 0 −γ 0
0 λ1v1α1mp1c1 0 0 0 −v1α1 − (1 − v1)η


,

D12 =



a21 0 0 0 0 0
0 b21 0 0 0 0
0 0 0 0 0 0
0 0 0 e21 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

Replace 1 of all the subscripts in D11 with 2, 2 with 1, we can get D22. Do the same to D12, we can
get D21. The corresponding characteristic equation is:

q2(q+µ)2(q+γ)2 (q + v1α1 + (1 − v1)η) (q + v2α2 + (1 − v2)η) (q+e12+e21)(q+a12+a21)M = 0, (2.4)

here, M = (q − M1)(q − M2) − b12b21, M1 = λ1c1 − λ1v1α1mp1c1 − v1α1 − (1 − v1)η − b12, M2 =

λ2c2 − λ2v2α2mp2c2 − v2α2 − (1− v2)η− b21. The ten characteristic roots of Eq (2.4) are all less than or
equal to zero. The remaining two characteristic roots satisfy the following equation:

(q − M1)(q − M2) − b12b21 = 0.
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Hence,

Rc
0 =

λ1c1 − b12 + λ2c2 − b21 +

√((
λ1c1 −

λ1c1
Rc

01
− b12

)
−

(
λ2c2 −

λ2c2
Rc

02
− b21

))2
+ 4b12b21

λ1c1
Rc

01
+ λ2c2

Rc
02

.

When Rc
0 < 1, characteristic roots of Eq (2.4) are all less than or equal to zero and the disease-free

equilibrium E0 is stable. When Rc
0 > 1, E0 is unstable.

Theorem 4. For system (2.2), I1(∞) = H1(∞) = S q
1(∞) = Iq

1(∞) = I2(∞) = H2(∞) = S q
2(∞) =

Iq
2(∞) = 0, and lim

t→∞
S 1(t), lim

t→∞
S 2(t), lim

t→∞
(S 1(t) + S 2(t)), lim

t→∞
(R1(t) + R2(t)) exist.

The proof of Theorem 4 is similar to the proof of Theorem 2 and is given in Appendix B.

3. Numerical simulation

Due to the large error of the previous data, the study starts from January 15, 2020. China banned
travel to and from Wuhan at 10:00 a.m. on 23 January, 2020. According to Baidu Migration data
and Yuan [32], we calculate that from 15 January to the implementation of the travel restrictions,
there were 4,238,344 people travelling out of Wuhan and 1,903,606 people traveled to Wuhan. And
then, we calculate that every day the average movement rate from Wuhan to other places of Mainland
China (outside Wuhan) is about 0.0475 and from Mainland China (outside Wuhan) to Wuhan is about
0.000152. In the following, for each patch we assume that the travel rates of the susceptible individuals,
the pre-symptomatic infected individuals and the recovered individuals are the same: a12 = b12 =

e12 ≈ 0.0475, a21 = b21 = e21 ≈ 0.000152. After closure, the study period of Mainland China
(outside Wuhan) is divided into two phases according to people’s different understanding of COVID-
19, one is from January 24 to January 31 and the other is from February 1 to February 28, after which
the international importation cases become predominant. As for Wuhan, due to the lack of medical
resources, the study period is divided into two phases, one from January 24 to February 4 and the
other from February 5 to April 8, the day Wuhan lifts travel restrictions. We apply the daily reported
cumulative confirmed cases collected from the website of National Health Commission of the People’s
Republic of China to implement parameter estimation [33]. In phase 1, we think that the number
of contacts and infection rate between Wuhan and Mainland China (outside Wuhan) are the same.
Let Y11(t), Y12(t) be theoretical cumulative cases for Wuhan and Mainland China (outside Wuhan)
respectively. Ŷ11(t), Ŷ12(t) be the reported cumulative confirmed cases for Wuhan and Mainland China
(outside Wuhan) respectively. Then we use the least square method (LSM) to find the parameter value
to minimize the objective function [34]:

J1(c, λ, I1) =
2
3

n1∑
t=1

(Y11(t) − Ŷ11(t))2 +
1
3

n1∑
t=1

(Y12(t) − Ŷ12(t))2,

where n1 is the size of sample data. Before the implementation of travel restrictions, the confirmed
cases of Mainland China were mainly in Wuhan, so in the expression of J1, the first term was
multiplied by the weight coefficient 2

3 , and the second term was multiplied by the weight coefficient 1
3 .

This method is implemented by running the command fminsearch from the optimization toolbox in
MATLAB. We obtain the estimated parameter values c = 27.88, λ = 0.0156, I1 = 239.2681 (For the
selection of other parameters and initial values, please refer to Tables 1 and 2).
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In phase 2 and phase 3, due to the lockdown of Wuhan, Wuhan and Mainland China (outside Wuhan)
become two isolated patches. Then, for Wuhan in phase 2, the objective function of LSM is :

J21(c1, λ1, p1) =
n2∑
t=1

(Y21(t) − Ŷ21(t))2.

The initial values are the end values of the Phase 1. Also, by running the command fminsearch in
MATLAB, we obtain the estimated parameter values c1 = 4.97, λ1 = 0.0645, p1 = 0.6617. Similarly,
we can get the parameter values of other phases of the two patches.

Table 1. Parameter values of system (2.2).

Notation Description value Data Source

λ1 (Phase 1/2/3) Probability of transmission per 0.0156/0.0645/0.0001 LSM
contact of Wuhan

λ2 (Phase 1/2/3) Probability of transmission per 0.0156/0.0645/0.0601 LSM
contact of Mainland China
(outside Wuhan)

γ Rate at which the quarantined 1/14 [35]
susceptible were released into
the wider community

m Trace contacts within m days 10 [36–38]
µ Recovery rate of hospitalized individuals 0.1 [14]
v1 (Phase 1-2)/ Probability of being diagnosed 0.8683/0.9377/0.8683 [12]/LSM/ [12]
v1(Phase 3)/v2

η Recovery rate of asymptomatic 0.0809 [12]
infected individuals

α1 (Phase 1/2/3) Transition rate of pre-symptomatic 0.05/0.0275/0.067 [12, 38]/LSM/LSM
infected individuals to hospital in
Wuhan

α2 (Phase 1/2/3) Transition rate of pre-symptomatic 0.0688/0.2203/0.1849 [12]/LSM/LSM
infected individuals to hospital in
Mainland China (outside wuhan)

c1 (Phase 1/2/3) Number of contacts of Wuhan 27.88/4.97/2.5 LSM
c2 (Phase 1/2/3) Number of contacts of Mainland 27.88/12.12/17.26 LSM

China (outside wuhan)
p1 (Phase 1/2/3) The probability of contact tracing 0.09/0.6617/0.6718 Assume/LSM/LSM

of Wuhan
p2 (Phase 1/2/3) The probability of contact tracing 0.25/0.3135/0.6868 Assume/LSM/LSM

of Mainland China (outside Wuhan)

Note: In Wuhan, in phase 1 and 2, the infected individuals were diagnosed mainly because they had symptoms and went to see a doctor.

So, we take v1 = 0.8683. In phase 3, due to the abundant medical supplies and the clinical symptoms as the basis for diagnosis in

Wuhan on February 12, the probability of being diagnosed increased. And we estimate v1 = 0.9377 at that time.
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Remark. For Wuhan, phase 1 is from January 15 to 23, 2020, phase 2 is from January 24 to
February 4, 2020 and phase 3 is from February 5 to April 8, 2020. While, for Mainland China (outside
Wuhan) phase 1 is also from January 15 to 23, 2020, phase 2 is from January 24 to January 31 and
phase 3 is from February 1 to February 28, 2020.
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Figure 3. The simulation result of cumulative and daily new confirmed cases. In the figure,
circles, triangles and diamonds represent the actual reported data of corresponding date.
b12 = 0.0475, b21 = 0.000152. The parameter values are set as phase 1 of Table 1 and
the initial values are set as Table 2. With regard to the clinical cases of February 12, it is
considered to be the cumulative number of cases in the first seven days, so the clinical cases
are evenly distributed to each day according to the proportion of new confirmed cases.

3.1. Impact of travel restrictions on the spread of COVID-19 epidemic

In this subsection we will study the impact of travel restrictions on the spread of COVID-19.
Model parameters are set as phase 1 in Table 1 and the initial values are set as Table 2. Through
numerical simulation and combined with Figure 4(a), we have that the implementation of travel
restrictions without changing other prevention and control policies is beneficial to Mainland China
(outside Wuhan) for the number of cumulative confirmed cases has been reduced 48,003 until
February 7, which is bad for Wuhan because the cumulative confirmed cases has increased 37,719. In
addition, the implementation of travel restrictions reduces the total number of confirmed cases. And
the later the travel restrictions are imposed, the fewer confirmed cases are in Wuhan, the more
confirmed cases are in Mainland China (outside Wuhan) and the more confirmed cases are in the
whole Mainland China.

In phase 1, it is calculated that Rc
0 = 4.0741, Rc

01 = 6.1281, Rc
02 = 3.2161. Further more, we have
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∂Rc
0

∂b12
=

−

√(
λ1c1
Rc

01
−
λ2c2
Rc

02
+ b12 − b21

)2
+ 4b12b21 +

(
λ1c1
Rc

01
−
λ2c2
Rc

02
+ b12 + b21

)
(
λ1c1
Rc

01
+ λ2c2

Rc
02

) √(
λ1c1
Rc

01
−
λ2c2
Rc

02
+ b12 − b21

)2
+ 4b12b21

< 0,

∂Rc
0

∂b21
=

−

√(
λ2c2
Rc

02
−
λ1c1
Rc

01
+ b21 − b12

)2
+ 4b12b21 +

(
λ2c2
Rc

02
−
λ1c1
Rc

01
+ b12 + b21

)
(
λ1c1
Rc

01
+ λ2c2

Rc
02

) √(
λ1c1
Rc

01
−
λ2c2
Rc

02
+ b12 − b21

)2
+ 4b12b21

> 0,

due to Rc
01 > Rc

02. Combined with Figure 4(b), we have the control reproduction number Rc
0 decreases

with the increase of b12 if fix b21. While, Rc
0 increases with the increase of b21 if fix b12. That is to say, if

the travel rate of pre-symptomatic infected individuals from Mainland China (outside Wuhan)to Wuhan
is smaller and from Wuhan to Mainland China (outside Wuhan) is bigger, the control reproduction
number is smaller. However, in our study the value of the control reproduction number is very big, and
the change of travel rates have little effect on it.

Table 2. Initial values of System (2.2).

Notation Description value Data Source

N1(0) Initial total population of Wuhan 1.1212 × 107 [1]
N1(0) + N2(0) Initial total population of Mainland China 14.0005 × 108 [39]
I1(0) Initial pre-symptomatic infected population 239.2681 LSM

of Wuhan
I2(0) Initial pre-symptomatic infected population 0 Real data

of Mainland China (outside Wuhan)
H1(0)/H2(0) Initial confirmed cases 34/0 Real data
R1(0)/R2(0) Initial recovered population 7/0 Real data
S q

1(0) Initial quarantined susceptible 263 Data analysis
population of Wuhan

S q
2(0) Initial quarantined susceptible 0 Real data

population of Mainland China (outside Wuhan)
Iq
1 (0) Initial quarantined pre-symptomatic 50 Assume

infected population of Wuhan
Iq
2 (0) Initial quarantined pre-symptomatic infected 0 Real data

population of Mainland China (outside Wuhan)
S 1(0) Initial susceptible population of Wuhan 1.1211 × 107 Data analysis
S 2(0) Initial susceptible population 13.888 × 108 Data analysis

of Mainland China (outside Wuhan)

From Figure 4(c) we have that for Wuhan, the final size increases with the increase of travel rates,
while for Mainland China (outside Wuhan), the final size decreases with the increase of travel rates.
As for the whole Mainland China, the final size decreases with the increase of travel rates. However,
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if Wuhan imposed travel restrictions on January 14, there would be no people infected in Mainland
China (outside Wuhan) under the assumption of our model.

The implementation of travel restrictions has little impact on the control reproduction number. But
it can greatly reduce the confirmed cases, and the earlier the implementation, the smaller the total
number of infections. Generally speaking, the implementation of travel restrictions is beneficial to
control the spread of COVID-19.
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Figure 4. (a) The effect of travel restrictions on cumulative confirmed cases. b12 = 0.0475,
b21 = 0.000152. The other parameter values are set as phase 1 of Table 1 and the initial
values are set as Table 2. (b) The dependence of the control reproduction number on travel
rates. The travel rates b12, b21 increase from 0 to 0.02, the other parameter values are referred
to phase 1 of Table 1. (c) The dependence of the final size on travel rates. The red lines
represent cumulative confirmed cases of Wuhan under different travel rates, the black lines
represent Mainland China (outside Wuhan), and the pink lines represent Mainland China.
The parameter values are referred to phase 1 of Table 1 and the initial values are referred to
Table 2.
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3.2. Effects of contact tracing on spread of COVID-19 epidemic
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Figure 5. The dependence of Rc
0 on p1, p2. The contact tracing rates increased from 0 to 1 and

the other parameter values are referred to phase 1 of Table 1. (a) b12 = 0.0214, b21 = 0.00017.
(b)b12 = 0.035, b21 = 0.00016. (c) b12 = 0.0475, b21 = 0.000152. (d) b12 = 0.015, b21 =

0.0002. (e) b12 = 0.01, b21 = 0.0003. (f) b12 = 0.005, b21 = 0.0004.

Epidemiological investigation of confirmed cases and then isolation of close contacts are common
prevention and control measures to control the spread of infectious diseases. According to Baidu
Migration data, we count the migration index of Wuhan to Mainland China (outside Wuhan) from
March 9, 2021 to June 20. Then we have 239,557 people who moved from Wuhan to Mainland China
(outside Wuhan) every day [32]. Before the outbreak of COVID-19, every day the number of people
moving in and out of Wuhan are the same for a long time. Therefore, we assume that the number
of people moving into and out of Wuhan are both equal to 239,557. Then, we calculate that every
day the average travel rate from Wuhan to Mainland China (outside Wuhan) is about 0.0214, and
from Mainland China (outside Wuhan) to Wuhan is about 0.00017. And in the following, we assume
b12 ≈ 0.0214, b21 ≈ 0.00017. Based on the parameters of phase 1 in Table 1 and the initial values
in Table 2, we obtain Figure 5(a) from which we find that before the implementation of the travel
restrictions in Wuhan, even if the contact tracing rates increased to 1, Rc

0 will not be less than 1 and
the epidemic could not be controlled. In addition, we do a sensitivity analysis about travel rates. From
Figure 5, we can see that under different travel rates, no matter how big contact tracing rates are, Rc

0
will not be less than 1 and the disease cannot be controlled. After the travel restrictions are enforced,
from Figure 6(a) we have Rc

01 can never be less than 1, that means the epidemic of Wuhan will not
be contained under current control measures. While from Figure 6(b), we can see that for Mainland
China (outside Wuhan), if the contact tracing rate increases to 38.77%, Rc

02 < 1 and the epidemic
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will be brought under control. According to phase 2 of Table 1, the contact tracing rate of Mainland
China (outside Wuhan) is about 31.35% and is too small to control the epidemic. In phase 3, the
Chinese government further strengthened prevention and control measures. Soon after, the control
reproduction number Rc

01 = 0.0016 and Rc
02 = 0.6969 were less than 1, and the disease was brought

under control.
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Figure 6. (a) The dependence of Rc
01 on p1. (b) The dependence of Rc

02 on p2. The contact
tracing rate increased from 0 to 1. The travel rates are 0 and the other parameter values are
referred to phase 2 of Table 1.

We assume phase 2 of Mainland China (outside Wuhan) is also from January 24 to February 4 and
the parameters are the same as phase 2 of Table 1. Make the same assumption for phase 3. From
Figure 7(a), we have that at the end of phase 2, if lifted travel restrictions, no matter how high the
contact tracing rates are, Rc

0 will not be less than 1. So, the travel restrictions of Wuhan cannot be
lifted at the end of phase 2. From Figure 7(b) , we can see that at the end of phase 3, if lifted travel
restrictions, Rc

0 can be less than 1 as long as the contact tracing rates are high enough. Thus, the travel
restrictions of Wuhan can be lifted at the end of phase 3.
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Figure 7. The dependence of Rc
0 on p1, p2. The travel rates b12 = 0.0214, b21 = 0.00017. The

contact tracing rates p1, p2 increased from 0 to 1. (a) The other parameter values are referred
to phase 2 of Table 1. (b) The other parameter values are referred to phase 3 of Table 1.
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We plot two phase diagrams (Figure 8) illustrating how the control reproduction number is shaped
by the contact tracing rate and the transition rate of pre-symptomatic infected individuals to hospital.
The phase transition occurring at Rc

01 = 1 (Rc
02 = 1) which separate two different regimes, Rc

01 > 1
and Rc

01 < 1(Rc
02 > 1 and Rc

02 < 1). Furthermore, we observe that as the contact tracing rates increase,
the transition points are reached for smaller values of the transition rates of pre-symptomatic infected
individuals to hospital. In additon, from Figure 8(b) we can see that the transition being lost for very
small values of p2 ≤ 0.1. That is to say, if the contact tracing rate is too small, then no matter how
large the transition rate of pre-symptomatic infected individuals to hospital is, the value of Rc

02 cannot
be less than 1. As a result, if you want to control the emerging infectious diseases as soon as possible,
you must combine a variety of prevention and control strategies.
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Figure 8. (a) Relationship between Rc
01, p1 and α1. (b) Relationship between Rc

02, p2 and α2.
The travel rates are 0 and the other parameter values are referred to phase 2 of Table 1.
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Figure 9. The dependence of control reproduction number on the protection rate of herd
immunity. (a) b12 = 0.0214, b21 = 0.00017 and the other parameter values are referred to
phase 1 of Table 1. (b) For Rcv

01, Rcv
02, the parameter values are referred to phase 2 of Table

1. While for Rcv
03, the parameter values are as follows: c = 27.8763, λ = 0.0156, p = 0,

α = 0.1849, v = 0.8683, γ = 1/14, µ = 0.1, m = 10.
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3.3. The effect of vaccination on the spread of COVID-19 epidemic

In this subsection, we consider the effect of vaccination on COVID-19 epidemic spread. The
dynamic model with vaccination of system (2.1) becomes

dS i(t)
dt = −λici(1 − di)S i(t)

Ii(t)
Ni(t)
− (1 − λi)viαimpici(1 − di)S i(t)

Ii(t)
Ni(t)
+ γS q

i (t)

−ai jS i(t) + a jiS j(t),
dIi(t)

dt = λici(1 − di)S i(t)
Ii(t)
Ni(t)
− λiviαimpici(1 − di)S i(t)

Ii(t)
Ni(t)
− viαimpici

I2
i (t)

Ni(t)

−viαiIi(t) − (1 − vi)ηIi(t) − bi jIi(t) + b jiI j(t),
dHi(t)

dt = viαi(Ii(t) + Iq
i (t)) − µHi(t),

dRi(t)
dt = µHi(t) + (1 − vi)η(Ii(t) + Iq

i (t)) − ei jRi(t) + e jiR j(t),
dS q

i (t)
dt = (1 − λi)viαimpici(1 − di)S i(t)

Ii(t)
Ni(t)
− γS q

i (t),
dIq

i (t)
dt = λiviαimpici(1 − di)S i(t)

Ii(t)
Ni(t)
+ viαimpici

I2
i (t)

Ni(t)
− viαiI

q
i (t) − (1 − vi)ηI

q
i (t).

(3.1)

Here, di means the protection rate of herd immunity, defined as the product of the vaccination rate and
the effective protection rate. If take ai j = a ji = bi j = b ji = ei j = e ji = 0, the one patch model with
vaccination is obtained. Through the similar calculation methods of control reproduction number in
Theorem 1 and Theorem 3, we obtain the following conclusions:

(1) the control reproduction number with vaccination of one patch model is:

Rcv
0i =

λici(1 − di)
λiviαimpici(1 − di) + viαi + (1 − vi)η

,

and Rcv
0i

ddi
< 0;

(2) the control reproduction number of system (3.1) is:

Rcv
0 =
λ1c1(1 − d1) − b12 + λ2c2(1 − d2) − b21 +

√
U

λ1c1(1−d1)
Rcv

01
+
λ2c2(1−d2)

Rcv
02

,

where, U =
((
λ1c1(1 − d1) − λ1c1(1−d1)

Rcv
01
− b12

)
−

(
λ2c2(1 − d2) − λ2c2(1−d2)

Rcv
02
− b21

))2
+ 4b12b21. If d1 = d2 =

dv and the parameter value is taken as phase 1 of Table 1, then dRcv
0

ddv
< 0.

We can see from Figure 9 that the bigger the protection rate of herd immunity, the smaller the value
of the control reproduction number, the more conducive to the control of the disease. In Figure 9(a),
we present the control reproduction number will be less than 1, namely the disease will be brought
under control if the protection rate of herd immunity reaches 83.5% in phase 1. Then, after imposing
travel restrictions in Wuhan, we obtain that the control reproduction number will be less than 1, if
the protection rate of herd immunity reaches 87.15% for Wuhan, 55.93% for Mainland China (outside
Wuhan). Regard Mainland China as one patch and consider that people have returned to normal life,
then, the number of contact will increase to 27.8763 and the contact tracing rates will be reduced to
0. In this case, from Figure 9(b) we can see that the control reproduction number Rv

03 will be less than
1 if the protection rate of herd immunity reaches 60.63%. As of 14 November 2021, Mainland China
reported a total of 2.389568 billion doses of COVID-19 vaccine [8]. Suppose everyone gets two doses
of vaccine, then the vaccination rate of Mainland China is about 85.34%. So, if the effective protection
rate of the vaccine can be achieved 71.05%, we can return to normal life.
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4. Conclusions and discussion

It is a meaningful work to study the internal transmission mechanism of epidemic, predict the
development trend and evaluate the effectiveness of prevention and control measures with mathematical
model. And then provide a basis for further research and the formulation of reasonable prevention and
control policies. With the global outbreak of COVID-19 epidemic, the work is particularly important.
Although many scholars have established lots of mathematical models to reflect the real spread of
epidemic as much as possible, the combination of travel restrictions, contact tracing, vaccination in
patch model is relatively rare, especially for COVID-19 epidemic. In order to fill this gap, we establish
a mathematical model with individual movement between two patches to assess the impact of these
measures on epidemic transmission.

In this paper, we show that travel restrictions have increased the number of confirmed cases in
Wuhan and reduced the number of confirmed cases in Mainland China (outside Wuhan). Overall, the
number of confirmed cases in Mainland China has been reduced. The earlier it is implemented, the
better it will be for Mainland China. However, it is impossible to control the epidemic and lift the travel
ban on April 8, 2020 by simply imposing travel restrictions or increasing the rate of contact tracing
in phase 1. In phase 2, the epidemic of Wuhan will not be contained under current control measures.
While for Mainland China (outside Wuhan), the epidemic is under control if the contact tracing rate
increased to 38.77%. In phase 3, with the further strengthening of prevention and control measures,
the disease was quickly brought under control. The cities of Mainland China (outside Wuhan) began
to resume work one after another on February 10, 2020, and Wuhan officially lifted travel ban at 00:00
on April 8, 2020. However, no matter in which phase of the disease transmission or after people return
to normal life, as long as the protection rate of herd immunity is high enough, the disease will soon be
brought under control. The results of our research show that the prevention and control measures taken
by the Chinese government are timely and effective.

Sun et al. [40] established a SEIRQ-type model to study the effects of travel restrictions and
medical resources on the spread of COVID-19. And they claimed the later the travel restrictions are
enforced, the fewer confirmed cases will be in Wuhan, but the more cases will be exported at the same
time, which will adversely affect other cities and even other countries. In this work, We establish a
SIAHRQ-type patch model, and through simulation we find that confirmed cases of Wuhan will
increase and confirmed cases of Mainland China (outside Wuhan) will decrease with travel
restrictions. On the whole, confirmed cases of Mainland China will decrease. The earlier the travel
restrictions are enforced, the more confirmed cases are in Wuhan, and the fewer confirmed cases are
confirmed in Mainland China (outside Wuhan). And our findings in this work are consistent with Sun
et al.. In addition, we also find that the greater the migration rate from Wuhan to Mainland China
(outside Wuhan), the smaller the control reproduction number, and the higher the migration rate from
Mainland China (outside Wuhan) to Wuhan, the greater the control reproduction number. In the case
we consider, because the control reproduction number of phase 1 is relatively large (Rc

0 = 4.0741), the
change of travel rates to the control reproduction number is so small that it will not make the control
reproduction number less than 1 (Figure 5). If the control reproduction number in phase 1 is about 1,
then the travel rates have significant impact on disease control. In references [41], Colomer et al.
developed an agent-based stochastic model to study the effects of vaccination and contact tracking on
COVID-19 in Spain. They thought that vaccination alone can be crucial in controlling COVID-19,
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and vaccination and contact tracking work best in combination with social control measures. In this
paper, through analysis we obtain that COVID-19 can not be contained by contact tracing alone.
However, the disease can always be controlled if the protection rate of herd immunity is high enough.
So, travel restrictions, contact tracing should be combined with other social control measures in order
to contain COVID-19 as soon as possible. This conclusions are consistent with Colomer et al..

However, there are also some problems with our model. The one is that we don’t consider the
variation of COVID-19. This will be a very meaningful work, considering that vaccines have different
protection rates against different viruses. The other is that we approximate the number of people who
are traced in m days, that is, multiplying the number of days by the number of people traced on the t day.
In fact, the number of people who are traced may be different from day to day. In addition, people of
different ages have different contact patterns, mobility patterns and susceptibility to infectious diseases.
How to better reflect these factors in model is what we intend to do next.
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Appendix A: Proof of Theorem 1

Proof. The Jacobin matrix of system (2.1) at the disease-free equilibrium E00 is given by

J2 =



0 −λc − (1 − λ)vαmpc 0 0 γ 0
0 λc − λvαmpc − vα − (1 − v)η 0 0 0 0
0 vα −µ 0 0 vα
0 (1 − v)η µ 0 0 (1 − v)η
0 (1 − λ)vαmpc 0 0 −γ 0
0 λvαmpc 0 0 0 −vα − (1 − v)η


. (4.1)

The corresponding characteristic equation is:

q2(q + µ)(q + γ) (q + vα + (1 − v)η) (q − λc + λvαmpc + vα + (1 − v)η) = 0.

When Rc
00 =

λc
λvαmpc+vα+(1−v)η < 0, the characteristic roots are all less than or equal to zero. Hence,

the disease-free equilibrium E00 is stable, otherwise, E00 is unstable.
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Appendix B: Proof of Theorem 4

Proof. If we sum all the equation of system (2.2) except dR1
dt and dR2

dt , then we have

d
2∑

i=1

(
S i + Ii + Hi + S q

i + Iq
i

)
dt

= −

2∑
i=1

(
µHi + η(1 − vi)(Ii + Iq

i )
)
≤ 0.

So,
2∑

i=1

(
S i + Ii + Hi + S q

i + Iq
i

)
is decreasing. In addition, 0 ≤

2∑
i=1

(
S i + Ii + Hi + S q

i + Iq
i

)
≤ (N∗1 +

N∗2), hence, it has a limit. Moreover,
d

2∑
i=1

(S i+Ii+Hi+S q
i +Iq

i )
dt is bounded because −

2∑
i=1

(
µHi + η(1 − v)(Ii + Iq

i )
)

is bounded. Hence, according to the Fluctuations Lemma [31], we obtain

lim
t→∞

d
2∑

i=1

(
S i + Ii + Hi + S q

i + Iq
i

)
dt

= 0.

On the other hand, Ii(t) ≥ 0,Hi(t) ≥ 0, Iq
i (t) ≥ 0(i = 1, 2), thus we have

I1(∞) = 0,H1(∞) = 0, Iq
1(∞) = 0, I2(∞) = 0,H2(∞) = 0, Iq

2(∞) = 0.

Also, we can obtain that

S q
1(∞) = lim

t→∞
S q

1(t) = 0, S q
2(∞) = lim

t→∞
S q

2(t) = 0,

here, the proof is similar to the proof of S q(∞) in Theorem 2.
Add up the first, the fourth, the seventh and the tenth equation in system (2.2), we have

d
2∑

i=1

(
S i(t) + S q

i (t)
)

dt
= −

2∑
i=1

(
λiciS i(t)

Ii(t)
Ni(t)

)
≤ 0,

that is,
2∑

i=1

(
S i(t) + S q

i (t)
)

is decreasing. Since
2∑

i=1

(
S i(t) + S q

i (t)
)
≥ 0, lim

t→∞

2∑
i=1

(
S i(t) + S q

i (t)
)

exists.

Considering lim
t→∞

S q
i (t) = 0(i = 1, 2), so lim

t→∞
(S 1(t) + S 2(t)) exists. Further more,

lim
t→∞

(R1(t) + R2(t)) = lim
t→∞

(N1(0) + N2(0) − S 1(t) − S 2(t))

exists.
In the following, we will prove lim

t→∞
S 1(t), lim

t→∞
S 2(t) exist in three cases.

(1) If a12S 1(t) = a21S 2(t), then the first equation of system (2.2) becomes

dS 1(t)
dt

= −λ1c1S 1(t)
I1(t)
N1(t)

− (1 − λ1)v1α1mp1c1S 1(t)
I1(t)
N1(t)

+ γS q
1(t),
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which is the same as the first equation of system (2.1). Like the method of proof of lim
t→∞

S (t) in system
(2.1), the existence of lim

t→∞
S 1(t) can also be proved here. The existence of lim

t→∞
S 2(t) can also be proved

by the same method.
(2) If a12S 1(t) > a21S 2(t), then add up the first, the fifth equation of system (2.2):

d
(
S 1(t) + S q

1(t)
)

dt
= −λ1c1S 1(t)

I1(t)
N1(t)

− a12S 1(t) + a21S 21(t) ≤ 0.

It is the same as the previous method of proving the existence of lim
t→∞

2∑
i=1

(
S i(t) + S q

i (t)
)
, we can prove

that lim
t→∞

(
S 1(t) + S q

1(t)
)

also exists. Considering lim
t→∞

S q
1(t) = 0, so lim

t→∞
S 1(t) exists. Thus, lim

t→∞
S 2(t) exists

due to the existence of lim
t→∞

(S 1(t) + S 2(t)).
(3) If a12S 1(t) < a21S 2(t), then add up the seventh, the eleventh equation of system (2.2):

d
(
S 2(t) + S q

2(t)
)

dt
= −λ2c2S 2(t)

I2(t)
N2(t)

+ a12S 12(t) − a21S 21(t) ≤ 0.

The method of proof is the same as that of (2), and we can get lim
t→∞

S 2(t) exists. Also, lim
t→∞

S 1(t)
exists.
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