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Abstract: Health care systems around the world do not have sufficient medical services to immediately
offer elective (e.g., scheduled or non-emergency) services to all patients. The goal of patient admission
scheduling (PAS) as a complicated decision making issue is to allocate a group of patients to a limited
number of resources such as rooms, time slots, and beds based on a set of preset restrictions such
as illness severity, waiting time, and disease categories. This is a crucial issue with multi-criteria
group decision making (MCGDM). In order to address this issue, we first conduct an assessment of
the admission process and gather four (4) aspects that influence patient admission and design a set
of criteria. Even while many of these indicators may be accurately captured by the picture fuzzy set,
we use an advanced MCGDM approach that incorporates generalized aggregation to analyze patients’
hospitalization. Finally, numerical real-world applications of PAS are offered to illustrate the validity of
the suggested technique. The advantages of the proposed approaches are also examined by comparing
them to various existing decision methods. The proposed technique has been proved to assist hospitals
in managing patient admissions in a flexible manner.
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1. Introduction

In this modern era, hospitals are still extremely crowded, with a long line, because of the shortage of
medical equipment and medical staff. An efficient and reliable patient admission scheduling (PAS) has
a positive impact on hospitals, such as the availability of services, cost efficiency and social impact etc.
This proposal only takes into account the average minimum waiting time for hospital admission, while
it does not understand the distinctions in the in-hospital time of patients and the weak impact on the
availability of hospital services caused by changes in procedures for surgery. It is also bad for hospital
management performance and does not shorten the waiting time for admission to the hospital [1–6].

Due to high health needs and a competitive climate, hospitals production performance channel have
begun to take strategic action on the services they provide. Operating rooms receive two-thirds of
hospital revenue and account for nearly 40% of hospital expenditure [7, 8]. From this perspective,
in terms of both revenue and expenditure, operating rooms account for the largest share. For this
reason, the rise in operating room efficiency has a major effect on hospitals’ financial and ultimate
ethical results. As a result, the most fascinating and desirable places in hospitals are the operating
rooms [9, 10]. With these changes in performance, the quality of service and patient satisfaction are
growing directly in prosection.

In particular, this work offers up-to-date and basic information on health care system planning and
scheduling. It discusses how service networks have taken steps to tackle the extremely high cost of
medical technology and how to make better use of the available resources. Any algorithm that has
been built on the process of operating room, provide us efficient results day-by-day. How much good
they are, these findings are not sufficient and need to be constantly updated and the solution domain be
enlarged.

In many significant and basic real-world fields, including operations research [11, 12], decision
making [13–15], the topic of risk analysis [16–19], and so on, fuzzy grading is often used. The
value and significance of different options are represented as fuzzy numbers (FNs) [20–22] in many
real cases. It is important to provide a technique to structure FNs such as real numbers to explain
the choice of opportunities for each other. Chu and Tsao introduced an approach for ranking the
fuzzy numbers with an area between the centroid and original points [23]. An index for order of the
fuzzy numbers have been presented by Choobineh and Li [24] in 1993. In our everyday life, with the
enormous problems of a system, it is very difficult for a decision-maker to obtain the best option from
the collection of rational ones [25–28]. Thus, one understands the factors that can motivate decision-
makers to be in charge of such an undeniable hypothesis to make the right decision.

The structure of Atanassov [29] only addresses the degree of satisfaction and dissatisfaction of
elements in a set that is quite limited because human nature still has some structure of abstention and
refusal problems. In 2013, Cuong [30] considered such hitches to describe the proposed picture fuzzy
sets (PFS) as (P(r), I(r),N(r)) in which the elements in triplet reflect degrees of satisfaction, abstain
and dissatisfaction respectively, given that 0 ≤ P(r)+ I(r)+ N(r) ≤ 1. Cuong’s structure is significantly
closer to human nature than that of previous definitions and is now one of the strongest areas of
study. In 2014, Phong et al. [31] presented the idea of the compositions of some fuzzy relationships
in the picture fuzzy setting. Ashraf et al. [32] established the algebraic norm based list of aggregation
operators (AOps) under PFS environment. Singh [33] presented the idea of correlation coefficients
for PFSs in 2015. Qiyas et al. [34] established the linguistic variable based novel AOps for PFS and
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discussed their applicability to aggregate uncertain information in DMPs. In 2016, Son [35] presented
the definition of standardized picture distance measurement and proposed its applications. Khan et
al. [36] established the Einstein norm based list of AOps under PFS environment. Ashraf et al. [37]
presented the decision making methodology to evaluate production in gold mines utilizing distance
measure under cubic PFS environment. The cosine similarity measures for PFSs was proposed by,
Wei [38] in 2017. In 2017, Garg [39] implemented a PF aggregation to aggregate PF data. Khan,
et al. [40] developed the novel notion of generalized PF soft sets and discussed their applicability in
decision making problems (DMPs). In [41], established the novel AOps using logarithmic function
under PFS environment. Although all of these approaches have drawbacks and shortcomings, there is
no general model for the ranking of PFNs.

This attempt is to solve the problems and suggest a novel generalized methodology for the ranking
of PFNs because of the motivation and inspiration of the above discussion. We extend the Einstein
hybrid aggregation operators of FSs, IFSs and introduce PF Einstein hybrid averaging (PFEHA)
and PF Einstein hybrid geometric (PFEHG) aggregation operators. Also establish the Generalized
PF Einstein hybrid averaging (GPFEHA) and Generalized PF Einstein hybrid geometric (GPFEHG)
aggregation operators. Utilizing the above mentioned aggregation operator we design an algorithm to
rank the alternatives. The proposed approach is capable of aggregating the picture fuzzy quantities
with the same mode and symmetric spreads. According to existing literature, the development of
hybrid aggregation operators with a picture fuzzy environment is not observed. As a consequence of
this inspiration, we construct a variety of Einstein norm based aggregation operators for picture fuzzy
hybrid averaging/geometric, under the Einstein t-norm and t-conorm.

The noteworthy contributions of the present article are follows:
1) To construct novel picture fuzzy hybrid aggregation operators under picture fuzzy environment.
2) To compile a list of generalized hybrid aggregation operators based on the Einstein t-norm and t-
conorm, and analyze their associated features in details.
3) To develop a DM methodology using proposed aggregation operators to aggregate the uncertain
information in real-world decision making problems.
4) A numerical case study related to Patient Admission Scheduling problem as a real-world DM
problem is considered to demonstrate the applicability and effectiveness of the proposed methodology.
5) Picture fuzzy TOPSIS method is employed to validate the proposed DM approach.

The remainder of the manuscript is arranged as follows: Section 2 briefly retrospects some basic
concepts of fuzzy set, intuitionistic fuzzy set and picture fuzzy sets. A list of novel hybrid aggregation
operators are proposed in Section 3. Section 4 highlights a list of generalized hybrid aggregation
operators under picture fuzzy settings. Section 5 is devoted to a decision making methodology based
on the developed aggregation operators. Section 6 presented the numerical illustration concerning
the Patient Admission Scheduling problem. Further this Section deals with the applicability of the
developed methodology. Section 7 establishes the PF-TOPSIS methodology to validate the established
aggregation operators based MADM methodology. Section 8 concludes this manuscript.

2. Preliminaries

This section presents the review of basic ideas associated with fuzzy sets (FSs), intuitionistic fuzzy
sets (IFSs) and picture fuzzy sets (PFSs).
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Definition 1. [42] In universal set M , φ, a fuzzy set (FS) E is characterized as;

E = {〈r, Pe(r)| r ∈ M〉} .

Pe : M → [0, 1] denoted the membership degree of an element r in E.

Definition 2. [29] In universal set M , φ, an IFS E is characterized as;

E = {〈r, Pe(r),Ne(r)| r ∈ M〉} .

Pe and Ne : M → [0, 1] denoted the membership and non-membership degree of an element r in E.
Also it satisfy the condition that; 0 ≤ Pe(r) + Ne(r) ≤ 1, for all r in M.

Definition 3. [30] In universal set M , φ, a PFS E is characterized as;

E = {〈r, Pe(r), Ie(r),Ne(r)| r ∈ M〉} .

where the positive, neutral and negative membership degree of each r in M is represented by Pe , Ie

and Ne : M → [0, 1] respectively. Where the membership degrees satisfy the condition that; 0 ≤
Pe(r) + Ie(r) + Ne(r) ≤ 1 for all r in M.

Definition 4. [32] Let M , φ be a universe set and E = {Pe(r), Ie(r),Ne(r)} be a picture fuzzy set.
1) The score of E is denoted and define as follows:

S co (E) = Pe − Ie − Ne,

where S co (E) ∈ [−1, 1] .
2) The accuracy of E is denoted and define as follows:

Acu (E) = Pe + Ie + Ne,

where Acu (E) ∈ [0, 1] .

Definition 5. [32] Let M , φ be a universe set and El =
{
Pel(r), Iel(r),Nel(r)

}
and Ek ={

Pek(r), Iek(r),Nek(r)
}

be two picture fuzzy sets. Then the following conditions satisfies:
(a) If S co (El) � S co (Ek); then El � Ek.

(b) If S co (El) ≈ S co (Ek); and Acu (El) � Acu (Ek); then El � Ek.

(c) If S co (El) ≈ S co (Ek) and Acu (El) ≈ Acu (Ek); then El ≈ Ek.

Definition 6. [32] A picture fuzzy hybrid averaging aggregation operator can be defined as:

PFHAτ,τ (E1, E2, ..., En) =

1 − n∏
p=1

(
1 − Peδ(p)

)τp
,

n∏
p=1

(
Ieδ(p)

)τp
,

n∏
p=1

(
Neδ(p)

)τp

 ,
where the weight of Ep (p ∈ N) is τ = (τ1, τ2, ..., τn)T , such that τp ∈ [0, 1] ,

n∑
p=1

τp = 1.
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3. Picture fuzzy Einstein hybrid aggregation operators

In this section, we establish Einstein operational laws and a list of novel PF Einstein hybrid
averaging and geometric aggregation operators under PF information.

Definition 7. Let Ek =
{
Pek(r), Iek(r),Nek(r)

}
and El =

{
Pel(r), Iel(r),Nel(r)

}
be the two PFNs, and τ � 0

be any real number, then

1) Ek ⊕ε El =

(
Pek +Pel

1+Pek Pel
,

Iek Iel

1+(1−Iek)(1−Iel)
,

Nek Nel

1+(1−Nek)(1−Nel)

)
;

2) Ek ⊗ε El =

(
Pek Pel

1+(1−Pek)(1−Pel)
,

Iek Iel

1+(1−Iek)(1−Iel)
,

Nek +Nel
1+Nek Nel

)
;

3) τ (El) =

(
(1+Pel)

τ
−(1−Pel)

τ

(1+Pel)
τ
+(1−Pel)

τ ,
2(Iel)

τ

(2−Iel)
τ
+(Iel)

τ ,
2(Nel)

τ

(2−Nel)
τ
+(Nel)

τ

)
;

4) (El)τ =

(
2(Pel)

τ

(2−Pel)
τ
+(Pel)

τ ,
2(Iel)

τ

(2−Iel)
τ
+(Iel)

τ ,
(1+Nel)

τ
−(1−Nel)

τ

(1+Nel)
τ
+(1−Nel)

τ

)
.

3.1. Einstein hybrid averaging AOps

Definition 8. Let M , φ be a universe set and El =
{
Pel(r), Iel(r),Nel(r)

}
(l ∈ N) be the family of the PF

values. Then PFEHA aggregation operator for n dimensions is a mapping PFEHA : PFN → PFN
define as

PFEHAτ,τ (E1, E2, ..., En)

=



n∏
t=1

(
1+Peδ(t)

)τt
−

n∏
t=1

(
1−Peδ(t)

)τt

n∏
t=1

(
1+Peδ(t)

)τt
+

n∏
t=1

(
1−Peδ(t)

)τt ,
2

n∏
t=1

(
Ieδ(t)

)τt

n∏
t=1

(
2−Ieδ(t)

)τt
+

n∏
t=1

(
Ieδ(t)

)τt

2
n∏

t=1

(
Neδ(t)

)τt

n∏
t=1

(
2−Neδ(t)

)w j
+

n∏
t=1

(
Neδ(t)

)τt


where eδ(t) is the tth largest of the weighted PF values et (et = nτtet, t ∈ N), τ = (τ1, τ2, ..., τn)T is the

weight of Et (t ∈ N) , which satisfy the condition τt ∈ [0, 1],
n∑

t=1
τt = 1, if the vector (τ1, τ2, ..., τn)T

became
(

1
n ,

1
n , ...,

1
n

)T
, then the vector (nτ1e1, nτ2e2, ..., nτnen)T will become (E1, E2, ..., En)T , and n is

the adjusting factor.

Theorem 1. Suppose M , φ be a universe set and El =
{
Pel(r), Iel(r),Nel(r)

}
(l = 1, 2, ..., n) be the

family of the picture fuzzy values, then by using the PFEHA operator their aggregated value is also a
PF value and

PFEHAτ,τ (E1, E2, ..., En)

=



n∏
t=1

(
1+Peδ(t)

)τt
−

n∏
t=1

(
1−Peδ(t)

)τt

n∏
t=1

(
1+Peδ(t)

)τt
+

n∏
t=1

(
1−Peδ(t)

)τt ,
2

n∏
t=1

(
Ieδ(t)

)τt

n∏
t=1

(
2−Ieδ(t)

)τt
+

n∏
t=1

(
Ieδ(t)

)τt

2
n∏

t=1

(
Neδ(t)

)τt

n∏
t=1

(
2−Neδ(t)

)w j
+

n∏
t=1

(
Neδ(t)

)τt


(3.1)

where the weight of Et (t ∈ N) is τ = (τ1, τ2, ..., τn)T , i.e., τt ∈ [0, 1],
n∑

t=1
τt = 1.
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Proof: To prove this Theorem we can use induction method, first we show that Eq (3.1) holds for
n = 2.

τ1E1 =


(
1 + Pe1

)τ1
−

(
1 − Pe1

)τ1(
1 + Pe1

)τ1 +
(
1 − Pe1

)τ1
,

2
(
Ie1

)τ1(
2 − Ie1

)τ1 +
(
Ie1

)τ1
,

2
(
Ne1

)τ1(
2 − Ne1

)τ1 +
(
Ne1

)τ1


τ2E2 =

((
1 + Pe2

)τ2 −
(
1 − Pe2

)τ2(
1 + Pe2

)τ2 +
(
1 − Pe2

)τ2
,

2
(
Ie2

)τ2(
2 − Ie2

)τ2 +
(
Ie2

)τ2
,

2
(
Ne2

)τ2(
2 − Ne2

)τ2 +
(
Ne2

)τ2

)
Then

PFEHAτ,τ (E1, E2) =



2∏
t=1

(
1+Peδ(t)

)τt
−

2∏
t=1

(
1−Peδ(t)

)τt

2∏
t=1

(
1+Peδ(t)

)τt
+

2∏
t=1

(
1−Peδ(t)

)τt ,
2

2∏
t=1

(
Ieδ(t)

)τt

2∏
t=1

(
2−Ieδ(t)

)τt
+

2∏
t=1

(
Ieδ(t)

)τt

2
2∏

t=1

(
Neδ(t)

)τt

2∏
t=1

(
2−Neδ(t)

)w j
+

2∏
t=1

(
Neδ(t)

)τt


Thus, outcome is valid for n = 2; Now for n = k we consider that Eq (3.1) is true; then

PFEHAτ,τ (E1, E2, ..., Ek)

=



k∏
t=1

(
1+Peδ(t)

)τt
−

k∏
t=1

(
1−Peδ(t)

)τt

k∏
t=1

(
1+Peδ(t)

)τt
+

k∏
t=1

(
1−Peδ(t)

)τt ,
2

k∏
t=1

(
Ieδ(t)

)τt

k∏
t=1

(
2−Ieδ(t)

)τt
+

k∏
t=1

(
Ieδ(t)

)τt

2
k∏

t=1

(
Neδ(t)

)τt

k∏
t=1

(
2−Neδ(t)

)w j
+

k∏
t=1

(
Neδ(t)

)τt


If Eq (3.1) is valid for n = k, then we have to demonstrate that n = k + 1 is valid for Eq (3.1), thus,

PFEHAτ,τ (E1, E2, ..., Ek, Ek+1)

=



k∏
t=1

(
1+Peδ(t)

)τt
−

k∏
t=1

(
1−Peδ(t)

)τt

k∏
t=1

(
1+Peδ(t)

)τt
+

k∏
t=1

(
1−Peδ(t)

)τt ,

2
k∏

t=1

(
Ieδ(t)

)τt

k∏
t=1

(
2−Ieδ(t)

)τt
+

k∏
t=1

(
Ieδ(t)

)τt

2
k∏

t=1

(
Neδ(t)

)τt

k∏
t=1

(
2−Neδ(t)

)w j
+

k∏
t=1

(
Neδ(t)

)τt


⊕ε


(1+Pek+1)

τk+1−(1−Pek+1)
τk+1

(1+Pek+1)
τk+1 +(1−Pek+1)

τk+1 ,

2(Iek+1)
τk+1

(2−Iek+1)
τk+1 +(Iek+1)

τk+1

2(Nek+1)
τk+1

(2−Nek+1)
τk+1 +(Nek+1)

τk+1



Suppose that

p1 =

k∏
t=1

(
1 + Peδ(t)

)τt
−

k∏
t=1

(
1 − Peδ(t)

)τt
,

r1 = 2
k∏

t=1

(
Ieδ(t)

)τt
, t1 = 2

k∏
t=1

(
Neδ(t)

)τt
,
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p2 =
(
1 + Pek+1

)τk+1 −
(
1 − Pek+1

)τk+1 ,

r2 = 2
(
Iek+1

)τk+1 , t2 = 2
(
Nek+1

)τk+1 ,

q1 =

k∏
t=1

(
1 + Peδ(t)

)τt
+

k∏
t=1

(
1 − Peδ(t)

)τt
,

s1 =

k∏
t=1

(
2 − Ieδ(t)

)τt
+

k∏
t=1

(
Ieδ(t)

)τt
,

u1 =

k∏
t=1

(
2 − Neδ(t)

)w j
+

k∏
t=1

(
Neδ(t)

)τt
,

q2 =
(
1 + Pek+1

)τk+1 +
(
1 − Pek+1

)τk+1 ,

s2 =
(
2 − Iek+1

)τk+1 +
(
Iek+1

)τk+1 ,

u2 =
(
2 − Nek+1

)τk+1 +
(
Nek+1

)τk+1 .

By putting these values in above equation, we obtain

PFEHAτ,τ (E1, E2, ..., Ek+1)

=

(
p1

q1
,

r1

s1
,

t1

u1

)
⊕ε

(
p2

q2
,

r2

s2
,

t2

u2

)
=


(

p1
q1

)
+

(
p2
q2

)
1 +

(
p1
q1

) (
p2
q2

) , r1
s1
·

r2
s2

1 +
(
1 − r1

s1

) (
1 − r2

s2

) , t1
u1
·

t2
u2

1 +
(
1 − t1

u1

) (
1 − t2

u2

)
=

(
p1q2 + p2q1

q1q2 + p1 p2
,

r1r2

2s1s2 − s1r2 − r1s2 + r1r2
,

t1t2

2u1u2 − u1t2 − t1u2 + t1t2

)
Now putting the values in above equation we obtain

PFEHAτ,τ (E1, E2, ..., Ek+1)

=



k+1∏
t=1

(
1+Peδ(t)

)τt
−

k+1∏
t=1

(
1−Peδ(t)

)τt

k+1∏
t=1

(
1+Peδ(t)

)τt
+

k+1∏
t=1

(
1−Peδ(t)

)τt ,
2

k+1∏
t=1

(
Ieδ(t)

)τt

k+1∏
t=1

(
2−Ieδ(t)

)τt
+

k+1∏
t=1

(
Ieδ(t)

)τt

2
k+1∏
t=1

(
Neδ(t)

)τt

k+1∏
t=1

(
2−Neδ(t)

)w j
+

k+1∏
t=1

(
Neδ(t)

)τt


Equation (3.1) is thus valid for n = k + 1. Hence, for all n, Eq (3.1) is valid.

Lemma 1. Let Et � 0, τt � 0 (t ∈ N) and
n∑

t=1
τt = 1, then

n∏
t=1

(
E j

)τt
6

n∑
t=1

τtE j,

where equality is held if and only if (⇐⇒ ) Et (t ∈ N) = E.
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Theorem 2. Let M , φ be a universe set and El =
{
Pel(r), Iel(r),Nel(r)

}
(l ∈ N) be the family of the PF

values, then
PFEHAτ,τ (E1, E2, ..., En) 6 PFHAτ,τ (E1, E2, ..., En) ,

where the weight of Et(t ∈ N) is τ = (τ1, τ2, ...τn)T i.e τt ∈ [0, 1] and
n∑

t=1
τt = 1.

proof Since

n∏
t=1

(
1 + Peδ(t)

)τt
+

n∏
t=1

(
1 − Peδ(t)

)τt
6

n∑
t=1

τt

(
1 + Peδ(t)

)
+

n∑
t=1

τt

(
1 − Peδ(t)

)
.

As
n∑

t=1

τt

(
1 + Peδ(t)

)
+

n∑
t=1

τt

(
1 − Peδ(t)

)
= 2.

Thus
n∏

t=1

(
1 + Peδ(t)

)τt
+

n∏
t=1

(
1 − Peδ(t)

)τt
6 2.

Also

n∏
t=1

(
1 + Peδ(t)

)τt
−

n∏
t=1

(
1 − Peδ(t)

)τt

n∏
t=1

(
1 + Peδ(t)

)τt
+

n∏
t=1

(
1 − Peδ(t)

)τt
= 1 −

2
n∏

t=1

(
1 − Peδ(t)

)τt

n∏
t=1

(
1 + Peδ(t)

)τt
+

n∏
t=1

(
1 − Peδ(t)

)τt

6 1 −
n∏

t=1

(
1 − Peδ(t)

)τt
, (3.2)

where equality held ⇐⇒ Peδ(t)( j = 1, 2, ...n) are equal. Again

n∏
t=1

(
2 − Ieδ(t)

)τt
+

n∏
t=1

(
Ieδ(t)

)τt
6

n∑
t=1

τt

(
2 − Ieδ(t)

)
+

n∑
t=1

τt

(
Ieδ(t)

)
.

As
n∑

t=1

τt

(
2 − Ieδ(t)

)
+

n∑
t=1

τt

(
Ieδ(t)

)
= 2.

So
n∏

t=1

(
2 − Ieδ(t)

)τt
+

n∏
t=1

(
Ieδ(t)

)τt
6 2.

Thus
2

n∏
t=1

(
Ieδ(t)

)τt

n∏
t=1

(
2 − Ieδ(t)

)τt
+

n∏
t=1

(
Ieδ(t)

)τt
>

n∏
t=1

(
Ieδ(t)

)τt
, (3.3)
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where equality held ⇐⇒ Ieδ(t)(t = 1, 2, ...n) are equal. Similarly,

n∏
t=1

(
2 − Neδ(t)

)τt
+

n∏
t=1

(
Neδ(t)

)τt
6

n∑
t=1

τt

(
2 − Neδ(t)

)
+

n∑
t=1

τt

(
Neδ(t)

)
.

As
n∑

t=1

τt

(
2 − Neδ(t)

)
+

n∑
t=1

τt

(
Neδ(t)

)
= 2.

So
n∏

t=1

(
2 − Neδ(t)

)τt
+

n∏
t=1

(
Neδ(t)

)τt
6 2.

Thus
2

n∏
t=1

(
Neδ(t)

)τt

n∏
t=1

(
2 − Neδ(t)

)τt
+

n∏
t=1

(
Neδ(t)

)τt
>

n∏
t=1

(
Neδ(t)

)τt
, (3.4)

where equality held ⇐⇒ Neδ(t)(t = 1, 2, ...n) are equal.
Let

PFHAτ,τ (E1, E2, ..., En) = El =
{
Pel(r), Iel(r),Nel(r)

}
.

And
PFEHAτ,τ (E1, E2, ..., En) = Eε

l =
{
Pε

el
(r), Iεel

(r),Nε
el

(r)
}
.

Then Eqs (3.2)–(3.4) can be converted into the following forms: Pel ≥ Pε
el
, Iel ≤ Iεel

and Nel ≤ Nε
el

respectively. Hence

S co(El) = Pel − Iel − Nel ≥ Pε
el
− Iεel

− Nε
el

= S co(Eε
l ).

Thus
S co(El) ≥ S co(Eε

l ).

If
S co(El) ≥ S co(Eε

l ).

then
PFEHAτ,τ (E1, E2, ..., En) < PFHAτ,τ (E1, E2, ..., En) . (3.5)

If
S co(El) = S co(Eε

l ).

Then we have
Acu(El) = Pel + Iel + Nel = Pε

el
+ Iεel

+ Nε
el

= Acu(Eε
l ).

Thus
PFEHAτ,τ (E1, E2, ..., En) = PFHAτ,τ (E1, E2, ..., En) . (3.6)

Hence from Eqs (3.5) and (3.6), we get PFEHAτ,τ (E1, E2, ..., En) ≤ PFHAτ,τ (E1, E2, ..., En), which
complete the proof.
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3.2. Picture fuzzy Einstein hybrid geometric (PFEHG) aggregation operator

Definition 9. Let M , φ be a universe set and El =
{
Pel(r), Iel(r),Nel(r)

}
(l ∈ N) be the family of the PF

values. Then PFEHG aggregation operator for n dimensions is a mapping PFEHG : PFN → PFN
define as

PFEHGτ,τ (E1, E2, ..., En)

=


2

n∏
t=1

(
Peδ(t)

)τt

n∏
t=1

(
2−Peδ(t)

)w j
+

n∏
t=1

(
Peδ(t)

)τt ,
2

n∏
t=1

(
Ieδ(t)

)τt

n∏
t=1

(
2−Ieδ(t)

)τt
+

n∏
t=1

(
Ieδ(t)

)τt

n∏
t=1

(
1+Neδ(t)

)τt
−

n∏
t=1

(
1−Neδ(t)

)τt

n∏
t=1

(
1+Neδ(t)

)τt
+

n∏
t=1

(
1−Neδ(t)

)τt


where eδ(t) is the tth largest of the weighted PF values et (et = nτtet, t ∈ N), the weight of Et (t ∈ N) is

τ = (τ1, τ2, ..., τn)T , i.e. τt ∈ [0, 1],
n∑

t=1
τt = 1, if the vector (τ1, τ2, ..., τn)T became

(
1
n ,

1
n , ...,

1
n

)T
, then the

vector
(
enτ1

1 , enτ2
2 , ..., enτn

n

)T
will become (E1, E2, ..., En)T , and n is the adjusting factor.

Theorem 3. Let M , φ be a universe set and El =
{
Pel(r), Iel(r),Nel(r)

}
(l ∈ N) be the family of the PF

values, then their combined value by using the PFEHG operator is also a PF value and

PFEHGτ,τ (E1, E2, ..., En)

=


2

n∏
t=1

(
Peδ(t)

)τt

n∏
t=1

(
2−Peδ(t)

)w j
+

n∏
t=1

(
Peδ(t)

)τt ,
2

n∏
t=1

(
Ieδ(t)

)τt

n∏
t=1

(
2−Ieδ(t)

)τt
+

n∏
t=1

(
Ieδ(t)

)τt

n∏
t=1

(
1+Neδ(t)

)τt
−

n∏
t=1

(
1−Neδ(t)

)τt

n∏
t=1

(
1+Neδ(t)

)τt
+

n∏
t=1

(
1−Neδ(t)

)τt


where τ = (τ1, τ2, ..., τn)T is the weight of Et (t ∈ N) ,i.e. τt ∈ [0, 1],

n∑
t=1
τt = 1.

Proof The proof is identical to the Theorem 1.

Theorem 4. Let M , φ be a universe set and El =
{
Pel(r), Iel(r),Nel(r)

}
(l ∈ N) be the collection of the

picture fuzzy values, then

PFHGτ,τ (E1, E2, ..., En) 6 PFEHGτ,τ (E1, E2, ..., En) ,

where τ = (τ1, τ2, ...τn)T is the weighted vector of Et(t ∈ N) such that τt ∈ [0, 1] and
n∑

t=1
τt = 1.

Proof The proof is identical to the Theorem 2.

4. Generalized picture fuzzy Einstein hybrid aggregation operators

In this section, we develop generalized picture fuzzy Einstein averaging and geometric hybrid
aggregation operators.
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4.1. Generalized picture fuzzy Einstein hybrid averaging AOps

Definition 10. Let M , φ be a universe set and El =
{
Pel(r), Iel(r),Nel(r)

}
(l ∈ N) be the family of the PF

values. Then GPFEHA aggregation operator for n dimensions is a mapping GPFEHA : PFN → PFN
define as

GPFEHAτ,τ (E1, E2, ..., En) =

 n∑
t=1

(
τ ·ε E

λ

δ(t)

) 1
λ

 ,
where Eδ(t) is the tth largest of the weighted PF values, τ = (τ1, τ2, ..., τn)T is the weight of Et (t ∈ N) ,

satisfied the condition τt ∈ [0, 1],
n∑

t=1
τt = 1, and the balancing coefficient is n. λ be any positive real

number.

Theorem 5. Let M , φ be a universe set and El =
{
Pel(r), Iel(r),Nel(r)

}
(l ∈ N) be the family of the PF

values and τ = (τ1, τ2, ..., τn)T is the weight of Et (t ∈ N) , satisfied the condition τt ∈ [0, 1],
n∑

t=1
τt = 1.

Then by using the GPFEHA aggregation operator, the aggregated value can be indicated as follows:

GPFEHAτ,τ (E1, E2, ..., En)

=





2

 n∏
t=1

{(
2−Peδ(t)

)λ
+3

(
Peδ(t)

)λ}τt

−
n∏

t=1

{(
2−Peδ(t)

)λ
−

(
Peδ(t)

)λ}τt 
1
λ

(
n∏

t=1

{(
2 − Peδ(t)

)λ
+ 3

(
Peδ(t)

)λ}τt

+ 3
n∏

t=1

{(
2 − Peδ(t)

)λ
−

(
Peδ(t)

)λ}τt
) 1
λ

+(
n∏

t=1

{(
2 − Peδ(t)

)λ
+ 3

(
Peδ(t)

)λ}τt

−
n∏

t=1

{(
2 − Peδ(t)

)λ
−

(
Peδ(t)

)λ}τt
) 1
λ


,



(
n∏

t=1

{(
1 + Ieδ(t)

)λ
+ 3

(
1 − Ieδ(t)

)λ}τt

+ 3
n∏

t=1

{(
1 + Ieδ(t)

)λ
−

(
1 − Ieδ(t)

)λ}τt
) 1
λ

−(
n∏

t=1

{(
1 + Ieδ(t)

)λ
+ 3

(
1 − Ieδ(t)

)λ}τt

−
n∏

t=1

{(
1 + Ieδ(t)

)λ
−

(
1 − Ieδ(t)

)λ}τt
) 1
λ

(
n∏

t=1

{(
1 + Ieδ(t)

)λ
+ 3

(
1 − Ieδ(t)

)λ}τt

+ 3
n∏

t=1

{(
1 + Ieδ(t)

)λ
−

(
1 − Ieδ(t)

)λ}τt
) 1
λ

+(
n∏

t=1

{(
1 + Ieδ(t)

)λ
+ 3

(
1 − Ieδ(t)

)λ}τt

−
n∏

t=1

{(
1 + Ieδ(t)

)λ
−

(
1 − Ieδ(t)

)λ}τt
) 1
λ


,



(
n∏

t=1

{(
1 + Neδ(t)

)λ
+ 3

(
1 − Neδ(t)

)λ}τt

+ 3
n∏

t=1

{(
1 + Neδ(t)

)λ
−

(
1 − Neδ(t)

)λ}τt
) 1
λ

−(
n∏

t=1

{(
1 + Neδ(t)

)λ
+ 3

(
1 − Neδ(t)

)λ}τt

−
n∏

t=1

{(
1 + Neδ(t)

)λ
−

(
1 − Neδ(t)

)λ}τt
) 1
λ

(
n∏

t=1

{(
1 + Neδ(t)

)λ
+ 3

(
1 − Neδ(t)

)λ}τt

+ 3
n∏

t=1

{(
1 + Neδ(t)

)λ
−

(
1 − Neδ(t)

)λ}τt
) 1
λ

+(
n∏

t=1

{(
1 + Neδ(t)

)λ
+ 3

(
1 − Neδ(t)

)λ}τt

−
n∏

t=1

{(
1 + Neδ(t)

)λ
−

(
1 − Neδ(t)

)λ}τt
) 1
λ





.
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Proof Theorem 1 is identical to this proof. As a result, the process has been omitted.

Theorem 6. Let M , φ be a universe set and El =
{
Pel(r), Iel(r),Nel(r)

}
(l ∈ N) be the family of the PF

values, then

GPFEHAτ,τ (E1, E2, ..., En) 6 GPFHAτ,τ (E1, E2, ..., En) ,

where τ = (τ1, τ2, ...τn)T is the weight of Et(t ∈ N) which satisfied the condition τt ∈ [0, 1] and
n∑

t=1
τt = 1.

Proof Theorem 2 is identical to this proof. As a result, the process has been omitted.

4.2. Generalized picture fuzzy Einstein hybrid geometric AOps

Definition 11. Let M , φ be a universe set and El =
{
Pel(r), Iel(r),Nel(r)

}
(l ∈ N) be the family of the

PF values. Then GPFEHG aggregation operator for n dimensions is a mapping GPFEHG : PFN →
PFN define as

GPFEHGτ,τ (E1, E2, ..., En) =
1
λ
·ε

 n∏
t=1

(
λ ·ε Eδ(t)

)τt

 ,

where Eδ(t) is the tth largest weighted of the PF values, τ = (τ1, τ2, ..., τn)T is the weight of

Et (t = 1, 2, ..., j) ,i.e. τt ∈ [0, 1],
n∑

t=1
τt = 1, and the balancing coefficient is n. λ be any positive

real number.

Theorem 7. Let M , φ be a universe set and El =
{
Pel(r), Iel(r),Nel(r)

}
(l = 1, 2, ..., n) be the family of

the PF values and τ = (τ1, τ2, ..., τn)T is the weight of Et (t = 1, 2, ..., j) , i.e. τt ∈ [0, 1],
n∑

t=1
τt = 1. Then

by using the GPFEHG operator, the combined value can be indicated as follows:

GPFEHGτ,τ (E1, E2, ..., En)
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=


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.

Proof The proof is identical to the Theorem 1.

Theorem 8. Let M , φ be a universe set and El =
{
Pel(r), Iel(r),Nel(r)

}
(l ∈ N) be the family of the PF

values, then

GPFHGτ,τ (E1, E2, ..., En) 6 GPFEHGτ,τ (E1, E2, ..., En) ,

where the weight of Et(t = 1, 2, ..., n) is τ = (τ1, τ2, ...τn)T i.e. τt ∈ [0, 1] and
n∑

t=1
τt = 1.

Proof The proof is directly related to the Theorem 2.

5. An application of the proposed aggregation operators

Throughout this section, we illustrate how picture fuzzy Einstein hybrid operators can be used to
solve the multiple criteria group decision making (MCGDM) problem.
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5.1. Algorithm

Let Z = {Z1,Z2, ...,Zm} represent the m alternatives set, the n attributes set are represented by R =

{R1,R2, ...,Rn}, and D = {D1,D2, ...,Dk} represent the k decision makers set. Let τ = (τ1, τ2, ...τn)T

represent the attributes weight Rt (t ∈ N) i.e., wt ∈ [0, 1],
n∑

t=1
wt = 1, and consider that the weight of

the decision makers Ds (s = 1, 2, 3, ..., k) , is ω = (ω1, ω2, ..., ωk)T i.e., ωs ∈ [0, 1] and
k∑

s=1
ωs = 1. This

approach has the following measures:

Step-1 We create the PF decision-making (DM) matrices in this step for decision, Ds =[
E(s)

it

]
m×n

(s = 1, 2, ..., k). There are benefit and cost type criteria, then the PF decision matrices,

Ds =
[
E s

it

]
m×n

can be transformed into the normalized PF decision matrices, Rs =
[
r(s)

it

]
m×n

, where

rs
it =

{
E s

it, for benefit criteria Rt

E
s
it, for cost criteria Rt,

j = 1, 2, ..., n, and the complement of E s
it is E

s
it. If all of criteria are from the same kind, no

normalization is needed.

Step-2 To combine all of the individual standardized PF decision matrices, use the PFEWA operator,
Rs =

[
r(s)

it

]
m×n

(s = 1, 2, ..., k) into a common PF decision matrix, R = [rit]m×n , where rit =(
Peit , Ieit ,Neit

)
(i = 1, 2, ..,m, t ∈ N) .

Step-3 To get the overall preference values, we apply eit = nwteit.

Step-4 To aggregate the picture fuzzy hybrid decision matrix, using GPFEHA aggregation operator.

Step-5 Compute the ri(i = 1, 2, 3, ...m) scores function of all the aggregated alternatives. When
there’s no difference between the two or more than two scores, the accuracy levels of the
combined preference values must be determined.

Step-6 List the scores of all alternatives in descending order, then choose the alternative with the top
score value.

Figure1 describes the proposed methodology’s flow chart:
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Figure 1. Flow chart of the proposed methodology.

6. Patient admission scheduling problem

The suggested ranking approach is used in this area to resolve the issue of patient admission
scheduling (PAS) in the hospitals. Using proposed aggregation operators, we present a new approach
to address PAS problem by assigning patients to beds randomly. The proposed methodology utilized
four criteria and four alternatives strategies in the pitch adjustment stage.

6.1. Descriptions of the problem

The problem of patient admission scheduling (PAS) is an optimization and decision making problem
in which we automatically allocate patients to beds for a specific interval of time while maintaining
their medical needs and choices. PAS is one of the tough scheduling problems faced by many health
care centers that struggle with finding an appropriate way to allocate hospital services to patients
seeking hospital admission while fulfilling all the required hospital requirements (such as beds, rooms,
time slots, and etc.). These hospital conditions or regulations which vary from one hospital to
another, but may include that patients in a room are of the same gender, a special room request for
accommodation for patients, the date of admission of patients and the period of stay, etc.. The attribute
of the room is given as the quantity of beds, the unit in which the bed is situated, and medical facilities.
Make sure that the therapy an unit might provide is dependent on the types of qualities of the devices
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located in the rooms. And the duration of stay of the patients is determined by the time slots. The
patient-stay duration, for example, is provided by appointing a patient to a bed in a room and times
period (night).

Doctor-patient relations are another significant fact for proper care. Improper communication
between doctor and patient often delays the right treatment from being obtained. It often becomes even
more difficult for a patient to find the ideal doctor’s real location. According to the new conventional
method, it’s too complicated to appoint a doctor and patients often have to survive a lot.

For patients taking the doctor’s appointment directly via mobile SMS or a smart phone device with a
completely unique serial number, the main focus point is required. In the conventional time and money-
wasting scheme, patients should make an appointment with a doctor. The efficient resources for both
doctors and patients through the system are time to time feedback messages, both doctor and patient
specific profile management with effective information, searching and locating area wise doctors list,
individual patient medication management, doctor’s office venue view of the assigned patients, clear
and real time recommending patients to other doctors. Proper management of the profile management
of individual doctors and patients is the way to improve the relationship between doctor and patient.
The section on medication management is directly related to patient referral and is also necessary. The
scheme is planned in a pleasant way for both doctors and patients.

The classification about each PAS problem input is given as: patient characteristics as the patient
is a person with certain criteria for medication, gender, room requirement, class and age [43, 44].
Suppose a group of decision-makers to conduct the assessment and choose the best PAS solution for
this problem facing by patients and doctors, among the four demands of patient at the time of PAS
problem are Z1, Z2, Z3 and Z4. The decision maker evaluates the demands of patient according to four
attributes and describe the PAS problem whose weights are τ = (0.224, 0.236, 0.304, 0.236)T , which
are given as follows:

R1: 1) Time: Both patients and Doctors will cooperatively decide about time. A time slot that
reflects the patient’s day of stay; a scheduled patient stay that is the collection of all the days that the
patient will spend time in the hospital; The following measure must be followed.

2) Doctors: Doctor will decide about time limit according to the health condition of patients so
he/she may suggest a patient for a day, two days, month and so on. This will include stay and discharge.

3) Patients: On the basis of doctor suggestion patients will then decide the time criteria according
to his/her economic and social status then he/she will take a decision for stay and discharge.

R2: Age Policy: Age policy is focused on the fact that certain hospitals determine how old a patient
should be at least or at most to be admitted in a department (e.g., pediatrics department) with a PAS
issue.

R3: Same Gender Patients: The same patient of the same gender matters and impacts the family
and hospital environment of patients at the time of the patient admission process. So room gender
policy for patient are hilighted problem, the room may have male or female patients, but they must be
of the same gender, the room may be held by females only and the room may be held by males patient
only.

R4: Basic needs for the patient in the room: Room requirements as each room has unique
attributes, such as medical equipment, size of the room, and the unit in which the room is placed;
unit as each unit has several specializations at various levels of expertise; specialty as each patient
wants one or more physicians for their treatment.

Mathematical Biosciences and Engineering Volume 19, Issue 3, 3147–3176.



3163

Three decision makers DS (s = 1, 2, 3) , whose weight is ω = (0.3, 0.3, 0.4)T . The frame of the
decision problem is given in Figure 2:

 

PAS Problems  

Numbers of 

Beds 

Age 

policy 
Time 

schedule 

Same Gender 

Patient Class 

Medical 

equipment 

Room 

Preference 

Doctor-Patient Relation about 

Time appointment 

Go to doctor’s chamber physically 

Request for appointment 

Finally meet with doctor 

Meet with doctor’s assistant 

Wait for call and confirm appointment 

through call or notification 

Sometime doctor can’t available 

Wait for long time or some time whole day 

Figure 2. Frame of decision making problem.

There are four best ways and solution for the patient-doctor to take the right decision for PAS under
the fuzzy environment by using proposed list of generalized aggregation operators as follow;

Today, hospitals suffer more pressures than ever before to provide cost-effectively high-value
services while providing outstanding treatment experiences are offered for their patients. Nonetheless,
reducing earnings, increasing expenses, and growing demands from patients make the prospect
difficult. Addressing these challenges demands that hospital managers and health care providers work
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together to identify forward-looking solutions without compromising quality to achieve maximum
patient safety and control costs. With that in mind, here are four creative patient care improvements
that will help you solve challenges and achieve your goals.

Facilitated Rooms: (Z1) Operating rooms seem to be the most significant source of hospital revenue
and expenditure. Hospital management is also based on the success of timetables and schedules. For
this reason, an improvement in operating room efficiency has an important effect on hospitals’ financial
and overall ethical results. As a result, the most fascinating and desirable places of hospitals are
operating rooms. With these changes in efficiency, the quality of service and customer satisfaction are
growing directly in prosection. Room temperature are the important aspect for patient because patient
health depend upon on the room temperature that’s why hospital management should be improve and
provide the facilitated room. Some patient give preference to normal temperature, some required hot
temperature room and some need cool temperature room because of there health issues.

Improve clinical documentation and Time management: (Z2) The only workable solution is
to improve the standard of available bedside time. Toward this end , it is important to have better
communication. A lot of time is spent on patient arrival or release by many hospital lists, but on follow-
up visits scrimp. Try to ensure the providers record patient care appropriately. Better documentation
means better communication within the health care team—that can facilitate patient care transitions.

Decrease length of stay: (Z3) When primary care doctors admit their patients to the hospital, they
have the benefit of preexisting faith and, in many cases, a decades-long relationship with the patients
and their families. Patients feel safe, believing ”my doctor knows me”. Hospitalists don’t have this
lengthy relationship with their patients, and they will be faced with the challenge of establishing a
trustworthy and therapeutic relationship after just a few visits.

Appointments, updating instructions, consulting with experts, focusing on test reports, and
discharging patients take up more than half of a hospitalist’s time. Building trust, discussing the
concerns of the patient and family, therapy, and preparing for safe discharge are all time-consuming.

Empathy: (Z4) For many patients, having admitted to the hospital tends to mean dealing with a life-
threatening condition. Patients may be afraid, nervous, depressed, and sad. The underlying emotion
that can manifest as anger, irritation or anxiety is very important for the doctor to fully understand.
Empathy offers a very strong basis for a partnership to be established.

We are now enlisting the alternatives’ suitability scores versus the four attributes listed. As per the
suitability ranking for the four alternatives, Z1, Z2, Z3 and Z4 the four attributes are R1,R2,R3 and R4.

Step-1 In Tables 1–3, the construction of decision matrices can be seen:

Table 1. PAS information D1.

R1 R2 R3 R4

Z1 (0.2, 0.1, 0.6) (0.5, 0.3, 0.1) (0.3, 0.1, 0.5) (0.4, 0.3, 0.2)
Z2 (0.1, 0.4, 0.4) (0.6, 0.2, 0.1) (0.2, 0.2, 0.5) (0.2, 0.1, 0.6)
Z3 (0.2, 0.3, 0.3) (0.4, 0.3, 0.2) (0.3, 0.1, 0.4) (0.3, 0.2, 0.4)
Z4 (0.3, 0.1, 0.6) (0.3, 0.2, 0.4) (0.1, 0.3, 0.5) (0.2, 0.3, 0.3)
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Table 2. PAS information D2.

R1 R2 R3 R4

Z1 (0.1, 0.3, 0.5) (0.4, 0.3, 0.2) (0.1, 0.1, 0.6) (0.2, 0.3, 0.4)
Z2 (0.2, 0.2, 0.4) (0.4, 0.3, 0.2) (0.3, 0.2, 0.4) (0.4, 0.1, 0.4)
Z3 (0.1, 0.2, 0.6) (0.6, 0.1, 0.1) (0.2, 0.2, 0.4) (0.5, 0.2, 0.2)
Z4 (0.4, 0.1, 0.5) (0.5, 0.1, 0.3) (0.3, 0.3, 0.3) (0.6, 0.2, 0.1)

Table 3. PAS information D3.

R1 R2 R3 R4

Z1 (0.3, 0.1, 0.3) (0.4, 0.2, 0.1) (0.2, 0.3, 0.4) (0.5, 0.2, 0.1)
Z2 (0.1, 0.5, 0.3) (0.6, 0.1, 0.2) (0.1, 0.1, 0.7) (0.3, 0.1, 0.3)
Z3 (0.4, 0.2, 0.3) (0.4, 0.2, 0.2) (0.2, 0.2, 0.5) (0.6, 0.2, 0.1)
Z4 (0.1, 0.2, 0.6) (0.6, 0.2, 0.1) (0.3, 0.1, 0.4) (0.7, 0.1, 0.1)

Here R1, R3 are cost, and R2, R4 are criteria of the benefit type. So we need the decision matrices
normalized. In Tables 4–6, normalized decision matrices are shown:

Table 4. Normalized decision information R1.

R1 R2 R3 R4

Z1 (0.6, 0.1, 0.2) (0.5, 0.3, 0.1) (0.5, 0.1, 0.3) (0.4, 0.3, 0.2)
Z2 (0.4, 0.4, 0.1) (0.6, 0.2, 0.1) (0.5, 0.2, 0.2) (0.2, 0.1, 0.6)
Z3 (0.3, 0.3, 0.2) (0.4, 0.3, 0.2) (0.4, 0.1, 0.3) (0.3, 0.2, 0.4)
Z4 (0.6, 0.1, 0.3) (0.3, 0.2, 0.4) (0.5, 0.3, 0.1) (0.2, 0.3, 0.3)

Table 5. Normalized decision information R2.

R1 R2 R3 R4

Z1 (0.5, 0.3, 0.1) (0.4, 0.3, 0.2) (0.6, 0.1, 0.1) (0.2, 0.3, 0.4)
Z2 (0.4, 0.2, 0.2) (0.4, 0.3, 0.2) (0.4, 0.2, 0.3) (0.4, 0.1, 0.4)
Z3 (0.6, 0.2, 0.1) (0.6, 0.1, 0.1) (0.4, 0.2, 0.2) (0.5, 0.2, 0.2)
Z4 (0.5, 0.1, 0.4) (0.5, 0.1, 0.3) (0.3, 0.3, 0.3) (0.6, 0.2, 0.1)

Table 6. Normalized decision information R3.

R1 R2 R3 R4

Z1 (0.3, 0.1, 0.3) (0.4, 0.2, 0.1) (0.4, 0.3, 0.2) (0.5, 0.2, 0.1)
Z2 (0.3, 0.5, 0.1) (0.6, 0.1, 0.2) (0.7, 0.1, 0.1) (0.3, 0.1, 0.3)
Z3 (0.3, 0.2, 0.4) (0.4, 0.2, 0.2) (0.5, 0.2, 0.2) (0.6, 0.2, 0.1)
Z4 (0.6, 0.2, 0.1) (0.6, 0.2, 0.1) (0.4, 0.1, 0.3) (0.7, 0.1, 0.1)
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Step-2 Utilizing the operator of PFEWA aggregation to combine all individual normalized PF
decision matrices. Table 7 show the aggregated picture fuzzy decision matrix.:

Table 7. Combined PF decision matrix R.

R1 R2 R3 R4

Z1 (0.459, 0.149, 0.202) (0.431, 0.269, 0.131) (0.494, 0.165, 0.195) (0.386, 0.269, 0.201)
Z2 (0.360, 0.372, 0.131) (0.545, 0.183, 0.172) (0.564, 0.161, 0.183) (0.302, 0.106, 0.424)
Z3 (0.400, 0.238, 0.228) (0.465, 0.195, 0.172) (0.441, 0.172, 0.238) (0.489, 0.210, 0.201)
Z4 (0.571, 0.139, 0.228) (0.489, 0.172, 0.228) (0.402, 0.207, 0.229) (0.548, 0.183, 0.149)

Step-3 Utilizing Ei j = nw jEi j, we obtained

E11 = (.417, .189, .247) E12 = (.326, .421, .169) E13 = (.363, .285, .274)
E14 = (.524, .179, .274) E21 = (.409, .294, .150) E22 = (.521, .205, .194)
E23 = (.443, .218, .194) E24 = (.466, .194, .252) E31 = (.577, .101, .125)
E32 = (.650, .098, .115) E33 = (.519, .107, .161) E34 = (.477, 0.135, .153)
E41 = (.366, .294, .224) E42 = (.286, .123, .449) E43 = (.466, .234, .224)
E44 = (.523, .205, .169)

We can now find the score function as described in the Definition 4.

S co
(
E11

)
= −.019 S co

(
E12

)
= −.264 S co

(
E13

)
= −.197

S co
(
E14

)
= .070 S co

(
E21

)
= −.035 S co

(
E22

)
= .121

S co
(
E23

)
= .030 S co

(
E24

)
= .019 S co

(
E31

)
= .350

S co
(
E32

)
= .436 S co

(
E33

)
= .251 S co

(
E34

)
= .187

S co
(
E41

)
= −.152 S co

(
E42

)
= −.287 S co

(
E43

)
= .006

S co
(
E44

)
= .147

So we get Table 8:

Table 8. PF hybrid decision matrix.

R1 R2 R3 R4

Z1 (0.524, 0.179, 0.274) (0.521, 0.205, 0.194) (0.650, 0.098, 0.115) (0.523, 0.205, 0.169)
Z2 (0.417, 0.189, 0.247) (0.443, 0.218, 0.194) (0.577, 0.101, 0.125) (0.466, 0.234, 0.224)
Z3 (0.363, 0.285, 0.274) (0.466, 0.194, 0.252) (0.519, 0.107, 0.161) (0.366, 0.294, 0.224)
Z4 (0.326, 0.421, 0.169) (0.409, 0.294, 0.150) (0.477, 0.135, 0.153) (0.286, 0.123, 0.449)

Step-4 To aggregate the Table 8, we use GPFEHA and result shown in Table 9:
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Table 9. PF aggregated matrix.

Z1 (0.501921, 0.170448, 0.193664)
Z2 (0.440873, 0.200957, 0.195521)
Z3 (0.354997, 0.197432, 0.268194)
Z4 (0.416248, 0.215336, 0.234198)

Step-5 We now find out the values of the score and accuracy function respectively by using the
Definition 4 as, we get Table 10;

Table 10. Score & accuracy values.

S co (Z1) = .137809 Acu (Z1) = .866034
S co (Z2) = .0443952 Acu (Z2) = .837351
S co (Z3) = −.11063 Acu (Z3) = .820624
S co (Z4) = −.0332864 Acu (Z4) = .865783

Figures 3 and 4 presented the graphical aspect of the score and accuracy functions.

Figure 3. Graphical aspect of score.

Step-6 Table 11 shows the ranking result;

Table 11. Ranking results.

λ PFEHA Ranking PFEHG Ranking GPFEHA Ranking GPFEHG Ranking
1 Z1 � Z2 � Z4 � Z3 Z1 � Z2 � Z4 � Z3 Z1 � Z2 � Z4 � Z3 Z1 � Z2 � Z4 � Z3

2 Z1 � Z2 � Z4 � Z3 Z1 � Z2 � Z4 � Z3 Z1 � Z2 � Z4 � Z3 Z1 � Z3 � Z4 � Z2

5 Z1 � Z2 � Z4 � Z3 Z1 � Z3 � Z4 � Z2 Z1 � Z2 � Z4 � Z3 Z1 � Z3 � Z4 � Z2

Different values of λ we obtain that Z1 is our best choice. Graphical aspect of score and accuracy
variation using GPFEHA at different values of λ seen in Figures 5 and 6.
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Figure 4. Graphical aspect of accuracy.

Figure 5. Score variation using GPFEHA.

Figure 6. Accuracy variation using GPFEHA.

Graphical aspect of score and accuracy for GPFEHG Aggregation Operator at different values of
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λ is seen in Figures 7 and 8:

Figure 7. Score variation using GPFEHG.

Figure 8. Accuracy variation using GPFEHG.

Hence we obtain that Z1 is our best alternative that help hospitals to manage the admissions of
patients in a flexible manner.

7. Comparison with TOPSIS method

Throughout this section, the proposed aggregation information compared with TOPSIS
methodology under picture fuzzy environment. Hwang and Yoon [45] first developed TOPSIS
methodology, the well-known classical decision making method. At the same time, it considers the
distances to both positive ideal solution (PIS) and negative ideal solution (NIS) and ranks a preferred
order as per their relative closeness coefficient (RCC) [46–49].

The following steps are taken to obtain the ranking results for the considered alternative;
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Step-1 First, we enlist the opinions of experts in Tables 1–3. We obtained Tables 4 to 6 after
normalizing the expert evaluation data.

Step-2 Utilizing the operator PFEWA to combine all individual normalized PF decision matrices.
Table 7 shows the aggregated picture fuzzy information matrix.

Step-3 In this step, we findout the score result (Definition 4) of each aggregated alternative shown in
Tables 12:

Table 12. Score results.

R1 R2 R3 R4

Z1 0.108 0.031 0.134 −0.084
Z2 −0.143 0.19 0.22 −0.228
Z3 −0.066 0.098 0.031 0.078
Z4 0.204 0.089 −0.034 0.216

Step-4 Determining the relative PIS and the relative NIS for PFNs: Consider that the PFN decision
matrix can be denoted as Ds =

[
E(s)

it

]
m×n

(s = 1, 2, ..., k) , compute PIS(s) and NIS(s) for each
decision makers as follow:

PIS (s) =

{(
Ds

[
E(s)

it

]
m×n

)
: max

m

[
S co

(
Ds

[
E(s)

it

]
m×n

)]}
, n = 1, 2, ..., k (7.1)

and
NIS (s) =

{(
Ds

[
E(s)

it

]
m×n

)
: min

m

[
S co

(
Ds

[
E(s)

it

]
m×n

)]}
, n = 1, 2, ..., k (7.2)

By using Eqs (7.1) and (7.2), PIS and NIS under picture fuzzy environment is evaluted in Table
13:

Table 13. Relative Picture fuzzy PIS and NIS.

R1 R2 R3 R4

PIS (.571, .139, .228) (.545, .183, .172) (.564, .161, .183) (.548, .183, .149)
NIS (.36, .372, .131) (.431, .269, .131) (.402, .207, .229) (.302, .106, .424)

Step-5 Determining the distance measure from R-PFPIS and R-PFNIS for PFNs: Determine
the normalized Euclidean distance (NED) of each alternative from DM(N)(s) to PIS(s) and NIS(s)

which are denoted and described as follows:

DIS +(s)
m =

√√√√√ 1
4n

k∑
n=1

[(PDM(N)(s) − PPIS (s))2 + (IDM(N)(s) − IPIS (s))2+

(NDM(N)(s) − NPIS (s))2]
(7.3)

and

DIS −(s)
m =

√√√√√ 1
4n

k∑
n=1

[(PDM(N)(s) − PNIS (s))2 + (IDM(N)(s) − INIS (s))2+

(NDM(N)(s) − NNIS (s))2]
(7.4)
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Now, using Eqs (7.3) and (7.4), we evalute the distance measures of aggregated picture fuzzy
information (Table 7) and R-PFPIS & R-PFNIS(Table 13) shown in Table 14.

Table 14. Distance measures.

Alternatives DIS +(s)
m DIS −(s)

m

Z1 0.031286125 0.006568625
Z2 0.009599625 0.019913625
Z3 0.008846875 0.016952375
Z4 0.004608625 0.034058875

Step-6 Determining the relative closeness coefficient (RCC) to the PF ideal solutions: The RCC
of each alternative is constructed and listed as,

RCC s =
DIS −(s)

m

DIS +(s)
m + DIS −(s)

m

(7.5)

Table 15 shows the RCC Eq (7.5) of each alternative:

Table 15. RCC of alternatives.

Alternatives RCC s

Z1 0.173521817
Z2 0.674735077
Z3 0.6570879
Z4 0.880813991

Step-7 Alternatives ranking: Depending on the RCC, the higher values of RCC s indicate the better
alternative. Z1 is selected as the most best solution for the PAS problem. The methods suggested
in this paper are obviously more general, more precise and more applicable.

7.1. Comparison with existing operators

Here, our proposed aggregation information is compared with existion aggregation information.
Garg [39] in 2017, introduce the picture fuzzy averaging aggregation operators. Obviously, the
methods proposed in this paper are more general and more flexible. Since Garg aggregation operators
are built on algebraic t-norms, the proposed aggregation operators in this paper are built on instein
t-norm operators. More important idea is that when λ = 1, then the GPFEHA and GPFEHG
aggregation operators proposed in this work can be reduce to PFEHA and PFEHG aggregation
operators, respectively. We obtain distinct ranking results if we update the value of parameter λ.

Garg [39] in 2017, the PF aggregation operators were introduced to aggregate the PFNs; in
this section of the analysis, we compare the proposed PF Einstein aggregation operators to existing
operators as follows:
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Table 16. PF decision matrix (Garg, [39]).

R1 R2 R3 R4

Z1 (0.2, 0.1, 0.6) (0.5, 0.3, 0.1) (0.5, 0.1, 0.3) (0.4, 0.3, 0.2)
Z2 (0.1, 0.4, 0.4) (0.6, 0.3, 0.1) (0.5, 0.2, 0.2) (0.2, 0.1, 0.7)
Z3 (0.3, 0.2, 0.2) (0.6, 0.2, 0.1) (0.4, 0.1, 0.3) (0.3, 0.3, 0.4)
Z4 (0.3, 0.1, 0.6) (0.1, 0.2, 0.6) (0.1, 0.3, 0.5) (0.2, 0.3, 0.2)

After, using proposed aggregation information, we obtained the comparison Table 17:

Table 17. Ranking results.

Ranking
PFWA [39] Z2 � Z3 � Z1 � Z4

PFHA [39] Z2 � Z3 � Z1 � Z4

Proposed Aggregation Information
PFEHA Z2 � Z3 � Z1 � Z4

PFEHG Z2 � Z3 � Z1 � Z4

GPFEHA Z2 � Z3 � Z1 � Z4

GPFEHG Z2 � Z3 � Z1 � Z4

The best alternative is Z2.
We conclude that the ranking lists are the same based on the results of the proposed operators and

the existing method [39]. The generalized and novel approach to address uncertainty in DM problems
based on novel picture fuzzy Einstein aggregation information under the PNS environment. Einstein
norm based aggregation operators under picture fuzzy environment are more flexible and efficient as
compared to existing aggregation operators to evaluate the best alternative in real-world problems.

8. Conclusions

Aggregation of information is an important technique to tackle decision-making problems.
Atanassov’s construction of intuitionistic fuzzy sets is of prodigious reputation, but decision makers are
somehow restricted in assigning values due to the condition on membership grades. To deal with such
kinds of circumstances, Cuong proposed a new structure by defining PFSs as a generalization of FSs
and IFSs. We have introduced some aggregation operators in this paper, namely the PFEHA, PFEHG,
GPFEHA, and GPFEHG aggregation operators. In order to illustrate the use, applicability, and benefits
of the proposed ranking approach, we presented a Patient Admission Scheduling (PAS) model and
utilized proposed aggregation information to solve this problem. Patient admission scheduling is a
crucial topic, not only because it is a genuine issue, but also because it involves human organizational
authority. A realistic example of an arrangement of drive frameworks to verify the methodology built
and to demonstrate its common uses and adaptability compared to traditional methods was outlined. A
leading role in promoting PAS program is essential for health care professionals because they will allow
us to identify and address service and resource shortages in our institutions as well as the requirements
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of patients. Therefore, I recommend that you understand more about this critical initiative and take the
best steps to shorten waiting times and increase all patients’ accessibility to treatment.

The direction of future research could involve improving the performance of aggregation
information and decision making algorithms, and also more neighborhood structure can be embedded
in them to improve the quality of the solution.
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