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Abstract: In this study, we explore the precise trajectory tracking control problem of autonomous
underwater vehicle (AUV) under the disturbance of the underwater environment. First, a model-free
adaptive control (MFAC) is designed based on data-driven ideology and a full-form dynamic lineariza-
tion (FFDL) method is utilized to online estimate time-varying parameter pseudo gradient (PG) to
establish an equivalent data model of AUV motion. Second, the iterative extended state observer
(IESO) scheme is designed to combine with FFDL-MFAC. Because the proposed novel controller is
able to learn from repeated iterations, the proposed novel controller can estimate and compensate the
model approximation error produced by external environmental unknown disturbance. Third, three-
dimensional motion is decoupled into horizontal and vertical and a multi closed-loop control structure
is designed that exhibits faster convergence rate and reduces sensitivity to parameter jumps than single
closed-loop system. Finally, two simulation scenarios are designed featuring non external disturbance
and Gaussian noise of signal-to-noise ratio of 90 dB. The simulation results reveal the superiority of
FFDL. Furthermore, we adpot the technical parameters data of T-SEA I AUV to conduct numerical
simulation, aunderwater trajectory as the tracking scenario and set waves to 0.5 m and current to 0.2
m/s to simulate Lv.2 ocean conditions of “International Ocean State Standard”. The simulation results
demonstrate the effectiveness and robustness of the proposed tracking control algorithm.
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1. Introduction

An autonomous underwater vehicle (AUV) is a type of underwater unmanned vehicle has widely
been applied in the field of ocean exploring for decades. Nowadays, the AUV has becoming a sig-
nificant tool for environmental monitoring [1], submarine surveying [2] and underwater search [3].
However, the range and time of AUVs operations are limited by battery capacity. In that case, the
advantages and potential of AUVs are limited in the application field. Therefore, high tracking control
accuracy can realize optimal time-energy planning [4]. Furthermore, high attitude control accuracy is
precondition of underwater docking technology which has been developed to provide battery recharg-
ing and upload data, in order to extend AUVs operation [5].

The ocean underwater environment is complex and harsh, and ocean currents and waves can disturb
the vehicle attitudes during sailing. Amounts of researchers have designed distinct control systemsfor
different missions. The Samson [6] introduced an approach for solving the problems of path following
control precision by using Lyapunov-based nonlinear techniques based on the kinematic model. Chu
et al. proposed an improved adaptive terminal sliding mode observer based on local recurrent neural
network, for AUV to compensate for unmeasurable velocities in motion control. Tchilian et al. [8] pro-
posed an optimal motion control system based on a linear quadratic regulator for a new class of AUV,
that aiming to overcome the problems of autonomy due to the limited power. AUV are inevitably
affected by unknown external environmental disturbances, such as ocean currents, waves and wake
vortexes that affect the control accuracy for trajectory tracking. Since the publication of [9], adaptive
control has been extensively used for AUV as motion control, because it’s automatically adjusts the
controller to adapt to changes in the parameters of the controlled object. The Elmokadem et al. [10]
developed a terminal sliding mode control schemes for an under-actuated AUV to be robustly against
environmental disturbances and system uncertainties. The Zhang [11] presented a novel model pre-
dictive control for AUV three-demensional trajectory tracking, which improved the robustness of the
tracking control under the model uncertainties and time-varying disturbances. Al Makdah [12] devel-
oped a linear quadratic regulator (LQR) based comprehensive linearization algorithm for hybrid-AUV
that provides accurate tracking performance in the presence of underwater currents.

When underwater environmental exist unknown stochastic disturbances or time-varying distur-
bances, the hydrodynamic coefficients are time-varying and uncertain. Under such conditions, the
kinematics model which servers as the basis for control system is difficult to established, and it may
not be a priori as exact. Model-free adaptive control (MFAC) is a data-driven control approaches,
which was first proposed by Hou [13] based on dynamic linearization technique. It utilizes the real-
time control measurement input/output (I/O) data to establish an equivalent data model instead of a
mathematical model. The MFAC is a kind of online learning and self-adjusting control algorithm, such
that the external training and intervention are not required. Furthermore, compared with model-based
control theory, MFAC more effectively addresses the control problems caused by inaccurate modeling
or the model contains unknown perturbation terms [14]. For decades, some fruitful researches have
applied the data-driven ideology and MFAC scheme into field of robotics. Peng et al. [15] presented
data-driven containment control for multi-agents to handle the problems of linear discrete-time for
multi-agent system, and used on actor-critic network to online learning the iterative solutions. In an-
other publication of Peng et al. [16], authors presents an internal reinforce Q-learning method which
the implemented procedure is designed based data-driven way, and designed new distributed online-
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learning framework for each agent, the controller can achieve optimal tracking control for nonlinear
multi-agents system. Meanwhile, [17] designed a compact form dynamic linearization based MFAC
heading control system for unmanned surface vehicle, and [18] proposed a heading control system
based on MFAC scheme and a particle swarm optimization (PSO) algorithm for an unmanned ground
vehicle. However, relatively few studies have applied MFAC algorithm to the field of underwater vehi-
cles. In the research of Cheng et al. [19], the sliding mode control based MFAC was designed for AUV
tracking missions under external disturbances and actuator failures. Clearly, the use of MFAC theory
as trajectory tracking control scheme for AUV. in most of MFAC, applications approximate dynamic
data model is constructed by using pseudo partial derivative (PPD) estimation depend on compact form
dynamic linearization (CFDL) method, which requires less calculation. However, because PPD esti-
mation relies solely on present time point and most recent last time point I/O data, it manufacture an
error between dynamic linearization data model and the object actual model. Particularly the system
is subjected to a stochastic sudden disturbance, the accuracy of CFDL-MFAC algorithm would experi-
ence a considerable decrease. Several studies have presented an MFAC scheme based on partial form
dynamic linearization (PFDL) method. Unlike CFDL method, PFDL considers a fixed-length sliding
time window of control input to estimate dynamics in system. However, in real-world conditions, the
system output set may relate to an input set of a certain length, therefore, the estimation error can still
exist. Regarding the system outputs and states values, the unknown factors of system will affect the
measurements and ultimately affect the control accuracy of MFAC. To prevent this, many researches
have adopted observer based schemes to estimate the unknown factors in the system to ensure the con-
trol accuracy. Chen et al. [20] designed a finite-time velocity free position consensus tracking control
system for multiple AUV systems, and developed distributed finite-time observers for follower vehicles
to estimate the state that make sure the follower vehicles can track the leader’s trajectory within finite
time. The Li et al. [21] proposed a structure-improved linear extended states observer (ESO) based
MFAC strategy that aims to provide AUV heading control under parameter perturbations and external
disturbances. In the research of Hou et al. [22], an improved sliding mode control strategy via ESO
based model-free adaptive was proposed to address the load disturbance and uncertain factors problem
to which robotic permanent magnet synchronous motors are particularly susceptible. The Saleki and
Fateh [23] designed an model-free control based on ESO for electrically driven robot, and aimed to
estimate the uncertain dynamical behavior of system without any mathematical modeling.

Compare with the backdrop summarize above, the main contributions of this study are as follows:

1. We presented a novel MFAC trajectory tracking algorithm for AUV via adopting full-form dy-
namic linearization (FFDL) method to establish an equivalent data model. FFDL not only con-
siders the certain length sliding time window of control input, but also considers a certain sliding
time window of output to esitimate dynamics of system. Comparing with MFACs scheme based
on other dynamic linearization methods, the proposed MFAC algorithm can achieve higher track-
ing accuracy when the priori model or measurement of disturbance unable to obtain, and also
exhibits higher control accuracy when system control signal sudden jump.

2. We introduced an iterative extended state observer (IESO) based on data driven scheme to esti-
mate the model approximation error produced by external environment unknown disturbances.
The proposed novel IESO-MFAC algorithm is a type of data-driven control scheme, which also
only demands the online I/O data. In contrast to typical ESO scheme, the proposed IESO in
this paper runs in an iterative direction and ia able to learn from repeated iterations. Moreover,
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the IESO can utilize I/O data to estimate the unknown disturbance and feedback the estimations
synchronously when the MFAC estimate the pseudo gradient (PG). Therefore it exhibits superior
estimation performance aiming to time-varying uncertain disturbances.

3. We designed a novel data-driven multi close-loop control architecture for AUV. Based on this sys-
tem structure, the controller can control the horizontal and vertical motion attitudes separately on
the same time. It offers improved control accuracy under external disturbances, and the controller
exhibits faster convergence rate and reduces sensitivity to parameter jump.

The remainder of this paper is organized as follows. In Section 2, the AUV kinematics model
of Euler’s discretization is given and processed by full-form dynamic linearization, establishing the
equivalent data model based on MFAC scheme. In Section 3, the design procedure of data-driven
IESO scheme is introduced, the stability of control system is analyzed. In Section 4, the comparison
verification and simulation results are introduced. Finally, in Section 5 the conclusions are drawn.

2. Equivalent data model and preliminaries

In this section, an incremental model free adaptive control algorithm is proposed. Although this
control methodology is for nonlinear system by data-driven ideology has been widely applied in the
field of industrial control [24], however there are few applications or researches into the field of motion
control, such as motion control of industral robots, aerial vehicles and underwater vehicles. Therefore,
this novel control methodology merrits exploration for AUV tracking control.

2.1. Dynamic model of the AUV

The terminology used for AUV six degrees-of-freedom (DoF) of motion for AUV is presented
in Table 1 which defined by Fossen [25]. The reference coordinate system is displayed in Figure
1. Generally, the tracking control can be regarded as horizontal plane motion control and vertical
plane motion control, which can be controlled independently. Therefore, the six DoF model can be
decoupled into horizontal motion DoF and vertical motion DoF, and the degree of freedom about roll
can be ignored while its attitude can be obtain by the attitude angles trigonometric projection of heading
angle and pitch angle. Assuming that the center of gravity of underwater vehicle coincides with the
origin of body-fixed coordinate system, the AUV motion model is described as follows [25].

Table 1. Terminology of AUV six DoF.

DoF E-fixed B-fixed velocities
1 Surge X x u
2 Sway Y y v
3 Heave Z z w
4 Roll K Φ p
5 Pitch M θ q
6 Yaw N ψ r
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Figure 1. Coordinate frames of AUV in underwater space.


X = m

[
(u̇ − vr) − xgr2 − ygṙ

]
Y = m

[
(v̇ + ur) − ygr2 + xgṙ

]
N = Izṙ + m

[
xg(v̇ + ur) − yg(u̇ − vr)

] ;


X = m

(
u̇ + wq − xgq2 + zgq̇

)
Z = m

(
ẇ − uq − zgq2 + xgq̇

)
M = Iyq̇ + m

[
zg(u̇ + qw) − xg(ẇ − qu)

]
(2.1)

where: m is the mass of vehicle; xg, yg, zg are the center of gravity; Iz and Iy moment of inertia of
vehicle on Y and Z coordinate axes in inertial coordinate system; u̇, v̇, ẇ are accelerations of vehicle; ṙ
and q̇ are angular accelerations of vehicle; X, Y , Z, M and N are the forces and moments on the vehicle
body frame in inertial coordinate system.

Because the calculation process for each plane motion is the same, in this paper we only present
the derivation and prove calculation for horizontal plane motion. In this plane, AUV is affected by the
forces from forward and lateral directions. In budy-fixed coordinate system, the position and attitude
vectors of the AUV are expressed as [x, y, ψ]T . Furthermore, ψ is the heading angle and determines the
transformation matrix J(ψ) from body-fixed coordinate system to earth-fixed coordinate system. Con-
sidering the center of buoyancy coincides with center of gravity, in terms of horizon motion, the conver-
sion function of inertial coordinate system to body-fixed coordinate expressed as Eq (2.2). Therefore,
the Kinematic model of horizontal motion is described as Eq (2.3).

[
X
Y

]
=


cosψ − sinψ 0
sinψ cosψ 0

0 0 1


[

x
y

]
; ψ̇ =


1
0
0

 r (2.2)
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Therefore, the Kinematic model of horizontal motion is described as Eq (2.3).
ẋ = u cosψ − v sinψ
ẏ = u sinψ + v cosψ

ψ̇ = r
(2.3)

2.2. Full-format dynamic linearization

Via Euler’s discrete method, the Kinematic model of horizontal motion can be further expressed as
follow: 

x(k + 1) = x(k) + Tu cos(ψ(k)) − Tv sin(ψ(k))
y(k + 1) = y(k) + Tu sin(ψ(k)) + Tv cos(ψ(k))

ψ(k + 1) = ψ(k) + Tr(k)
(2.4)

According to the data-driven ideology, the nonlinear discrete-time system can transform into equiv-
alent data form [26]. Therefore,the model of heading motion in horizontal plane based on data-driven
can be expressed as the following form:

ψ(k + 1) = f (ψR(k), . . . ψR (k − nu) , r(k), . . . r (k − nu)) + fh(k) (2.5)

where: fh(k) represents the horizontal component of unknown disturbance from external environment,
ψR(k) is the rated heading angle control output. We adopt FFDL method to estimate dynamics of
system, it not only considers the certain length sliding time window of control input, but also considers
a certain sliding time window of output. Defining a vector HLy,Lu(k) ∈ RLy+Lu , which composed of all
input signals in a sliding time window [k− Lu + 1, k] that related to control input, and all output signals
in a sliding time window [k − Ly + 1, k] that related to control output, that is:

HLy,Lu(k) =
[
ψR

(
k − Ly + 1

)
, · · ·ψR(k), r (k − Lu + 1) , · · · r(k)

]T
(2.6)

We made assumptions as follows:

Assumption 1. There exist a bounded control input r(k) while the system output ψ(k) is bounded,
under the action of such control input, the system output is equal to desired output.

Assumption 2. Except for finite time points, the partial derivative of system (2.5) regarding to various
variable is continuous, and satisfies the generalized Lipschitz condition, that is for any k1 , k2, k1, k2 ≥

0 and HLy,Lu (k1) , HLy,Lu (k2) , then the following is true:

‖ψ (k1 + 1) − ψ (k2 + 1)‖ ≤ b
∥∥∥HLy,Lu (k1) − HLy,Lu (k2)

∥∥∥ (2.7)

where: ψ (ki + 1) = f
(
ψ (ki) , . . . ψ

(
ki − ny

)
, r (ki) , . . . r (ki − nu)

)
, i = 1, 2; b > 0 is a positive constant.

Remark 1. Assumption 1 is the classic constraint condition for general control system design. As-
sumption 2 is the limit on the upper bound of the system output rate of change, that is the energy
changes of input and output are also bounded.

From the point of view of physical, the assumptions for the controlled object is reasonable and
the AUV satisfies them. It is obvious that AUV satisfies these two assumptions. Expressing that
∆HLy,Lu(k) = HLy,Lu(k)−HLy,Lu(k− 1), the following theorem will present the FFDL method for sys-
tem (2.5).
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Theorem 1. When
∥∥∥∆HLy,Lu(k)

∥∥∥ , 0, there exists a time-varying parameter matrix named Pseudo Gra-
dient (PG) ΦT

f ,Ly,Lu
(k) ∈ Rm×m must exist such that system (2.5) can be transformed into the linearization

data model which is expressed as follows [27].

∆ψR(k + 1) = ΦT
f ,Ly,Lu

(k)∆HLy,Lu(k) (2.8)

ψ(k + 1) = ψ(k) + ΦT
f ,Ly,Lu

(k)∆HLy,Lu(k) + ∆ fh(k) (2.9)

Moreover, for any time point k, the ΦT
f ,Ly,Lu

(k) =
[
Φ1(k), . . . ,ΦLy+1(k), . . . ,ΦLy+Lu(k)

]T
is bounded.

Let

σ(k) = f
(
ψR(k), . . . ψR

(
k − Ly

)
, · · · , ψR

(
k − ny

)
, r(k − 1), . . . , r (k − Lu) , · · · , r (k − nu)

)
f
(
ψR(k − 1), . . . ψR

(
k − Ly

)
, ψR

(
k − Ly − 1

)
· · · , ψR

(
k − ny

)
, r(k − 1), . . . , r (k − Lu) ,

r(k − Lu − 1) , · · · , r (k − nu))

(2.10)

From Assumption 1 and Cauchy mean value theorem [28], system (2.5) can be expressed as:

∆ψR(k + 1) =
∂ f ∗

∂ψR(k)
∆ψR(k) + · · · +

∂ f ∗

∂ψR

(
k − Ly

)∆ψR

(
k − Ly + 1

)
+

∂ f ∗

∂r(k)
∆r(k)

+ · · · +
∂ f ∗

∂r (k − Lu)
∆r (k − Lu + 1) + σ(k)

(2.11)

where: ∂ f ∗

∂ψR(k−i) , 0 ≤ i ≤ Ly − 1 and ∂ f ∗

∂r(k− j) , 0 ≤ j ≤ Lu − 1 respectively rep-
resent the value of f (. . .) regarding to the (i + 1)th partial derivative between[
ψR(k), . . . , ψR

(
k − Ly + 1

)
, ψR

(
k − Ly

)
, · · · , ψR

(
k − ny

)
, r(k), . . . , r (k − Lu + 1) , r(k − Lu), · · · , r (k − nu)

]T
,

and value of f (. . .) regarding to the (ny + j + 2)th partial derivative between[
ψR(k), . . . ψR

(
k − Ly

)
, ψR

(
k − Ly

)
, · · · , ψR

(
k − ny

)
, r(k − 1), . . . , r (k − Lu) , · · · , r (k − nu)

]T
.

For each fixed time point k, we consider data equation in the following which contains the variable
η(k).

σ(k) = ηT (k)
[
∆ψR

(
k − Ly + 1

)
, · · ·∆ψR(k),∆r (k − Lu + 1) , · · ·∆r(k)

]T
= ηT (k)∆HLy,Lu(k) (2.12)

Because
∥∥∥∆HLy,Lu(k)

∥∥∥ , 0, that is the equation must exist an unique solution η∗(k) must exist satis-

fying ΦT
f ,Ly,Lu

(k) = η∗(k) +

[
∂ f ∗

∂ψR(k) , · · · ,
∂ f ∗

∂ψR(k−Ly) ,
∂ f ∗

∂r(k) , · · · ,
∂ f ∗

∂r(k−Lu)

]T
. Thus, the Eq (2.12) can be trans-

formed into ∆ψ(k + 1) = ΦT
f ,Ly,Lu

(k)∆HLy,Lu(k) that we presented in Eq (2.8).
According to the aforementioned Assumption 2, we can obtain that for any time point k and∥∥∥∆HLy,Lu(k)

∥∥∥ , 0 always satisty the following equation: ‖∆ψ(k + 1)‖ =
∥∥∥∥ΦT

f ,Ly,Lu
(k)∆HLy,Lu(k)

∥∥∥∥ ≤
b
∥∥∥∆HLy,Lu(k)

∥∥∥. The aforementioned inequality are invalid if the components in ΦT
f ,Ly,Lu

(k) are un-
bounded. Therefore, we can conclude that the PG ΦT

f ,Ly,Lu
(k) is bounded for any k.
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3. Control design and stability analysis

The external perturbations can influence the attitude accuracy and further affect the tracking per-
formance. Therefore, the mentality of this study is focus on attitude accurate control to realize the
accuracy control of global trajectory tracking.The essence of AUV attitude control is for a complex
nonlinear system control issue. Classic adaptive control based on mathematical models is difficult
to achieve precise control of certain nonlinear links when the system is subject to certain unknown
nonlinear disturbances.

This section we adopted dynamic linearization scheme that proposed in Section 2 for AUV attitude
control system with unknown external disturbances. The multi close loop MFAC system is designed
based on an equivalent data model of online input and output which is shown in Figure 2. Furthermore,
we analyze the stability of the MFAC system.

Figure 2. Diagram of the double closed loop IESO-MFAC scheme.

3.1. Projection algorithm pseudo gradient estimation

In view of the data model of AUV heading system, we consider the following criterion function

J
(
ΦT

f ,Ly,Lu
(k)

)
=

∥∥∥∥∆ψ(k) − ΦT
f ,Ly,Lu

(k)∆HLy,Lu(k − 1) − fh(k − 1)
∥∥∥∥2

+ µ
∥∥∥∥ΦT

f ,Ly,Lu
(k) − Φ̂T

f ,Ly,Lu
(k − 1)

∥∥∥∥2 (3.1)

By using the optimal solution ∂J/∂Φ̂(k) = 0, we can obtain that

Φ̂T
f ,Ly,Lu

(k) = Φ̂T
f ,Ly,Lu

(k − 1) +
η∆HLy,Lu(k − 1)

(
∆ψ(k) − Φ̂T

f ,Ly,Lu
(k)∆HLy,Lu(k − 1) − fh(k − 1)

)
µ +

∥∥∥∆HLy,Lu(k − 1)
∥∥∥2 (3.2)
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when
∥∥∥∥Φ̂T

f ,Ly, Lu
(k)

∥∥∥∥ ≤ ε or
∥∥∥∆HLy, Lu(k − 1)

∥∥∥ ≤ ε, Φ̂T
f ,Ly,Lu(k) = Φ̂T

f ,Ly,Lu(1). where: µ > 0 is weight factor,

η ∈ (0, 1] is step factor, ε is a small enough positive constant, Φ̂T
f ,Ly,Lu

(1) is the initial value of Φ̂T
f ,Ly,Lu

(k)
and Φ̂T

f ,Ly, Lu
(1) > 0.

3.2. MFAC algorithm

Consider the following criterion function:

J(r(k)) = ‖ψR(k + 1) − ψ(k + 1)‖2 + λ‖r(k) − r(k − 1)‖2 (3.3)

By substituting Eq (2.9) into the criterion function Eq (3.3), taking the derivative of r(k) and making
it equal to zero, then we can get:

r(k) =r(k − 1) +
ρΦ̂Ly+1(k)

(
ψR(k + 1) − ψ(k) − f̂h(k − 1)

)
λ +

∥∥∥Φ̂Ly+1(k)
∥∥∥2

−
Φ̂Ly+1(k)

[∑Ly

i=1 ρΦ̂i∆ψ(k − i + 1) −
∑Ly+Lu

i=Ly+2 ρΦ̂i∆r
(
k − Ly − i + 1

)]
λ +

∥∥∥Φ̂Ly+Lu(k)
∥∥∥2

(3.4)

where: λ > 0 is a weight factor, ρ ∈ (0, 1] is a step factor, i = 1, 2, 3, · · · , Ly + Lu

Because the derivation process of control scheme for Vertical plane motion is almost identical to
that for Horizontal plane, we will not include the calculation process in this paper. The Vertical motion
MFAC algorithm is expressed as follows:

q(k) =q(k − 1) +
ρΦ̂Ly+1(k)

(
θR(k + 1) − θ(k) − f̂v(k − 1)

)
λ +

∥∥∥Φ̂Ly+1(k)
∥∥∥2

−
Φ̂Ly+1(k)

[∑Ly
i=1 ρΦ̂i∆θ(k − i + 1) −

∑Ly+Lu
i=Ly+2 ρΦ̂i∆q

(
k − Ly − i + 1

)]
λ +

∥∥∥Φ̂Ly+Lu(k)
∥∥∥2

(3.5)

3.3. IESO disturbance estimation

To estimate the model approximation error produce by external disturbance, we derived the data
driven based second order IESO. According to AUV horizontal motion dynamic linearization data
model (2.9). In IESO scheme, the unknown disturbance fh(k) can be estimated via iterative I/O data
of discrete time point on iteration axis. From the dynamic linear data model (2.9), we can obtain dis-
turbance D-value ∆ fh(k). We define that ψ̂(k) as the estimated value of ψ(k) and f̂h(k) as the estimated
value of fh(k), the IESO discrete form can be constructed as follows:

ψ̂(k + 1) = ψ̂(k) + Φ̂T
f ,Ly,Lu

(k)∆HLy,Lu(k) + ∆ f̂h(k) + Tβ1ψ̃(k)

f̂h(k + 1) =


ξ,∆ fh(k) > ξ

f̂h(k) + Tβ2 f̃h(k), |∆ fh(k)| ≤ ξ
−ξ,∆ fh(k) < −ξ

(3.6)
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where: ξ > 0 is defined as limiting constant. βi ∈ R3×3, i = 1, 2 are gain matrices, which is selected as:

βi =


ω0 0 0
0 ω0 0
0 0 ω0

. ω0 > 0 is defined as the bandwidth of observer.

Let eψ(k) = ψ̃(k) = ψ(k) − ψ̂(k) and e f (k) = f̃h(k) = fh(k) − f̂h(k) represent errors between the
estimated values and actualc values. The discrete form observer error is constructed as follows:{

∆eψ(k + 1) = e f (k) + Φ̃T
f ,Ly,Lu

(k)∆HLy,Lu(k) − Tβ1eψ(k)
∆e f (k + 1) = ∆ fh(k + 1) − Tβ2e f (k)

(3.7)

where: Φ̃T
f ,Ly,Lu

(k) as the error between PG estimated value and actual value

Remark 2. In IESO scheme, the control output ψ(k) and system unknown disturbance fh(k) can be
estimated simultaneously. Thereby, the gain in IESO can be smaller than traditional typical linear
ESO, which ensures that the peaking phenomenon of IESO is alleviated. In addition, the estimated
value of fh(k) can be utilized to compensate the estimation error of ΦT

f ,Ly,Lu
(k).

3.4. Stability analysis

To rigorously verify the stability of the system, we propose the following assumptions:

Assumption 3. For the bounded expected output vector
[
ψ(k), · · · , ψ

(
k − Ly + 1

)]T
in a certain sliding

time window, a bounded input vector [r(k), · · · , r (k − Lu + 1)]T is always present. Driven by this input,
the system’s output vector in this time window is equal to the

[
ψ(k), · · · , ψ

(
k − Ly + 1

)]T
.

Assumption 4. For any time point k and
∥∥∥∆HLy,Lu(k)

∥∥∥ , 0, the positive and negative of the first element
in PG of the system remains unchanged, that is Φ1(k) > ε > 0 or Φ1(k) < −ε.

Remark 3. Assumption 3 is a necessary condition for solving control problems, in other words, system
(2.5) is controllable. The physical basis of Assumption 4 is obvious, that is the system input increased
and the corresponding system output does not decreased. The system can be considered as being
”quasi-linear”.

Theorem 2. For the system satisfying the Assumptions 3 and 4, the close-loop system is bounded-
input and bounded-output (BIBO) stable, namely, input sequence and output sequence of nonlinear
system are bounded. Thus, the estimated value of PG via the projection algorithm Eq (3.2) is bounded.

If system (2.5) satisfies
∥∥∥∥Φ̂T

f ,Ly,Lu
(k)

∥∥∥∥ ≤ ε or
∥∥∥∆HLy,Lu(k − 1)

∥∥∥ ≤ ε, or sign
(
Φ̂1(k)

)
, sign

(
Φ̂1(1)

)
,

then Φ̂T
f ,Ly,Lu

(k) must be bounded.

We define that Φ̃T
f ,Ly,Lu

(k) = Φ̂T
f ,Ly,Lu

(k) − ΦT
f ,Ly,Lu

(k) as the estimation error of PG. By subtracting
ΦT

f ,Ly,Lu
(k) from both sides of the Eq (3.2), we can obtain that:

Φ̃T
f ,Ly,Lu

(k) =

I − η∆HLy,Lu(k − 1)2

µ +
∥∥∥∆HLy,Lu(k − 1)

∥∥∥2

 Φ̃T
f ,Ly,Lu

(k − 1) + ΦT
f ,Ly,Lu

(k − 1) − ΦT
f ,Ly,Lu

(k) (3.8)
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From Theorem 1 we know that
∥∥∥∥ΦT

f ,Ly,Lu
(k)

∥∥∥∥ is bounded, assume that the upper bound of
∥∥∥∥ΦT

f ,Ly,Lu
(k)

∥∥∥∥
is b̄. By taking the norm on both side of Eq (3.8), we can obtain:∥∥∥∥ΦT

f ,Ly,Lu
(k)

∥∥∥∥ ≤
∥∥∥∥∥∥∥∥
I −

η∆HLy,Lu(k − 1)2

µ +
∥∥∥∆HLy, Lu(k − 1)

∥∥∥2

 Φ̃T
f ,Ly,Lu

(k − 1)

∥∥∥∥∥∥∥∥
+

∥∥∥∥ΦT
f ,Ly,Lu

(k − 1) − ΦT
f ,Ly,Lu

(k)
∥∥∥∥

≤

∥∥∥∥∥∥∥∥
I −

η∆HLy,Lu(k − 1)2

µ +
∥∥∥∆HLy,Lu(k − 1)

∥∥∥2

 Φ̃T
f ,Ly,Lu

(k − 1)

∥∥∥∥∥∥∥∥ + 2b̄

(3.9)

Obvious, the function
η∆HLy ,Lu (k−1)2

µ+‖∆HLy ,Lu (k−1)‖
2 increases monotonically with respect to ∆HLy,Lu(k − 1)2, be-

cause µ > 0 and η ∈ (0, 1], there must exist a constant d that satisfies following inequality

0 ≤

∥∥∥∥∥∥∥∥I −
η∆HLy,Lu(k − 1)2

µ +
∥∥∥∆HLy,Lu(k − 1)

∥∥∥2

∥∥∥∥∥∥∥∥ ≤ d
∥∥∥∥Φ̃T

f ,Ly,Lu
(k − 1)

∥∥∥∥ (3.10)

From Eq (2.7) in Assumption 3 and Theorem 2, we can know that
∥∥∥∥ΦT

f ,Ly,Lu
(k)

∥∥∥∥ ≤ b̄ and∥∥∥∥ΦT
f ,Ly,Lu

(k − 1) − ΦT
f ,Ly,Lu

(k)
∥∥∥∥ ≤ 2b̄. Referring to the inequality (Eq 3.10) and system (3.7) we can get:∥∥∥∥Φ̃T

f ,Ly,Lu
(k)

∥∥∥∥ ≤d
∥∥∥∥Φ̃T

f ,Ly,Lu
(k − 1)

∥∥∥∥ + 2b̄

≤ d2
∥∥∥∥Φ̃T

f ,Ly,Lu
(k − 2)

∥∥∥∥ + 2db̄ + 2b̄

≤ · · · ≤ dk−1
∥∥∥∥Φ̃T

f ,Ly,Lu
(1)

∥∥∥∥ +
2b̄

(
1 − dk−1

)
1 − d

(3.11)

According to the aforementioned result, we can know that Φ̃T
f ,Ly,Lu

(k) is bounded can be obtained,
and because Theorem 1 indicates that ΦT

f ,Ly,Lu
(k) is bounded, we can obtain that Φ̂T

f ,Ly,Lu
(k) is bounded.

Corollary 1. When the Φ̂T
f ,Ly,Lu

(k) is bounded, the system satisfies that
∥∥∥∥Φ̂T

f ,Ly,Lu
(k)

∥∥∥∥ ≤ ε or∥∥∥∆HLy,Lu(k − 1)
∥∥∥ ≤ ε or sign

(
Φ̂1(1)

)
, sign

(
Φ̂1(k)

)
.

Theorem 3. For the close-loop system satisfying the Assumptions aforementioned, when the number
of iterations approaches infinity, the tracking error of the system is asymptotically convergent in a finite
time window.

We define that eh(k) =
[
eψ(k), e f (k)

]T
, if the tracking error of the system converges asymptotically,

according to Eq (2.9) and projection algorithm, we can get the tracking error dynamic characteristic as
follow:

eh(k) =ψ(k) − ψR(k) = ψ(k) − ΦT
f ,Ly,Lu

(k)∆HLy,Lu(k) − fh(k)

= eh(k − 1) −
ρΦT

f ,Ly,Lu
(k)Φ̂T

f ,Ly,Lu
(k) (eh(k − 1) − fh(k))

λ +
∥∥∥Φ̂Ly+1(k)

∥∥∥2 − fh(k)

=

1 − ρΦT
f ,Ly,Lu

(k)ΦT
f ,Ly,Lu

(k)

λ +
∥∥∥Φ̂Ly+1(k)

∥∥∥2

 eh(k − 1) +
ρΦT

f ,Ly,Lu
(k)Φ̂T

f ,Ly,Lu
(k) fh(k)

λ +
∥∥∥Φ̂Ly+1(k)

∥∥∥2 − fh(k)

(3.12)
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By taking the norm of both sides of system (3.12), we can get that:

‖eh(k)‖ ≤

∥∥∥∥∥∥∥∥1 −
ρΦT

f ,Ly,Lu
(k)Φ̂T

f ,Ly,Lu
(k)

λ +
∥∥∥Φ̂Ly+1(k)

∥∥∥2

∥∥∥∥∥∥∥∥ ‖eh(k − 1)‖

+

∥∥∥∥∥∥∥∥
ρΦT

f ,Ly,Lu
(k)Φ̂T

f ,Ly,Lu
(k) fh(k)

λ +
∥∥∥Φ̂Ly+1(k)

∥∥∥2

∥∥∥∥∥∥∥∥ − ‖ fh(k)‖

(3.13)

According to Assumptions 3 and 4 and the proof result of Theorem 2 we can know that the positive
and negative of ΦT

f ,Ly,Lu
(k) remain unchanged. Referring to Corollary 1, ΦT

f ,Ly,Lu
(k)Φ̂T

f ,Ly,Lu
(k) ≥ κε > 0,

κ is a positive constant. According to Eq (2.7) in Assumption 2, we assumed that
∥∥∥∥Φ̂T

f ,Ly,Lu
(k)

∥∥∥∥ ≤ b̄,

b̄ =
[
bΦ̂, bΦ, b f̂ , b f

]T
. The inequality (Eq 3.13) can be further constructed as:

0 <
ρκε

λ + b2
Φ̂

≤
ρΦT

f ,Ly,Lu
(k)Φ̂T

f ,Ly,Lu
(k)

λ + ΦT
f ,Ly,Lu

(k)2
≤
ρbΦ

∥∥∥∥Φ̂T
f ,Ly,Lu

(k)
∥∥∥∥

λ +
∥∥∥∥Φ̂T

f ,Ly,Lu
(k)

∥∥∥∥2 ≤
bΦ

∥∥∥∥Φ̂T
f ,Ly,Lu

(k)
∥∥∥∥

2
√
λ
∥∥∥∥Φ̂T

f ,Ly,Lu
(k)

∥∥∥∥ < 1 (3.14)

We define two positive constants c1 and c2 as coefficients, in which c1,c2 ∈ (0, 1). For the first item
and the second item on the right side of the inequality, we can obtain that:∥∥∥∥∥∥

(
1 −

ρΦT
f ,Ly ,Lu

(k)ΦT
f ,Ly ,Lu

(k)

λ+|Φ̂Ly+1(k)|
2

)∥∥∥∥∥∥ ‖eh(k − 1)‖ ≤ c1 ‖eh(k − 1)‖ ;∥∥∥∥∥ρΦT
f ,Ly ,Lu

(k)ΦT
f ,Ly ,Lu

(k) fh(k)

λ+|Φ̂Ly+1(k)|
2

∥∥∥∥∥ ≤ c2b f̂

(3.15)

where: 0 < c1 = 1 − ρκε

λ+b2
ω̂

< 1; 0 < c2 = bΦ

2
√
λ
< 1.

According to ‖ fh(k)‖ ≤ b f , we can integrate Eqs (3.13)–(3.15) and can obtain that:

‖eh(k)‖ ≤c1 ‖eh(k − 1)‖ + c2b f̂ + b f ≤ c2
1 ‖eh(k − 2)‖ + (c1 + 1) c2b f̂ + b f

≤ · · · ≤ ck
1 ‖eh(1)‖ +

(
ck−1

1 + · · · + 1
)

c2b f̂ + b f ≤ ck
1 ‖eh(1)‖ +

c2b f̂ + b f

1 − c1

(3.16)

Because the initial error eh(1) must be bounded, so it is obvious that limx→∞eh(k) ≤
c2b f̂ +b f

1−c1
is always

true. Then we can know that the tracking error will converge to a bounded range when the number of
iterations approaches infinity. Therefore the Theorem 3 have been proven.

4. Numerical simulation

In this section, to demonstrate the effectiveness and robustness of the control algorithm we pro-
posed, we present the IESO-MFAC control schemel. For comparison, simulations of different dynamic
linearization method for MFAC are presented firstly. Moreover, an underwater trajectory is designed
aim to verify the control performance of the proposed IESO-MFAC algorithm.
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4.1. Dynamic linearization schemes comparison

(a)

(b)

(c)

Figure 3. Comparative simulation results of comparison without extarnal disturbance. (a)
Tracking performance. (b) PG estimation of dynamic linearization schemes. (c) Variances
of dynamic linearization schemes.
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By relying on numerical simulations of three dynamic linearization methods, we aim to compare the
control effects to exhibit the effectiveness of FFDL-MFAC and verify its superiority. For the simulation,
the weight factor λ and the step factor ρ for three dynamic linearization schemes are set to be identically.

(a)

(b)

(c)

Figure 4. Comparative simulation results of comparison with white Gaussian noise. (a)
Tracking performance. (b) PG estimation of dynamic linearization schemes. (c) Variances
of dynamic linearization schemes.
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We refer the literature of Hou and Jin [26], and adopt a nonlinear discrete time system as follow:

y(k + 1) =
y(k)

1 + y(k)2 + u(k)2 + a(k)u(k) (4.1)

where: d(k) = 1 + sin(2πk/1500) is a time-varying parameter taken from reference [26]. The afore-
mentioned mathematical models serve as I/O data generator for the systems to be controlled and are
unrelated to the MFAC control design does not relate to it. To test and verify the performance of the
FFDL under MFAC control scheme we proposed, firstly, we designed two scenarios to compare three
dynamic linearization methods to have comparison.

Scenario 1. Case towards sudden change of the reference input signal, with nonexternal disturbance.
The simulation results of Scenario 1 are displayed in Figure 3.

Scenario 2. Case towards the system affected by white Gaussian noise with a signal-to-noise ratio of
90 dB and a sudden change in the reference input signal. The simulation results of Scenario 2 are
displayed in Figure 4.

Considering the random quantities contain in both scenarios, we conducted the same simulation test
for five times, and present one of test results to reveal in this paper. Under these two scenarios, the
reference input signal was set as follow [27]:{

y∗(k + 1) = 0.5 sin(k/20), k ≤ 360
y∗(k + 1) = 0.5 sin(k/30) + 0.3 cos(k/20), k > 360

(4.2)

The Figure 3(a) displays the tracking performance of the output of FFDL, PFDL and CFDL meth-
ods. Each dynamic linearization method converges to desired trajectory over time. Among them, FFDL
has the fastest convergence rate and most accurate tracking performance PFDL has relatively the most
serious overshoot and CFDL has relatively the slowest convergence rate. Furthermore, from Figure
3(b) indicates that the PG estimation value under FFDL method can jump in response to the sudden
change of reference input signal. The variances shown in Figure 3(c), we can obtain that FFDL method
exhibits the smallest dispersion which means that FFDL-MFAC possess the relatively best accuracy.

Under the influence of white Gaussian noise, the performance advantages of FFDL method are mag-
nified. The accuracy of CFDL method is diminished and the overshoot of PFDL method is enlarged.
We can conclude that for system exists uncertain or unknown disturbance. By adopting sliding time
window vector of input and output data, the FFDL method can estimate complex dynamics of system
with best accuracy.

4.2. Underwater trajectory tracking simulation

To determine the feasibility and effectiveness of the proposed AUV tracking control scheme, we use
specifications of AUV in Figure 5 from Underwater docking project of Jiangsu University of Science
and Technology, China [30, 31]. The parameters of AUV technical specifications are listed in Table 2.
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Table 2. “T-SEA I” AUV’s technical specification.

Parameters Data
Diameter (cm) 22
Length (cm) 213.5
Weight (kg) 65
Maximum speed (kn) 2.5
Battery life (hour) 6
Working depth (m) 60

Figure 5. Prototype AUV“T-SEA I”.

To examine the tracking performance of the proposed IESO-MFAC scheme, an underwater trajec-
tory is designed and AUV is commanded to track this trajectory. We considered ocean currents and
wave disturbance to simulate the real ocean environment as Lv.2 ocean conditions of “International
Ocean State Standard”, and a typical traditional MFAC algorithm is set as comparative analysis.

Under this test, the initial position is defined as: [x(0), y(0), z(0)]T = [0, 0, 0]T , the initial attitude
angles are set as: [ψ(0), θ(0), Φ(0)]T = [0, 0, 0]T , the initial velocities are set as: [u(0), v(0),w(0)]T =

[0, 0, 0]T , and the initial attitude-angular velocities are set as: [p(0), q(0), r(0)]T = [0, 0, 0]T . The ocean
wave is set as 0.5 m and current is set as 0.2 m/s. The simulation results are displayed in Figures
4.3(a–d). Considering random quantities contain in this scenario during simulating, we also conducted
the same simulation test for five times, and present one of results.
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(a) (b)

(c) (d)

Figure 6. Simulation result of underwater trajectory tracking. (a) AUV motion trajectories
and reference trajectory in three-dimensional space. (b) AUV attitudes. (c) AUV attitude-
angular velocities. (d) AUV velocity components in Body-fixed coordinate.

On the basis of comparisons of motion trajectories of proposed algorithm and typical traditional
MFAC algorithm presented in Figure 6(a), it can be intuitional discovery that the IESO-MFAC we
proposed is is determined to possess higher accuracy under the disturbance of currents and waves via
disturbance estimation and compensation feedback, and the proposed algorithm exhibits superior ac-
curacy at the sharp-angular turning corners. To observe Figures 6(b–d) we can know that, because
the combining of data-driven based IESO, the proposed controller is able to estimate the model ap-
proximation error produced by external disturbance. Therefore, the improved MFAC exhibits superior
robustness and effectiveness.

5. Conclusions

In this study, we aim to research the trajectory tracking control issue of autonomous underwater
vehicle, and we focus on attitude accurate control to realize the accuracy control of global trajectory
tracking, We aim to design an algorithm that able to handle external disturbance and signal sudden
jump and system stochastic parameter. For this propose, a novel multi close-loop control architecture
of IESO based FFDL-MFAC scheme is proposed. We compare effects of different dynamic lineariza-
tion methods under non external disturbance and Gaussian noise, the simulation results reveal the
superiority of FFDL. The IESO based FFDL-MFAC scheme just use online I/O data through an equiv-
alent data model and does require the precise mathematical modeling and parameters. Meanwhile,
the IESO runs along the iterative axis and possesses ability of repetitive learning, it can be used with
data-driven strategy. It improves the accuracy of PG estimation and optimizes the MFAC controller
tracking performance against to the disturbances from currents and waves. We also design an under-
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water trajectory tracking simulation scenario and compare the performance of the proposed scheme
with a typical MFAC to demonstrate the superiority and applicability of proposed control scheme. The
simulation results are favorable.

In summary, the control algorithm we proposed demonstrated accurate tracking performance and
system robustness. Under the external environment disturbance we set, the proposed algorithm is able
to effectively conduct PG estimation and is able to response to control signal sudden jump. Also able to
estimate compensates approximation error caused by external disturbance and feedback compensations
to ensure the higher accuracy of tracking.

As future efforts, the data-driven strategy requires certain amount of time to approach the desired
trajectory, This restricts its use in vehicles that requires high sensitivity and accuracy while under
highly mobility. For this reason, the combining finite time control scheme with data-driven strategy is
crucial. Furthermore, the data-driven control strategy for multi-underwater-agent system is deserve to
be investigated.
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