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Abstract: After decades of rapid development, the scale and complexity of modern networks have
far exceed our expectations. In many conditions, traditional traffic identification methods cannot meet
the demand of modern networks. Recently, fine-grained network traffic identification has been proved
to be an effective solution for managing network resources. There is a massive increase in the use of
fine-grained network traffic identification in the communications industry. In this article, we propose
a comprehensive overview of fine-grained network traffic identification. Then, we conduct a detailed
literature review on fine-grained network traffic identification from three perspectives: wired network,
mobile network, and malware traffic identification. Finally, we also draw the conclusion on the chal-
lenges of fine-grained network traffic identification and future research prospects.
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1. Introduction

1.1. Background

Web traffic refers to the network traffic transmitted through hypertext transfer protocol (HTTP) or
HTTP over secure socket layer (HTTPS). For the advantages of high flexibility and strong expressive-
ness, HTTP/HTTPS protocol has become the main protocol for new emerging websites or applications.
As a result, web traffic has been the main traffic in the Internet since the mid-1990s [1]. Although the
proportion of web traffic was exceeded by P2P traffic at the beginning of this century [2,3]. However,
web traffic surpassed P2P traffic quickly and contributing more than half of Internet traffic [4–6] for
the following two reasons. (1) The P2P protocol strictly controlled by network operators due to the
excessive consumption of network resources; (2) The rapid rise of rich media web sites represented
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by Youtube and Flicker leads to web traffic to grow continuous. In addition, most mobile Internet
applications built on the web framework for its fast development and cross-platform features, which
result in the ratio of web traffic in some mobile networks achieved 90% [7]. With the increase of smart
mobile terminals, the growth rate of traffic in mobile internet far exceeds the traditional wire networks
[8], which will also promote the proportion of web traffic increasing continuously. As web traffic ac-
counts for a large proportion in various network, dividing web traffic into one category cannot meet the
needs of network management. Therefore, it is urgent to identify web traffic in fine-grained with vari-
ous applications including traffic engineering, billing, service recommendation, network planning, and
optimizing. In this article, we provide a comprehensive overview of fine-grained network traffic iden-
tification. Then, we conduct a detailed literature review on fine-grained network traffic identification
from three perspectives: wired network, mobile network, and malware traffic identification.

In recent years, fine-grained web traffic identification has attracted more and more attention from
researchers, and the related results have also emerged continuous [8–19]. This article is a summary of
fine-grained web traffic identification in the past few years. We summarize the rules obtained and the
challenges faced.

1.2. Related survey

A number of surveys on coarse-grained or fine-grained network traffic have been conducted. Previ-
ous study, including the works of T. T. T. Nguyen et al. [20] and A. Callado et al. [21], surveyed the
field of network traffic classification in coarse-grained. With the widespread use of HTTP(s) protocol
both in the wired and mobile network, there have emerged many research works concerning HTTP(s)
traffic [22–33], P. Velan et al. [25] focused on the encrypted traffic classification and analysis, and
D. Acarali et al. [26] studied the HTTP-based botnet traffic. These surveys studied network traffic in
both coarse-grained and fine-grained. Besides, with the widespread use of encrypted techniques in the
network, deep learning (DL) and deep reinforcement learning techniques (DRL) are used to identify
network traffic in fine-grained. The works of G. Aceto et al. [32] and A. Shahraki et al. [33] surveyed
the applying of DL and DRL techniques in the traffic engineering, respectively. Table 1 is a summary
of existing related surveys.

1.3. Research scope and contributions

In this work, we conduct a comprehensive survey of fine-grained web traffic identification. First, we
describe the scope of our concerned fine-grained web identification, and why the topic is to be chose.
Second, we provide a comprehensive overview of the existing fine-grained web traffic identification
is provided. Then, recent research of fine-grained traffic identification are systematically surveyed
from three perspectives: wired network, mobile network, malware traffic. Finally, we conclude the
existing challenges and future research perspectives for fine-grained web traffic identification. Our key
contributions are as follows:
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Table 1. Summary of existing related surveys.

Category
Year of
Publication

Authors Topic

Coarse-grained

2008 T. T. T. Nguyen et al. [20]
Coarse-grained internet traffic classification
using ML techniques

2009 A. Callado et al. [21]
Coarse-grained internet traffic
classification based on Port/Payload

2012 A. Dainotti et al. [22]
Coarse-grained Internet traffic
identification using hybrid techniques

2013 M. Finsterbusch et al. [23]
Coarse-grained internet traffic
classification based on payload

2015 D. Naboulsi et al. [24]
Coarse-grained mobile network
traffic identification and analysis

Fine/Coarse-grained

2015 P. Velan et al. [25]
Fine-grained encrypted traffic
classification and analysis

2016 D. Acarali et al. [26] Fine-grained web traffic identification

2016 W. PAN et al. [27]
Fine-grained internet encrypted
traffic identification

2018 F. Pacheco et al. [28]
Coarse-grained network traffic
classification by using ML methods

2019 S. Rezaei et al. [29]
Coarse-grained mobile network
traffic identification and classification

2019 A. D’Alconzo et al. [30] Coarse-grained network traffic

Fine-grained

2020 W. M. Shbair et al. [31] Fine-grained web traffic identification approaches

2021 G. Aceto et al. [32]
Fine-grained internet traffic identification and
classification

2021 A. Shahraki et al. [33]
Fine-grained internet traffic identification and
classification

(i) A comprehensive overview of fine-grained web traffic identification.

(ii) A detailed literature review on wired networks, mobile network and malware traffic.

(iii) For the systematic survey, we conclude the existing challenges and future perspectives for the fine-
grained web traffic identification. The conclusion can provide a lot of inspiration for the future
researchers.

A comprehensive overview of network traffic identification is provided in section 2. Then, a detailed
literature review of recent fine-grained web traffic identification is proposed in section 3 from three
aspects: wired network, mobile network, and malware traffic. In section 4, the evaluation criterion
for fine-grained identification is presented. Our insight into the challenges and future perspectives of
fine-grained web traffic identification are presented in Section 5. In Section 6, a conclusion is drawn.
Due to the large number of acronyms involved, Table 2 lists the abbreviations used in this paper.
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Table 2. List of abbreviations (alphabetical order).

Abbreviation Description Abbreviation Description

C4.5
An algorithm used to generate
a decision tree

OS Operate System

DL Deep learning P2P Peer to peer

DRL
Deep Reinforcement Learning
techniques

QoS Quality of Service

DPI Deep packet inspection QUIC
Quick UDP Internet
Connection

HTTP Hypertext Transfer Protocol SVM Support Vector Machine

IP Internet Protocol SPDY
A TCP-based session layer
protocol developed by Google

IMEI
International Mobile Equipment
Identity

URL Universal Resource Location

ML Machine Leaning UA User Agent

2. Overview of fine-grained web traffic identification

2.1. Introduction of network traffic identification

In the early days of the Internet, there were not many services in the network, and each service was
assigned a fixed port number by Internet Assigned Numbers Authority (IANA). Therefore, most of the
traffic at this stage can be identified through port-number. With the development and popularization of
the Internet, there are more and more services in the network. Emerging internet applications do not
necessarily use the service ports recommended by the IANA organization, resulting in the gradual fail-
ure of the method of using ports alone for traffic identification [34]. In order to improve the accuracy
of traffic identification, deep packet inspection has gradually become popular. Deep packet inspec-
tion identifies the flow by detecting the payload characteristics in the packet. Compared with the port
number-based methods, the accuracy of identification is greatly improved [35]. With the development
of network technology and the increasing attention paid to network security issues, more and more
internet content providers use encryption protocols to communication,which resulting in a decrease in
the accuracy of traditional port number and payload-based traffic identification methods [36]. At the
same time, the research of using machine learning methods for traffic identification and classification
has gradually increased [37–43]. Nowadays, deep learning algorithms have achieved important break-
throughs in the fields of image, speech, and text. More and more researchers use deep learning in the
field of traffic classification [15, 44].

2.2. Introduction of web traffic identification

The traditional traffic identification method stays at dividing the web traffic into a relatively coarse-
grained category without identifying the specific applications carried on it. In the modern network
environment, the applications carried by web traffic have more than simple web browsing and include
multiple type of applications such as multimedia playback, web mail, and file downloads. Therefore,
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researchers have begun to try to divide web traffic in a more fine-grained way through a variety of
different methods. With reference to the classification method of traditional traffic identification, the
related research on web traffic identification can be conclude from two aspects, identification based
on statistical features and identification based on packet analysis. Drawing on the traditional idea of
traffic identification based on statistical characteristics, some researchers regard HTTP session as a
data stream similar to TCP connections, and extract statistical characteristics such as packet length,
average arrival interval, and the number of HTTP requests, and use clustering, machine learning al-
gorithms such as C4.5 and SVM to recognize web traffic [38–42]. For the web traffic identification
method based on statistical characteristics does not rely on the understanding of the interactive content
of web applications, and it is more adaptable to the identification of private protocols or encrypted
traffic. However, due to the limitations of machine learning technology, web traffic can only be divided
into rough categories, such as web video, web mail, file download, botnet, ordinary web browsing, etc.,
make it difficult to associate traffic to specific applications. Therefore, the current fine-grained identifi-
cation of web traffic still mainly relies on methods based on packet analysis. These methods mainly use
the host, URL, User Agent, ContentType, and other fields in the HTTP request and response, as well
as the content to be transmitted, to identify web traffic [45–48]. Since the header fields of the request
and response messages of the HTTP protocol are in readable text form, this provides a useful place
for using keyword matching or text pattern matching to associate web traffic with known applications
or service providers. To cope with the large number and frequent changes of web applications, some
researchers have also proposed several methods for automatically extracting application fingerprints to
improve the problem of relying too much on manual extraction of application features based on packet
analysis and identification methods [49, 50].

2.3. Steps and techniques for fine-grained web traffic identification

The main task of fine-grained identification of web traffic is to determine the identification ob-
ject and the type of identification according to the requirements. Then, the appropriate identification
method is selected according to the identification requirements. The methods of fine-grained web
traffic identification can be divided into 6 categories, (1) payload-based methods [8–10]; (2) payload
randomness-based methods [12, 14]; (3) methods based on the distribution of data packets [31]; (4)
methods based on machine learning [15, 39–44]; (5) methods based on host behavior [13]; (6) hybrid
methods combining multiple strategies [48–50]. Figure 1 shows the framework of fine-grained web
traffic identification.

The identification object of web traffic refers to the input form of content, including flow-level,
packet-level, host-level and session-level web traffic. The corresponding identification object is deter-
mined according to the requirement of traffic identification. Among them, the host-level and session-
level objects are the most widely used. The session level mainly focuses on the characteristics of the
session and the arrival process, such as the large amount of data in response to the video request, and
the transmission of multiple sessions for one request. The session-level characteristics include the
number of session bytes and the duration of the session.The host-level mainly focuses on the connec-
tion mode between hosts, such as all traffic communicating with the host, or all traffic communicating
with a certain IP and port of the host. The host-level characteristics include the degree of connection,
the number of ports, and so on.The flow level mainly focuses on the characteristics of the flow and
the arrival process. The IP flow can be divided into one-way flow and two-way flow according to the
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transmission direction. The packets of one-way flow come from the same direction; the two-way flow
contains packets from two directions, and the connection may not end normally, such as flow timeout.
Sometimes a bidirectional flow requires a complete connection between the two hosts from the begin-
ning of the SYN packet to the end of the first FIN packet. Stream-level characteristics include stream
duration, number of stream bytes, and so on. The packet level mainly focuses on the characteristics
and arrival process of data packets. The packet-level features mainly include packet size distribution
and packet arrival time interval distribution.

Fine-grained Web traffic

Input

Payload Flow Characteristics Mixed Characteristics

Classified Object

Flow Message Host Session

Techniques for Classification

Payload
detection

Random
payload

Data dis-
tribution

Machine
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Host be-
havior
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Figure 1. Steps and techniques for fine-grained web traffic identification.

The type of web traffic identification refers to the output form of the identification result. The iden-
tification type is determined according to the requirements of the flow identification. The web traffic
can be gradually refined from the attributes of applications, websites, protocols, etc., and finally realize
application identification, website identification, and abnormal traffic identification. We can describe
the five kinds of identification mentioned above in detail as follows. (1) Application identification is to
identify the application to which the traffic belongs, such as Google Mail, YouTube, etc. (2) Website
identification is to identify the name of the website to which the traffic belongs. (3) Abnormal flow
identification is to identify malicious traffic; (4) Encrypted and unencrypted traffic, identify which traf-
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fic is encrypted, and the rest is unencrypted. (5) Protocol identification is to identify the encryption
protocol used for encrypted traffic, such as SSL, SSH, IPSec.

2.4. Problems of web traffic identification

In recent years, in the research of using the method of packet analysis to identify network traffic,
we have found that there are a large number of web traffic in the network that have no clear meaning
or semantically ambiguous in the HTTP header. These web traffic cannot use existing technology for
identification. To illustrate this problem intuitively, we compare one type of unknown web traffic with
the overall traffic. We discover that the web traffic with an unknown IP address in the host field ac-
counted for 20.9% of the total, which is almost the same as the second-ranked business traffic. If we
consider the unknown traffic with ambiguous fields such as Host and User Agent, the proportion of
web traffic that cannot be processed by the existing recognition technology will be even higher. For
these unknown flows, although we cannot identify them by means of message interpretation, we can
speculate and identify them based on the relationship between web browsing records. The relation-
ship between web browsing records is closely related to the behavior of users clicking on web pages.
Therefore, identifying users’ clicks behavior is of great help to the identification of unknown traffic.
The latest research on user click recognition is [9, 10, 51]. In reference [9], the StreamStructure recog-
nition method is proposed. This method combines the characteristics of time and file type, divides
web browsing records into different blocks, and then determines the area of the first HTTP request
of the block is the user click. Literature [26] proposed the ReSurf method. Compared with literature
[9], this method has two main innovations. Firstly, it is proposed that the size of HTML documents
is usually larger than V bytes. Secondly, after obtaining user access trajectories, backtrack the user’s
initial URL request in chronological order. The innovations of literature [51] can be concluded as
follows: (1) unlike [9,10] that separates user clicks from numerous URLs, literature [51] directly finds
out the URLs clicked by users from referrers; (2) count the number of referrers from all records; Con-
sidering the complexity of web pages, a web page usually contains multiple embedded objects, and a
URL clicked by a user should appear in the referrer of multiple records; (3) similar to [9], the URL is
used The request file extension is to exclude those non-user clicking on the URL, such as: URL file
extension is .js, .css, .swf. Fourth, because some web page advertisements are designed with an inline
frame, the characteristics of the frame column object are very similar to user clicks, AdBlock library
is used to filter non-user clicks on advertisement requests. Although the above studies have achieved
satisfactory results in their respective network environments, they all have a common problem: these
studies all use IP addresses to distinguish users. However, it is common for multiple users to share an
IP address in a fixed network, so the research results have certain limitations. This article will use the
data in the mobile Internet to study the user’s click behavior. In the mobile Internet, each device has
an IMEI number. We can separate the user’s traffic according to the IMEI number, and correspond the
flow records to the users one-to-one.

2.5. Introduction of network traffic datasets

There are more and more public available network traffic datasets with network security drawing
more and more attention. Table 3 lists some common datasets in the field of network traffic classi-
fication and identification. UNIBS is the group of telecommunication networks from University of
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Brescia. The traces from this group were mainly collected on the edge router of campus network of
the University of Brescia. CIC is the group of Canadian Institute for Cybersecurity. The datasets from
this group are mainly foucus on intrusion detection. UMass is a trace repository which maintained by
the Laboratory for Advanced System Software, and everyone can contribute to the repository. CAIDA
conducts network research and builds research infrastructure to support large-scale data collection, cu-
ration, and data distribution to the scientific research. WIDE is a traffic data repository maintained by
the MAWI Working Group of the WIDE Project.

Table 3. Publicly available network traffic datasets.

Datasets Description

UNIBS [52]
The traces were collected on the edge router of the campus network of the
University of Brescia

CIC [53] Canadian Institute for cybersecurity datasets

UMass [54]
The UMass Trace Repository is maintained by the Laboratory for Advanced
System Software

CAIDA [55] Containing various anonymized Internet Traces

WIDE [56]
This is a traffic data repository maintained by the MAWI Working Group of
the WIDE Project

3. Review of recent fine-grained web traffic identification

3.1. Fine-grained web traffic identification in wired network

Wired network internet connectivity is a mature service in many countries. According to the differ-
ent areas of wired network, it can be divided into residential broadband network, school network and
work network. All these kinds of network have rich access which encourage users to closely involve
network into their lives-from checking the weather or breaking news to shopping and banking or to
communicating with family and friends in many aspects. However, the nature of these network differs
from each other in use. For example, users of residential broadband connections will often have more
entertainment needs than users of work environment, and school broadband connections will often
have more study needs than other environment, and work broadband connections may have strict ac-
ceptable policies that may regulate their access at work, such as prohibitions against accessing certain
web sites or employing certain applications. The identification of web traffic in wired networks is of
great significance to network operators’ management of the network. At present, there are mainly four
types of methods for web traffic identification in wired networks: (1) Based on pattern matching; (2)
Based on statistics; (3) Based on ML or DL; (4) Based on graph theory.

3.1.1. Pattern matching based methods in wired network

Internet content providers usually use 80, 8080, and 443 as the access ports for websites. In addition,
the HTTP header has a unique fingerprint feature, which can be used as a basis for traffic identifica-
tion. By using pattern matching method, Literature [57] is the first paper to study residential broadband
network. The authors in this paper describe observations from monitoring the network activity for res-
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idential DSL customers in an urban area and reveals a number of surprising results, such as HTTP-not
peer-to-peer-traffic dominates by a significant margin, more often than not the home user’s immediate
ISP connectivity contributes more to the round-trip times the user experiences than the WAN portion
of the path, etc.

3.1.2. Statistics based methods in wired network

In the early stage of the research on fine-grained identification of web traffic, researchers usually
described web traffic with the statistical characteristics of complete flow. Since these statistical features
are based on the description of the complete flow, they can only be applied in offline recognition.
Therefore, in recent years, the extraction of early features of traffic has become the focus of research.
In a real application scenario, it is meaningful only if the identifier extracting its characteristics in the
early stages of traffic occurrence. Bernaille et al. [58] pointed out that the first few data packets have
a decisive significance in identifying the type of flow. Generally speaking, the first few data packets
of the flow are communication the negotiation process between the two parties, and this negotiation
process is completely determined by the application itself, which means that the first few data packets
have the most obvious application-specific characteristics. This discovery provides a technical basis for
online real-time identification of web traffic. Then, they continued to apply semi-supervised algorithms
to the early recognition of Internet application traffic [59] and the early recognition of encrypted traffic
[60] to do in-depth research. Este et al. [61] studied the early simple characteristics of traffic and
found that the early characteristics of traffic contained rich information about application behavior
characteristics. They applied mutual information and other methods to analyze the RTT, packet size,
packet arrival time (IAT), and packet direction of several data packets in the early stages of the flow.
The analysis results show that packet size is the most effective feature of early traffic. The research
results provide experimental basis for the early feature extraction and recognition of traffic. Huang
et al. also studied the early behavior characteristics of Internet applications, and conducted effective
identification experiments based on these characteristics [62]. They further studied the conversation
and negotiation behavior characteristics of different applications in the early stages of traffic. And
based on these early characteristics, the ML model is used for early traffic recognition, and the ideal
recognition effect is achieved [63]. Nguyen et al. [64] extended the concept of early recognition. They
extracted statistical features from a small sequence of packets at any time, and applied C4.5 decision
trees and naive bayes classifiers to online games and IP voice traffic and obtained a high recognition
rate. He Gaofeng et al. [65] proposed an identification method based on TLS fingerprints and message
length distribution, and successfully applied this identification method to online identification of Tor
anonymous traffic. Chen Liang et al. [66] extracted features from NetFlow records and applied these
features to realize high-speed flow identification. Dong Shi et al. [67] put forward an efficient flow
identification model by studying the behavioral characteristics of traffic in ports, message lengths,
and flow record preference. These research works are of great significance to the early and rapid
identification of web traffic.

3.1.3. ML or DL based methods in wired network

In recent years, the flow identification method based on ML or DL has attracted more and more
researchers’ attention. These methods extract a series of independent statistical features of the payload

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2996–3021.



3005

from the network traffic, such as the number of packets, the amount of bytes carried by the packets, the
duration of the flow, the average interval between packet arrivals. Then, researcher should uses ML’s
method to train a recognition model to perform the next step of traffic recognition. In these methods,
network traffic is characterized by a series of traffic statistics features. Researcher obtains a recognition
model by training some known application traffic data, which can then be used to identify unknown
network traffic. From the perspective of data mining, ML can be divided into two class: supervised
learning and unsupervised learning, which correspond to classification and clustering techniques re-
spectively. For supervised learning, we need to provide a known data set for the target problem firstly,
called the training data set. The function of the data set is to train a classification model, such as deep
neural networks (DNN), support vector machine (SVM) and decision tree etc. The training process is
general an iterative process. The parameters of the theoretical model are continuously adjusted through
random optimization or analytical methods to make it as close as possible to the real situation of the
training data set. After the model is trained, it can be used to identify unknown samples. This process
is called testing or actual classification.

The feature description and extraction of traffic samples are the basic problems that need to be
solved when using ML methods for traffic identification. At present, researchers use the statistical
characteristics of the flow to formally describe the description of the flow sample. The effectiveness
of this method is based on the following two assumptions: (1) The traffic of different applications has
certain statistical characteristics at the network level, such as the duration of the flow, the idle time
of the flow, the average between packets interval time, packet length; (2) The traffic characteristics of
each application are unique, so it can be used to distinguish different network applications. In the mid-
1990s, Paxson [69] used the statistical characteristics of streams to identify a series of TCP network
applications.Then, Dewes et al. [69] analyzed the Internet chat system through a series of statistical
characteristics including the duration of the stream, the average interval between groups, and the size of
the group. A large number of subsequent studies [70,71] have shown that statistical characteristics were
quite effective in the network traffic identification. Theoretically, although the statistical characteristics
of streams can also be confused by disguise, it is very difficult in practice compared to technologies
such as payload encryption. Literature [18] is a recent paper studying network traffic classification
by using of deep convolutional recurrent autoencoder neural networks. The author find that the traffic
classifier obtained by stacking the autoencoder with a fully-connected neural network, achieves up to
a 28% improvement in average accuracy over state-of-the-art machine learning-based approaches.This
is a huge improvement in the field of traffic classification.

3.1.4. Graph theory based methods in wired network

Traffic dispersion graph (TDG) is a common used method to represent network traffic. Each node
in the graph is an IP address, and each edge represents a specific interaction between two nodes. In the
early days when TDG was proposed, TDG was mainly used to solve network security problems, such
as intrusion detection [72] and worm propagation [73, 74]. In reference [74], TDG is applied to the
backbone network to study the interaction within the network. Its purpose is to automatically group
and analyze network applications using information about the degree and port distribution of network
applications. Besides, TDG could have a wider range of functions and could be directly applied to
traffic classification.
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3.2. Fine-grained web traffic classification in mobile network

In recent years,the rapid growth of smartphone users has led to the vigorous growth in the traffic
volume of mobile networks. According to the prediction from Cisco, mobile data traffic will grow
at compound annual growth rate of 46% from 2017 to 2022 [75]. Similar to wired networks, there
are also various types of network traffic in mobile networks, including web traffic, P2P traffic, and
network traffic based on other proprietary protocols. But research shows that web traffic is still the
mainstream [12]. In some mobile networks,the ratio of web traffic even exceeds 90% [76]. In addition,
new apps on mobile networks generally use HTTP to provide services to the public, further boosting the
proportion of web traffic in mobile networks. Therefore, using traditional methods such as ports-based
and payloads-based methods to identify web traffic can only identify web traffic in coarse-grained. In
the condition of the web traffic accounts for up to 90% of total traffic, identifying web traffic as a type
is disadvantage for network operators’ management. Therefore, fine-grained web traffic identification
is meaningful for operators to perform network management, including: traffic engineering, billing,
service recommendation, network planning and optimization. There are mainly four types of methods
for web traffic identification in mobile networks: (1) Based on pattern matching; (2) Based on statistics;
(3) Based on ML or DL.

3.2.1. Pattern matching based methods in mobile network

There are three research directions of fine-grained HTTP traffic classification in mobile network by
using pattern matching: (1) classify HTTP traffic into different applications (such as web browsing,
E-mail and Stream) [8]; (2) associate HTTP traffic with a specific website [13, 77, 78]; (3) describe
and model HTTP traffic in the dimensions of operating system and device [79]. The first paper on
fine-grained HTTP traffic is [8]. This paper divides HTTP traffic into 14 categories in accordance with
different application activities. Then, it brings several works to analyze HTTP traffic from different per-
spectives.The authors in [45] analyze the usage of HTTP-based applications on residential broadband
Internet and find that the HTTP traffic dominates the whole downstream traffic. On the basis of the
traffic similarity, the author proposed a classification scheme in [46], which can classify various traffic
types in a single application. Reference [79] propose a detailed measurement study on the HTTP traffic
characteristics of cellular network from the perspective of operating systems as well as device-types.
These measurement study will helpful for network operators managing their network resources.

3.2.2. Statistics based methods in mobile network

Statistics based methods were widely used in web traffic classification. The authors in [77] studied
the websites in the cellular data network and obtained nine different traffic distributions during the day.
Reference [80] describes the mobile Internet traffic generated by multiple operating systems. However,
this work only analyzes the traffic dynamics and application usage in one day, so it is impossible to
find the characteristics in the billing cycle, which is very essential for billing and network planning.
In [81], the authors describe and model Internet traffic dynamics from two aspects: device type and
application. For different user markets: ordinary and commercial consumers, this approach is limited
to coarse-grained description of these two types of smart phone devices. Reference [82] focuses on
understanding how, where and when applications are used compared with traditional web services.
However, the data sets used were collected in 2010, some conclusions may change now.
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3.2.3. ML or DL based methods in mobile network

In 2016, Taylor et al. [83] proposed classification based on burst data streams, considering the two
directions of data stream transmission (source and destination address swapping), respectively, count
the packet size sequence of the stream, and calculate the average value for each sequence. There are 18
statistical features such as, minimum, maximum, quantile, etc. Finally, the support vector regression
algorithm and random forest algorithm are used to achieve a classification accuracy of 99%. In 2019,
Shen et al. [84] proposed a decentralized application recognition method, which proposed to use the
kernel function for feature fusion based on the statistical characteristics of the two-way data stream,
and then further feature screening, and finally achieved a classification accuracy of 92%. The main
disadvantage of traffic classification methods based on machine learning is that they require expert
experience to extract and filter features. Therefore, these methods are time-consuming and expensive,
and are prone to human error. As a result, researchers gradually set their sights on deep learning that
can learn features independently.

Traffic classification methods based on deep learning are divided into two categories: based on the
original byte characteristics of the data packet and based on the sequence characteristics of the data
packet in the flow. The method refers to classification based on the original byte characteristics of the
data packet the input of the classifier is the original byte content of the data packet. The method based
on the characteristics of the data packet sequence in the stream means that the input of the classifier
is the data packet size in the stream, the packet time interval sequence and other characteristics. The
DeepPacket proposed by Lotfollahi et al. [85] is a representative of the deep learning method based on
the original byte characteristics of the data packet. It proposes to use each data packet as an input sam-
ple, and does not require expert experience to extract features, only the original bytes of the data packet
As features, the classification model is a one-dimensional convolutional neural network (1DCNN) and
a sparse automatic encoder (SAE), and finally achieved a classification accuracy of 98%. Wang et
al. [3] proposed to use the first 784 bytes of each data stream (one-way stream/two-way stream) as the
model input, based on one-dimensional convolutional neural network (1DCNN) and two-dimensional
convolutional neural network (2DCNN), respectively Experiments with two models have shown that
1DCNN has a better effect and can reach an accuracy rate of more than 90%. Li et al. [86] intro-
duced recurrent neural network (RNN) into network traffic classification, and designed a new neural
network-byte segment neural network (BSNN). BSNN directly inputs data packets as a model. The
experimental results show that in the process of classifying 5 protocols, the average F1-score of BSNN
is about 95.82%. Xie et al. [87] proposed a flow classification method SAM based on a self-attention
mechanism, using the original bytes of each packet header as the model input. This method achieved
98.62% and 98.62% in protocol recognition and application recognition, respectively. 98.93% F1-
score average value. The FS-Net proposed by Liu et al. [88] is a representative of the deep learning
method based on the characteristics of the packet sequence in the stream. The timing feature uses
the packet size sequence in the stream. Based on this, an automatic encoder (auto-encoder) encoder)
reconstruction mechanism, this reconstruction mechanism enables the model to learn the features that
are most conducive to classification and the most representative of this data stream, and the final clas-
sification accuracy rate is as high as 99%. Lopez-Martin et al. [89] proposed to form a 20×6 matrix
based on the port number, packet load length, packet interval time, window size and other attributes of
the first 20 data packets in the data stream, and input it to the convolutional neural network (CNN) and
The combined model of long and short-term memory recurrent neural network (LSTM) can achieve a

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2996–3021.



3008

final accuracy rate of over 96%. Shapira et al. [90] proposed to convert the data stream into pictures
according to the packet size and packet arrival time of the one-way data stream, and then classify them
through the CNN model. The final classification accuracy rate can reach 99.7%.

3.3. Malware web traffic identification

Similar to personal computers, the widespread use of mobile devices has aroused the interest of
malware developers. Among the many mobile devices, smartphones are ideal targets for attackers be-
cause: (1) they are ubiquitous, that is, the number of potential targets is large; (2) they have sensitive
information about the owner, such as identity, contact people, GPS location; (3) they have network
capabilities, and they usually connect to the Internet. We define malware detection as trying to under-
stand whether it is malicious by analyzing the network traffic generated by a mobile application. In
mobile networks, the detection of malicious traffic usually detects apps.

In June 2004, the first known smartphone malware appeared in public view. It exists in Symbian
OS [94], named cabir, and propagates through Bluetooth. In fact, between 2004 and 2007, more than
95% of malware came from Symbian OS [92]. Since then, there have been more and more Android
and IOS devices. Therefore, malware against these operating systems is also emerging. In July 2008,
the first autobiographical worm for iPhone was detected, named Ikee [93]. The worm only uses the
installed SSH server and the default root password to attack the jail-broken iPhone, but the threat to
users is low. Then, in 2009, a variant named Ikee.B was found. This is the first botnet with obvious
malicious attacks. In 2010, the first malware against Android was discovered, named FakePlayer [94].
In fact, between 2012 and 2014, more than 90% of the malware detected were targeted at the Android
platform [95]. As of March 31, 2015, nearly 4000 mobile families and variants have been identified for
mobile devices [96]. Between 2012 and 2014, the number of malwares per quarter was about 200 [95].

Protecting intelligent devices from malware attacks is also a hot topic in research [97–99]. There
are two main analysis directions for identifying malware: static analysis and dynamic analysis. Dy-
namic analysis refers to the technology of executing the sample software and verifying the behavior
of the sample in practice, while static analysis will verify the software based on its source code rather
than actually executing the sample. In fact, static analysis can only detect malware with unavailable
signatures, which is invalid for polymorphic and deformed code. Literature [100] points out that the
commonly used static analysis only detects 20.2% to 79.6% of malware. Dynamic analysis is very
promising. It can use multiple behavioral characteristics to analyze samples. For example, Trojan
horse always needs to call multiple system processes. Therefore, literature [101, 102] proposed a
method to detect Trojan horse through system behavior analysis. In addition, traffic characteristics
are very useful for identifying malware spreading through the network. For instance, according to the
traffic characteristics, a model is constructed in literature [103] to identify fast traffic botnet attacks.
Literature [104] uses traffic characteristics to detect a new class of active worms.

XcodeGhost’s servers and clients communicate with each others via Internet. Therefore, there were
a lot of XcodeGhost-related traffic in our collected data. This unique vantage makes our work distin-
guish with the works [105, 106]. We can gain some XcodeGhost features by analyzing the collected
data. And it may be helpful to study XcodeGhost or to identify other malware like XcodeGhost.

Literature [107] introduced a malware detection application in the Android environment. This appli-
cation can monitor multiple aspects of the device,such as memory, network, power and extract different
characteristics, some of which are related to network traffic such as the number of packets received.
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Then, training is performed based on the collected traffic statistical feature sample data to obtain a
classifier. And use the obtained classifier to check whether the installed application is malicious. The
article used 40 benign and 4 malicious Android applications to evaluate the model and achieved good
results.

Besides, with the development of network theory and technology, some new ideas have emerged
that can tolerate network attacks [108] or resist malicious attacks on network terminals from the scratch
of network design [109, 110]. For example, the authors in [108] proposed the use of multiple paths to
transmit data to avoid network attacks, and reference [109] proposed an smart collaborative balance
scheme to dynamically adjust network functions. This scheme can effectively resist malicious attack
from terminals.

4. Evaluation criteria for web traffic classification

At present, the evaluation of traffic identification and classification are mainly uses accuracy-related
indicators. This indicator is relatively single. To meet the ever-increasing flow analysis requirements,
on the basis of accuracy-related evaluation indicators, comprehensive indicators of compatibility, ro-
bustness, integrity, and directionality are introduced. The following is a detailed introduction to the
evaluation indicators of network traffic identification and classification.

1) Accuracy
Accuracy reflects the ability of traffic identification technology to identify network applications. As-

suming that N is the number of traffic samples, m is the number of application types, and ni j represents
the actual number of samples of type i applications marked as type j. True Positive (TP) represents the
number of correctly labeled samples among the samples of the actual type i, T Pi = nii. False Positive
(FP) represents the number of samples incorrectly identified as typeiamong samples whose actual type
is not i, FPi =

∑
n ji.

By using of all parameters mentioned above, confusion matrix is a more clear way to describe
classification. It can tell us how the classification model is confused when it makes predictions. The
confusion matrix includes TN, FP, FN and TP. When the classification problem is two classifications,
the content of the confusion matrix is shown in Table 4.

Table 4. Confusion matrix.

Real

Prediction
0 1

0 TN FP

1 FN TP

According to the above analysis and Table 4, the precision is defined as follows.

P =
T P

T Pi + FPi
(4.1)

False negative (FN) represents the number of samples whose actual type is i that are misidentified as
other types. FNi =

∑
ni j True negative (TN) represents the number of samples marked as non-i among

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2996–3021.



3010

the samples whose actual type is non-i, T Ni = n j j. The recall rate is defined as follow.

R =
T Pi

T Pi + FNi
(4.2)

Similarly, true negative rate (TNR) represents the ratio of negative outcomes that are actually predicted
to be negative. This metric is also called specificity and is defined as follows.

T NR =
T Ni

FPi + T Ni
(4.3)

In Mathematics, the Geometric Mean is the average value or mean which signifies the central ten-
dency of the set of numbers by finding the product of their values. In the field of network traffic classi-
fication, we use it to balance Sensitivity and Specificity at the same time. The definition of g-mean is
shown in Eq (4.4).

g − mean =
√

R ∗ T NR (4.4)

The precision rate and recall rate reflect the recognition effect of the recognition method on each
individual protocol category. Especially when the sample categories are unevenly distributed, recall
and precision can accurately know the classification of each category. The accuracy rate reflects the
overall recognition performance of the recognition method. A good algorithm should have a high
accuracy rate, precision rate, and recall rate at the same time. The accuracy is defined as follow.

Acc =
∑m

i=1 (T Pi + T Ni)∑m
i=1 (T Pi + T Ni + FPi + FNi)

(4.5)

F-Measure is an evaluation index obtained by comprehensive precision and recall. The higher the
F-Measure, the better the classification performance of the algorithm in each type.

F − Measure =
2PR

P + R
(4.6)

Besides, top-k accuracy is an important evaluation index used to evaluate the classification accuracy of
the k categories with the most number.

2) Completeness
The completeness reflects the recognition coverage of the recognition method. Completeness refers

to the ratio of the sample identified as i to the sample of the actual type i, which is equivalent to the
ratio of the precision rate to the recall rate, and the value range may exceed 1. Completeness is defined
as follow.

completeness =
R
P

(4.7)

3) Unrecognized rate
The unrecognized rate reflects the ability of the traffic identification tool to identify unknown traffic

types. Unrecognized rate refers to the ratio of traffic that does not belong to a known traffic type to the
total traffic. Ftotal represents the total number of bytes or streams of traffic, and Fknown represents the
number of bytes or streams of identified traffic.
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unrecognized =
Ftotal − Fknown

Ftotal
(4.8)

4) Robustness
Robustness reflects the ability of traffic identification tools to maintain high identification perfor-

mance for a long time. Robustness refers to the ability of the traffic recognition technology to maintain
a high recognition rate for a long time. acck represents the accuracy rate of period k, acc0 represents
the initial accuracy.

robustness =

√∑r
k=1 (acc0 − acck)

r
(4.9)

5) Compatibility
Compatibility reflects the ability of traffic identification tools to be used in different network envi-

ronments. Compatibility indicates the ability of traffic identification technology to be used in different
network environments. acc j represents the accuracy in the network environment j, acc represents the
average accuracy in all environments.

compatibility =

√∑m
j=1

(
acc j − acc

)
m

(4.10)

6) Evaluation index
In addition, there are still some problems in the quantification of some evaluation indicators, such

as real-time, directional, and computational complexity. The real-time performance reflects the ability
of the traffic identification method to identify network applications online and quickly. We can identify
an application in time by use of the characteristics of some data packets rather than waiting for the end
of the entire flow.

The directionality reflects the ability of the flow identification method to identify different flow
transmission directions. IP flow can be divided into unidirectional flow and bidirectional flow. Unidi-
rectional flow can be divided into upstream and downstream according to the transmission direction.
If the first data packet is packet loss, it is impossible to judge the upstream and downstream directions.
Directionality can be embodied in unidirectional flow (upstream, downstream) or bidirectional flow.

The computational complexity reflects the overhead required by the traffic identification method
to accurately identify network applications. Complex identification features consume a lot of stor-
age space and computing power, which seriously affects the traffic analysis of the backbone network.
Computational complexity can be embodied in time and space complexity.

5. Discussion

In summary, there are still many problems to be solved in the field of traffic classification. In the
future, scientific research can be carried out from the following aspects.

1) Fine-grained unknown web traffic identification
We discover that the web traffic with an unknown IP address in the host field accounted for 20.9%

of the total traffic in the backbone. Identifying these unknown traffic is still a big challenge.
2) Fine-grained identification of encrypted traffic

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2996–3021.



3012

With the increasing demand for fine-grained identification of traffic, it is far from enough to iden-
tify whether the traffic is encrypted. In the actual scenario of network management,netwok operators
need to identify the applications or services under the encryption protocol or tunneling protocol. To
achieve the goal of fine-grained recognition, multi-stage progressive fine-grained recognition and hy-
brid methods are better solutions. Each stage completes different identification tasks, or combines
different algorithms to identify different applications.

3) Application recognition under SSL protocol
To ensure the security of communication, there are increasingly network applications using the SSL

protocol. The SSL protocol is widely used in web browsing, watching videos, social networks, etc., so
that the application based on the SSL protocol has become increasingly complex. The SSL protocol is
impeccable in protecting user data and privacy. At the same time, the protocol also pushes the difficulty
of traffic identification to a new level. How to identify network applications under the SSL protocol
has become a challenge for current network management.

4) Encrypted video content information recognition
As video services become increasingly widely used and the proportion of video traffic continues

to increase, network operators and video service providers need to know the current quality of video
experience services to improve video QoS. As the most commonly used video website, YouTube uses
encryption technology for more than 90% of traffic, and increasingly video websites use encryption
technology. In the scenario of encryption, it is difficult to obtain the parameters related to the quality
of the video experience service, such as the playback bit rate..Therefore, how to identify the bit rate
and the encrypted video is of great significance for evaluating and improving QoS.

5) Accurate marking of encrypted traffic data sets
In recent years, some new algorithms and techniques with good classification performance have

been proposed. However, these algorithms and techniques cannot be compared with each other for
the collected network traffic is always different, most public data sets have no payload information
and marking information, and even the payload of encrypted traffic is difficult to mark with DPI tools.
Therefore, some researchers have to use common port numbers to add filtering rules for marking, which
leads to inaccurate benchmarks. In addition, to meet the requirements of fine-grained identification
of encrypted traffic, the key is to mark different applications running under the encryption protocol,
making it more difficult to mark. The self-generated data set mainly adopts the method of monitoring
the host kernel or the DPI method to obtain the labels. Although the self-generated data set is relatively
easy to obtain the label information, the self-generated data set of each will cause the problem of
incomparability between different algorithms. Therefore, it is urgent to build some labeled data sets
for various traffic classification.

6) Traffic masquerading
The identification method based on flow characteristics is the most widely used approach for en-

crypted flow identification. Therefore, the corresponding flow pattern disguising techniques, such as
flow filling, flow standardization, and flow masking, are constantly being studied. Wright [111] pro-
posed a convex optimization method for real-time modification of data packets, disguising the packet
size distribution of one traffic as the packet size distribution of another traffic, and the transformed
traffic can effectively avoid traffic classification such as VoIP and web recognition. In the future,
traffic masquerading technology will integrate multiple methods such as traffic filling, traffic standard-
ization, and traffic masking to deal with traffic analysis, and the diversity and adaptive capabilities
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of traffic masquerading will be greatly enhanced. In addition, anonymous communication, tunneling
technology, and proxy technology are all different manifestations of traffic masquerading. Anonymous
communication prevents tracking by hiding the identity information and the communication relation-
ship. Tunneling technology uses L2TP and SSTP. Data packets are re-encapsulated by other protocols,
and the data compression proxy technology changes the flow statistics characteristics to save traffic.
Therefore, it is necessary to improve the current identification methods to cope with the upcoming
challenges.

7) New protocols and changes in traffic distribution
Due to the improvement and optimization of application protocols and the continuous development

of new versions to hinder traffic identification, the protocol signatures and behavior characteristics are
changed accordingly. Therefore, the original identification methods need to be updated periodically.
As the public’s demands for network security and network performance increase, new encryption pro-
tocols such as SPDY, HTTP/2.0, and QUIC are constantly being introduced to solve the bottleneck of
TCP and UDP-based protocols, and achieve low latency, high reliability and security network commu-
nication. In the near future, HTTP/2.0 and QUIC protocols will be widely used, and how to identify
the applications carried under the protocol faces new challenges.

In addition, the methods based on DL have been widely used in encrypted traffic classsification and
have made a great progess [90,112,113]. To solve the expensive of the general DL model, The authors
in [114] proposed a Incremental Learning techniques to add new classes to models without a full
retraining,This techniques can save a lot of calculations as well as automatically adjust the model with
the input of data. With the rise of the Internet of Things, the identification and classification of traffic
in the Internet of Things is also an important research orientation in the future [115,116]. Additionally,
another emerging trend in ML/Dl-based traffic classifiers is explainable AI. All these new emerging
techniques will helpful to overcome the challenge of new protocols and changes in traffic distribution.

6. Conclusions

We present an up-to-date survey on fine-grained web traffic identification in this paper. A com-
prehensive overview of fine-grained web traffic identification is presented firstly. Then, we introduce
the recent research work of fine-grained web traffic identification from three aspects: wired network,
mobile network, and malware traffic identification. Finally, we conclude the challenges and future
perspectives on the basis of our systematic survey. The detailed literature review and in-depth investi-
gations may inspire more endeavour to further improve fine-grained web traffic identification.
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