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Abstract: Dengue fever is endemic in tropical and subtropical countries, and certain important fea-
tures of the spread of dengue fever continue to pose challenges for mathematical modelling. Here we
propose a system of integro-differential equations (IDE) to study the disease transmission dynamics
that involve multi-serotypes and cross immunity. Our main objective is to incorporate and analyze
the effect of a general time delay term describing acquired cross immunity protection and the effect of
antibody-dependent enhancement (ADE), both characteristics of Dengue fever. We perform qualitative
analysis of the model and obtain results to show the stability of the epidemiologically important steady
solutions that are completely determined by the basic reproduction number and the invasion reproduc-
tion number. We establish the global dynamics by constructing a suitable Lyapunov functional. We
also conduct some numerical experiments to illustrate bifurcation structures, indicating the occurrence
of periodic oscillations for a specific range of values of a key parameter representing ADE.
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1. Introduction

Dengue fever is an endemic disease in tropical and subtropical countries. According to the World
Health Organization [1] in 2016, more than 2.38 million cases were reported in the Americas, where
Brazil alone contributed with almost 1.5 million cases. In 2017, a significant reduction in the number
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of cases in the Americas was reported, even though a recent estimate indicates 390 million cases per
year around the world [1].

Dengue fever is caused by dengue virus (DENV), which is transmitted to humans by the bite of
infected mosquitos. It is known that there are four distinct virus serotypes circulating in the population
[2]. The disease presents as Dengue classic or Dengue hemorrhagic fever (DHF).

Antibody-dependent enhancement (ADE) was proposed to explain the more frequent occurrence of
the severity of Dengue fever and Dengue hemorrhagic fever in secondary infections [2–4]. Another
characteristic of dengue virus is cross-immunity protection so that infection by any of the four serotypes
leads to short-term protection for all serotypes. Long-term protection occurs only for the strain with
which the individual was infected [4].

A number of mathematical models that include ADE were proposed in [5], [6], [7] and [8]. Adams
et al. [5] included in a two-strain model the ADE effect and, described the immunological distance be-
tween dengue serotypes through a function with the hypothesis that this function reduces the probabil-
ity of contracting a secondary infection. Numerical results were presented in this study. In a host-host
model, Billings [7] demonstrated that ADE causes oscillations. Bianco [6] investigated a model with
partial temporary cross immunity and showed that weak cross immunity stabilized the system while
strong cross immunity caused chaos. While Hu [8] considered vector dynamics, revealing that ADE
can explain data complexity.

Aguiar et al. [9] proposed an Ordinary Differential Equations (ODE) system for two serotypes of the
Dengue virus. The total population was stratified by their clinical states. Time series simulations were
plotted, and various bifurcation phenomena were observed. Theoretical mathematical analysis of the
model in [9] was carried out in [10] and in [11]. Aguiar et al. [10], quantified the attractor structure,
limit cycle and the chaotic attractor by calculating Lyapunov exponents. Analytic formulations for
the equilibrium and analysis of the bifurcation structure were obtained by Kooi et al. in [11] for the
symmetric case (when the strains were the same).

These aforementioned models were formulated in terms of ordinary differential equations, without
incorporating time lags for recovery and incubation. General delay models were introduced by Van
den Driessche [12], using a special step function for the recovery period. Recently, Nah [13] described
a mathematical model for malaria transmission with a time delay involving an exposure and a general
incubation period.

A mathematical model describing a general multi-strain disease was proposed in [14]. The authors
proposed a delay diffusive two strain disease model, considering the SIR structure, the constant recruit-
ment rate, and the constant time delay representing the length of the immunity period. The stability
of the model was determined by the Basic Reproduction Number. Guan [15] also described a Dengue
fever model with a time delay which refers to the time of incubation of the virus in an infected popu-
lation class and in an infected mosquito population class. In a SIR epidemic model, Hattaf [16] also
included a constant time delay.

Taking into account a simpler SIR model, Huang [17] considered an infinite distributed delay on a
complex population network. Numerical experiments confirmed that the delay slows down the extinc-
tion of the disease when the threshold value is smaller than 1, while the delay accelerates the spread if
it is bigger than 1. Distributed delay was also used by Xu [18] in a SVEIR model involving a contin-
uous vaccination strategy. Their results showed that distributed delay had no impact on the qualitative
behavior and global dynamics.
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Since dengue fever constitutes a public health problem, we proposed a mathematical model, namely,
an IDE system that can be applied to describe and study the propagation of dengue fever in a popu-
lation, considering two main characteristics of the disease: ADE and cross-immunity protection. The
main purpose was to include and analyze the effect of the general time delay on the model, which is in-
cluded in order to represent the length of cross immunity protection. In addition, a constant parameter
will be added to the model in order to represent the effect of ADE.

In the third section, the model is analyzed. By defining the associated limiting system, we look
for equilibrium and show the local stability that is determined by an important threshold value. In
Section 4, by constructing a Lyapunov functional, we prove global stability. Numerical experiments
are performed in Section 5, where the bifurcation structure and stability of the coexistence equilibrium
are numerically studied. Final considerations and conclusions are made in the final section.

2. Model formulation

In this section we shall propose a model to describe a multi-strain disease, motivated by dengue
fever.

Let N(t) be the total population of individuals at time t in a region. We divided the population into
disjoint classes according to the individual status, susceptible for all serotypes, infected by serotype
i, temporarily immune for all serotypes after being infected by serotype i, recovered for serotype i
but susceptible to the others, and, recovered for all serotypes, represented at time t, respectively by
S (t), Ii(t), Ci(t), Ri(t) e R(t). Furthermore, we included two more classes for the population, Ii j(t),
representing the subpopulation reinfected by serotype j after being infected by serotype i, with i, j =

1, 2.
Assuming that the birth and mortality rates are equal, define d as the human population’s constant

natural mortality rate. We assumed that the constant rate, βi is the transmission rate by serotype i, for
the first time an individual is infected. Whereas α j is the transmission rate by different serotypes, by
serotype j, for the second time an individual is infected.

The mosquito population is not explicitly considered in the model, so the βi and α j rates will rep-
resent the average number of bites and the probability of a susceptible individual being bitten by an
infected mosquito by serotype i and the probability of a recovered individual being bitten by an infected
mosquito by serotype j, respectively.

Individuals in the infectious classes Ii(t), remain in this class with an average time 1
γ

since we
assumed that the length of this class is exponentially distributed. Once infected, the individual recovers
and moves on to the temporary immunity class (Ci(t). In this class, the individual gains temporary
immunity to all serotypes.

Moreover, we assumed for Ci class a general length of immunity. Let Pi(t) be the fraction of
individuals that, after recovering from the serotype i, remain cross protected by all serotypes, t units
after get in the temporary immunity class. It is reasonable to assume that

Pi(0) = 1 and Pi(∞) = 0, (2.1)

and, satisfied that Pi(t) is non-increasing and∫ ∞

0
Pi(s)ds =

1
ωi

< ∞. (2.2)
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Thus, the number of cross protected individuals is given by

Ci(t) = C0(t) +

∫ t

0
γI(s)Pi(t − s)e−d(t−s)ds, (2.3)

where C0 is the number of protected individuals at time t = 0 that are still immune at time t. Of course,
C0 must satisfy limt→∞C0(t) = 0.

After the cross-protection time the individual remains susceptible to the other strains. In this way,
an individual in the Ri class can be infected again at rate α j by a different serotype. Only after being
infected by all strains do the individual become immune, recovering at a constant rate γ, remaining
permanently recovered.

Whenever the individual is infected again, by a different serotype, the immune system responds,
increasing the infectiousness and enhancing viral replication [2,3,19]. This effect is called ADE, when
secondary infections are possible in the presence of an intermediate levels of antibodies, increasing
viral replication [2, 3, 19].

In the studies in [6–11] the authors assume that this increasing viral load is associated with in-
creasing transmission infections, and they use this assumption to mathematically describe and model
the ADE using a constant φ that represents the increase in the transmission rate, associated with the
transmission of the infected individuals during secondary infections.

According to Katzelnick [19], ADE occurs in a specific range of antibody concentrations. Low
levels of antibodies did not enhance disease, intermediate levels exacerbated disease, and high lev-
els protected against severe disease. The authors verified enhancement in humans and showed that
pre-existing antibodies were associated with the severity of the disease, and they also showed that the
immune correlate for enhanced severe dengue is distinct from that for protection. Furthermore, Roth-
man [20] affirms that depending on the specific antibody concentration, dengue virus antibodies can
inhibit viral infection (neutralization) or enhance infection.

Therefore, ADE takes place or not, increasing or decreasing infection, due to a high or low antibody
concentration in people who were infected once (recovered) and again infected. Clearly, this high viral
load is not related to the increasing transmission (from a recovered individual to new infections) but
rather to the capacity of the immune response system of the primary individual to respond to the
secondary infection and then to be protected against infection or enhance the disease.

Thus, the ADE characteristic must be described as a constant rate that can increase or decrease
the probability of the recovered individual who has already been infected once to be infected again,
assuming that the individual with the primary infection carries a viral load that may neutralize or
enhance the infection. Therefore, in this study, we proposed that φ represents the fraction that decreases
(φ < 1) or increases (enhances) (φ > 1) the probability of secondary infections in primary infected
individuals. In other words, the epidemiological consequence ADE will be described through the
constant coefficient φ, where it is assumed that previous exposure to one serotype results in an increase
in the susceptibility for reinfection.

Thus, based on the assumptions and in the studies by Wang et al. [21], Cooke et al. [22], Van den
Driessche et al. [23], and taking the derivative of equation (2.3), assuming C0 = 0, the model can be
described as follows:

dS (t)
dt

= dN(t) − dS (t) − β1
S (t)
N(t)

I1(t) − β2
S (t)
N(t)

I2(t) − β2
S (t)
N(t)

I12(t) − β1
S (t)
N(t)

I21(t)
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dI1(t)
dt

= −dI1(t) + β1
S (t)
N(t)

I1(t) + β1
S (t)
N(t)

I21(t) − γI1(t)

dI2(t)
dt

= −dI2(t) + β2
S (t)
N(t)

I2(t) + β2
S (t)
N(t)

I12(t) − γI2(t)

dC1(t)
dt

= γI1(t) − dC1(t) +

∫ t

0
γI1(s)P′1(t − s)e−d(t−s)ds

dC2(t)
dt

= γI2(t) − dC2(t) +

∫ t

0
γI2(s)P′2(t − s)e−d(t−s)ds (2.4)

dR1(t)
dt

= −dR1(t) − α2φ
R1(t)
N(t)

I12(t) − α2φ
R1(t)
N(t)

I2(t) −
∫ t

0
γI1(s)P′1(t − s)e−d(t−s)ds

dR2(t)
dt

= −dR2(t) − α1φ
R2(t)
N(t)

I21(t) − α1φ
R2(t)
N(t)

I1(t) −
∫ t

0
γI2(s)P′2(t − s)e−d(t−s)ds

dI12(t)
dt

= −dI12(t) − γI12(t) + α2φ
R1(t)
N(t)

I2(t) + α2φ
R1(t)
N(t)

I12(t)

dI21(t)
dt

= −dI21(t) − γI21(t) + α1φ
R2(t)
N(t)

I1(t) + α1φ
R2(t)
N(t)

I21(t)

dR(t)
dt

= −dR(t) + γI12(t) + γI21(t).

The total population dynamics is determined by

N(t) = S (t) + I1(t) + I2(t) + C1(t) + C2(t) + I12(t) + I21(t) + R1(t) + R2(t) + R(t),

and, since
dN
dt

= 0, the total population remains constant in time.

Denote S
N = S , Ii j

N = Ii j, Ci
N = Ci and Ri

N = Ri representing, for each class, the fractions of the
population, and N = N∗. Thus, the sum of the total population satisfies S + I1 + I2 +C1 +C2 + R1 + R2 +

I12 + I21 + R = 1. In addition, the dynamics of the recovered and cross-immunity classes are decoupled.
Therefore, the original system can be studied by analyzing the following subsystem:

dS (t)
dt

= d − dS (t) − β1S (t)(I1(t) + I21(t)) − β2S (t)(I2(t) + I12(t))

dI1(t)
dt

= −(d + γ)I1(t) + β1S (t)(I1(t) + I21(t))

dI2(t)
dt

= −(d + γ)I2(t) + β2S (t)(I2(t) + I12(t)) (2.5)

dR1(t)
dt

= −dR1(t) − α2φR1(t)(I12(t) + I2(t)) −
∫ t

0
γI1(s)P′1(t − s)e−d(t−s)ds

dR2(t)
dt

= −dR2(t) − α1φR2(t)(I21(t) + I1(t)) −
∫ t

0
γI2(s)P′2(t − s)e−d(t−s)ds

dI12(t)
dt

= −(d + γ)I12(t) + α2φR1(t)(I2(t) + I12(t))

dI21(t)
dt

= −(d + γ)I21(t) + α1φR2(t)(I1(t) + I21(t)).

This subsystem will be qualitatively analyzed in Section 3. In the next subsection, we are going to
discuss a particular case of this model.
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2.1. A particular case: Exponential immunity

In this subsection, we are going to discuss a particular case of the model (2.4). If we assume the
length of immunity is exponentially distributed, which means that the fraction of individuals temporar-
ily immune remain in the Ci class is Pi(t) = e−ωit, with ωi > 0, for i = 1, 2, then the IDE system (2.4)
becomes an ODE system. Thereby, the system already normalized with the variables representing the
fractions of the populations can be described as follows:

dS (t)
dt

= d − dS (t) − β1S (t)(I1(t) + I21(t)) − β2S (t)(I2(t) + I12(t))

dI1(t)
dt

= −(d + γ)I1(t) + β1S (t)(I1(t) + I21(t))

dI2(t)
dt

= −(d + γ)I2(t) + β2S (t)(I2(t) + I12(t))

dC1(t)
dt

= −dC1(t) + γI1(t) − ω1C1(t)

dC2(t)
dt

= −dC2(t) + γI2(t) − ω2C2(t) (2.6)

dR1(t)
dt

= −dR1(t) − α2φR1(t)(I12(t) + I2(t)) + ω1C1

dR2(t)
dt

= −dR2(t) − α1φR2(t)(I21(t) + I1(t)) + ω2C2

dI12(t)
dt

= −(d + γ)I12(t) + α2φR1(t)(I2(t) + I12(t))

dI21(t)
dt

= −(d + γ)I21(t) + α1φR2(t)(I1(t) + I21(t)).

Qualitative analysis was conducted for this particular model through classic theory for ODE sys-
tems. Details are found in the supplementary material. We summarize the results here, but first, we
shall define a threshold value that is very important for the stability and existence of equilibrium.

2.1.1. Basic Reproduction number and Invasion Reproduction number

The Basic Reproduction number R0 is defined by many authors, as in [24], as the expected number
of secondary infections produced by one case in a susceptible population and also as a measure of
the potential for disease spread in a population. Mathematically, the Basic Reproduction Number is a
threshold for the stability of the Disease Free equilibrium [24].

We shall define R1 =
β1

d+γ
as the Basic Reproduction Number for strain one and, R2 =

β2
d+γ

as the
Basic Reproduction Number for strain two.

It is usual to define an overall reproduction number for a multi-strain model, with different strains.
Thus, it will be defined as:

R0 = max{R1,R2}. (2.7)

This definition, according to Martcheva [25], is similar to that given in [24], where the Basic Re-
production number is defined mathematically as the spectral radius (the maximum of the modulus of
the eigenvalues) of the Next Generation matrix.

When working with a multiple-strain model, it is usual to find another important threshold value.
This value will determine whether the Coexistence Endemic equilibrium (CEE) will be in the biological
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positive region and also the stability of the Boundary Equilibrium (BE). This threshold is called the
Invasion Reproduction number (of strain one at the equilibrium of strain two) [25], and we shall denote
it by RInv. Martcheva [25] defined epidemiologically as a number of secondary infections that one
individual infected with strain one will produce in a population, in which strain two is at equilibrium
during its infectious lifetime.

2.2. Discussion of qualitative result

For the ODE model (2.6) we proved the existence of four equilibria (proofs and details can be found
in the supplementary material). The Disease Free equilibrium (DFE) is locally asymptotically stable if
R0 < 1, and thus the disease will die out. However, the DFE is unstable if R0 > 1.

We found two BEs, each equilibrium corresponding to only one infection. The infection with the
lowestRi value is always unstable whereas the other is stable ifRInv < 1. This means that the strain with
the biggest force of infection will persist, and the other will die out. In addition, the BE is unstable
if RInv > 1 and thus there is a fourth equilibrium, the CEE, in the positive invariant region. In this
scenario, the two strains will coexist.

This ODE model is very similar to the models proposed in [9], [10], [11]. However, the assumption
for the ADE effect is different, leading to different dynamics. The analytical result for the CEE and the
stability was obtained for the symmetric case in [10] when all the parameters were assumed to be equal
for different strains. The authors numerically showed the transcritical bifurcation for the asymmetric
case in [11] as well as a robust diagram showing different bifurcations for the epidemic model, showing
the complexity of the referred model. Nonetheless, there is no analytical form of the CEE as we showed
for this model in this paper.

We could prove that for certain values of the parameter that represents the enhancement, there is
indeed a CEE within the region. This is a very important result because, according to VinodKumar [26],
different serotypes have been co-circulating in the same area with one of them being dominant during
an outbreak.

We also numerically proved that the equilibrium can be stable only for small parameter values that
represent the ADE. Additionally, we showed that bifurcation occurs and, for most of the values of the
parameter φ that represent the ADE, equilibrium exists and it is unstable. Thus, the coexistence of the
two serotypes is possible but not established, and the solution oscillates for a critical parameter value.

3. General Case: Time delay system

In the previous section (2.2), we discussed a particular case, considering the time of cross-immunity
protection as exponentially distributed. We shall now analyze the model assuming the cross-immunity
protection time as any continuous function with certain additional properties.

Consider the system (2.5) together with the assumptions (2.1) and (2.2). Following the idea in [27],
we will examine the system (2.5) as a perturbation of the limiting system:

dS (t)
dt

= d − dS (t) − β1S (t)(I1(t) + I21(t)) − β2S (t)(I2(t) + I12(t))

dI1(t)
dt

= −(d + γ)I1(t) + β1S (t)(I1(t) + I21(t))
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dI2(t)
dt

= −(d + γ)I2(t) + β2S (t)(I2(t) + I12(t)) (3.1)

dR1(t)
dt

= −dR1(t) − α2φR1(t)(I12(t) + I2(t)) −
∫ ∞

0
γI1(t − s)P′1(s)e−dsds

dR2(t)
dt

= −dR2(t) − α1φR2(t)(I21(t) + I1(t)) −
∫ ∞

0
γI2(t − s)P′2(s)e−dsds

dI12(t)
dt

= −(d + γ)I12(t) + α2φR1(t)(I2(t) + I12(t))

dI21(t)
dt

= −(d + γ)I21(t) + α1φR2(t)(I1(t) + I21(t)).

According to Miller [28], the limiting system ensures that the initial system proposed has equilib-
rium. In adittion, according to Hethcote [29], using Miller’s theorems [30], it is possible to show that
the equilibrium of the system coincides with that of their limiting equation.

For this limiting system (3.1) it is necessary to define the Banach space with memory, as defined
in [31], [32], [33] and [34], in order to have a well-posed system and to have solutions defined in
(−∞, 0]. For qualitative theory, it will be useful to consider the following space phase.

Denote ∆1, ∆2 positives constants such that ∆i < d, satisfying, for i = 1, 2 ,
∫ ∞

0
Pi(u)e−due∆iudu <

∞. Define the Banach space, for i = 1, 2,

X∆i = {Ψ ∈ C((−∞, 0],R) : Ψ(s)e∆i s is uniformly continuous in (−∞, 0] and ||Ψ||e < ∞},

where ||Ψ||e = sups≤0|Ψ(s)|e∆i s. We consider X = R × X∆1 × X∆2 × R
7 as the phase space for the

limiting system (3.1).
Denote Iit , for i = 1, 2, the solution Ii(t) at time t, that is Iit(s) = Ii(t + s), s ≤ 0. Let

Λi = {Ψ ∈ X∆i : Ψ(s) ≥ 0, s ∈ (−∞, 0] }, i = 1, 2. Then, for initial conditions, S (0) = s0 ∈ R+, I10 =

Ψ1 ∈ Λ1, I20 = Ψ2 ∈ Λ2, Ci(0) = ci ∈ R+, Ri(0) = ri ∈ R+, I ji(0) = θi ∈ R+, i = 1, 2, the solutions
of the limiting systems in X remain non-negative and, Iit ∈ X∆i , for all t, for i = 1, 2. Moreover,
ΩX = {(S , I1(.), I2(.),C1,C2,R1,R2, I12, I21,R) ∈ R+×Λ1×Λ2×R

7
+ : S + I1(0)+ I2(0)+C1 +C2 +R1 +R2 + I12 + I21 +R ≤ 1}

is positively invariant for system (3.1).
The trivial equilibrium D0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) is always in the invariant set ΩX. Now using

the assumption ∫ ∞

0
Pi(u)e−dudu < ∞ (3.2)

we get 0 < −
∫ ∞

0
P′i(u)e−d(u)du < ∞. Thus, we will define

Mi := −
∫ ∞

0
P′i(s)e−d(s)ds. (3.3)

Furthermore, we also assume that ∫ ∞

0
uPi(u)e−dudu < ∞. (3.4)

The assumption (3.4) together with (3.2) leads to∫ ∞

0
uP′i(u)e−dudu < ∞. (3.5)
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Since 0 < Mi < 1, in the case of the extinction of one of the strains, the BE of the system (3.1) are

D1 =

(
d + γ

β1
,

d
β1

[
β1

d + γ
− 1

]
, 0,

γ

d
(1 − M1)I∗1 , 0,M1

γ

β1

[
β1

d + γ
− 1

]
, 0, 0, 0

)
(3.6)

and,

D2 =

(
d + γ

β2
, 0,

d
β2

[
β2

d + γ
− 1

]
, 0,

γ

d
(1 − M2)I∗2 , 0,M2

γ

β2

[
β2

γ + d
− 1

]
, 0, 0

)
(3.7)

and it will be in the ΩX region, as long as the parameters satisfy
β1

d + γ
> 1 and,

β2

d + γ
> 1, respec-

tively.
In the case of coexistence of the two strains, the CEE is given by

C∗1 =
γ(1 − M1)

d
I∗1

C∗2 =
γ(1 − M2)

d
I∗2

R∗1 =
d + γ − β2S ∗

α2φ

R∗2 =
d + γ − β1S ∗

α1φ
(3.8)

I∗12 =
(d + γ)I∗2 − β2S ∗I∗2

β2S ∗

I∗21 =
(d + γ)I∗1 − β1S ∗I∗1

β1S ∗

I∗1 + I∗2 =
d(1 − S ∗)

d + γ

and, S ∗ is the root of the cubic polynomial O(S ) = b3S 3 + b2S 2 + b1S + b0 where

b3 = β1β2[α2(d + γ(1 − M1))(β1 − α1φ)(d + γ) + α1(d + γ(1 − M2))(β2(d + γ) − α2φγM1)]

b2 = α2β2(d + γ)(d + γ(1 − M1))((d + γ)(α1φ − β1) + β1α1φ)

− β1α2(d + γ)3(β1 − α1φ) + β2α1(d + γ)2(α2φγM1 − β2(d + γ))

− β2β1α1(d + γ(1 − M2))((d + γ)2 − α2φγM1)

b1 = (d + γ)3[(d + γ)(β2α1 + β1α2 − α2α1φ) − α1α2φ(β1 + β2)]

b0 = φα1α2(d + γ)4.

Moreover, S ∗ has to satisfy that S ∗ < d+γ

βi
, i = 1, 2 in order to have the equilibrium in ΩX. This

discussion proves the following theorems about the equilibria of the system (3.1).

Theorem 1. If β1
d+γ

> 1 then the system of equations (3.1), always has a BE, D1, in ΩX. And, if
β2

d+γ
> 1 then the system of equations (3.1), always has a BE, D2, in ΩX.
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Theorem 2. Without loss of generality, assume β2 > β1. If max { β1
d+γ
, β2

d+γ
} > 1 and,

RInv =
β1

β2
+

(
β2

d + γ
− 1

)
α1φγM2

β2(d + γ)
> 1 (3.9)

then, the system (3.1) admits an equilibrium of the coexistence with two strains (a CEE).

Proof. The independent term, b0, of the polynomial O(S ) is always positive. Since the equilibrium is
given by (3.8) with S ∗ being a root of the polynomial O, and this equilibrium will be in the region Ω if
S ∗ < d+γ

βi
, for i = 1, 2 let us define

S min = min{
d + γ

β1
,

d + γ

β2
}.

Then, if β2
d+γ

> 1 and RInv > 1 then

O(S min) =
[(d + γ)2γM1α2β1]

β2
2 [(d + γ)2(β2 − β1) + γM2α1φ((d + γ) − β2)] < 0.

This shows that we have a root S ∗ of the polynomial O, such that 0 < S ∗ < S min for i = 1, 2.
Therefore, for this S ∗, we have a positive equilibrium in ΩX with the coexistence of the two strains. �

3.1. Stability analysis

In Section 3 we calculated the equilibria of the limiting system in order to know the equilibria of the
delay system. In this section we shall introduce results that connect the local stability of the limiting
system with the local stability of the delay system.

For the purpose of finding the stability of the solutions of the system (2.5) we follow the study
conducted by Brauer [27], denoting the limiting system (3.1) as the unperturbed system.

So, we regard

H(t) =

∫ ∞

t
γY(t − s)P′(s)ds (3.10)

as a perturbation, where H is a vector that contains functions, Y is the matrix containing the variables
of the populations, P′ is the vector containing the functions P′i(s)e−d(s). This perturbation function tends
to zero as t goes to infinity. Adding the perturbation (3.10) to the limiting system (3.1) we have the
initial system (2.5).

The stability of the equilibria of the limiting system is a consequence of stability of the zero solution
of the linearized system. Moreover, the asymptotic stability of the zero solution of the linear system
X′(t) = AX(t) +

∫ ∞
0 B(s)X(t− s)ds is equivalent to finding no solutions in the right half of the plane Reλ ≥ 0

of det(λI − A − B̂(λ)) = 0, where I is the identity matrix, A is a matrix, and B̂(λ) denotes the Laplace
transform of B [35].

Since the assumptions (3.5) hold, and the perturbation function of the system is integrable, we have
the necessary assumptions to use Theorem 2 in [27]. First, we need the following results of the stability
of the limiting system (3.1), mathematically defining R0 = max{R1,R2} = max{ β1

d+γ
, β2

d+γ
}.

Theorem 3. If R0 = max{R1,R2} < 1 then the DFE (D0), of the system (3.1) is locally asymptotically
stable. And, D0 will be unstable if R0 > 1.
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Proof. Solving the characteristic equation

det(λI − H0 − Ĝ(λ)) = 0, (3.11)

where I is the identity matrix 9 × 9, H0 is the matrix

H0 =



−d −β1 −β2 0 0 0 0 −β2 −β1

0 β1 − (d + γ) 0 0 0 0 0 0 β1

0 0 β2 − (d + γ) 0 0 0 0 β2 0
0 γ 0 −d 0 0 0 0 0
0 0 γ 0 −d 0 0 0 0
0 0 0 0 0 −d 0 0 0
0 0 0 0 0 0 −d 0 0
0 0 0 0 0 0 0 −(d + γ) 0
0 0 0 0 0 0 0 0 −(d + γ)


,

and,

Ĝ(λ) =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 γĜ1(λ) 0 0 0 0 0 0 0
0 0 γĜ2(λ) 0 0 0 0 0 0
0 −γĜ1(λ) 0 0 0 0 0 0 0
0 0 −γĜ2(λ) 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



,

with Ĝi(λ) =

∫ ∞

0
e−λzgi(z)dz =

∫ ∞

0
e−λzP′i(z)e−dzdz, gives us the following eigenvalues of the system

at DFE:

λ1 = −d, λ6 = − (d + γ)

λ2 = −d, λ7 = − (d + γ)

λ3 = −d, λ8 = − (d + γ) + β1

λ4 = −d, λ9 = − (d + γ) + β2.

λ5 = −d

If R0 < 1 then all the eigenvalues are negative. If R0 > 1 then at least one eigenvalue will be
positive. This guarantees the proof. �

Remark: Without loss of generality, we are assuming that the infection has different forces, and
therefore we assume for now on that β2 > β1.

Theorem 4. The BE, D1, of the system (3.1) is always unstable in the ΩX region, and the BE, D2, is
locally stable, in ΩX, if RInv < 1 and is unstable in ΩX if RInv > 1.
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Proof. Solving the characteristic equation

det(λI − H1 − Ĝ(λ)) = 0, (3.12)

where I is the identity matrix 9 × 9, H1 is the matrix

H1 =



−dR1 −(d + γ) −β2
d+γ

β1
0 0 0 0 −β2

d+γ

β1
−(d + γ)

d(R1 − 1) 0 0 0 0 0 0 0 (d + γ)

0 0 (d + γ)
(
β2
β1
− 1

)
0 0 0 0 β2

d+γ

β1
0

0 γ 0 −d 0 0 0 0 0
0 0 γ 0 −d 0 0 0 0
0 0 −w1 0 0 −d 0 −w1 0
0 0 0 0 0 0 −d − w2 0 0
0 0 w1 0 0 0 0 −(d + γ) + w1 0
0 0 0 0 0 0 w2 0 −(d + γ)


,

where w1 =
α2φ

β1
γM1(R1−1), w2 =

α1φ

β1
d(R1−1), and Ĝ(λ) is the matrix whose elements are the Laplace

transform of the gi(z) = e−dzP′i(z) of the associated linear system gives us the following eigenvalues of
the system at D1, given by (3.6):

λ1 = −d, λ6 = − d
(
1 +

α1φ

β1
(R1 − 1)

)
λ2 = −d, λ7 =

1
2

(
−dR1 −

√
(dR1)2 − 4d(d + γ)(R1 − 1)

)
λ3 = −d, λ8 =

1
2

(
−dR1 +

√
(dR1)2 − 4d(d + γ)(R1 − 1)

)
λ4 = −(d + γ), λ9 =

α2

β1
φγM1(R1 − 1) +

(β2 − β1)
β1

(d + γ).

λ5 = −(d + γ)

Since β2 > β1, the eigenvalue λ9 will be always positive. On the other hand, solving the character-
istic equation of the associated linear system in D2, given by (3.7), gives us the following eigenvalues:

λ1 = −d

λ2 = −d

λ3 = −d

λ4 = −(d + γ)

λ5 = −(d + γ)

λ6 = −d
(
1 +

α2φ

β2
(R2 − 1)

)
λ7 =

1
2

(
−dR2 −

√
(dR2)2 − 4d(d + γ)(R2 − 1)

)
λ8 =

1
2

(
−dR2 +

√
(dR2)2 − 4d(d + γ)(R2 − 1)

)
λ9 =

α1φ

β2
γM2(R2 − 1) +

(β1 − β2)
β2

(d + γ).
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Therefore, all the eigenvalues have a negative real part, except for one eigenvalue that changes its
sign. If RInv < 1 the eigenvalue λ9 is negative. On the other hand, if RInv > 1 thus, λ9 is positive. This
proves the result. �

Remark: Since M2 < 1 then, if
α1φ

β1
≤ 1, we have that RInv < R1. Biologically speaking, this

results means that there is a range of values for β1 which strain one cannot invade the population if
strain two is endemic. In this way, infection force two may protect the population from infection force
one. After this range of values, the strains coexist.

3.1.1. Stability of the solutions of the Time Delay System

In Section 3 we showed that the equilibria of the unperturbed system (3.1) and the theorems proved
the uniformly asymptotic stability of the zero solution of the linear limiting system, and therefore, the
stability of the equilibria of the limiting system. Thus, using Theorem 2 [27] we have the following
results on the stability of solutions of the initial system (2.5) and, therefore for (2.4).

Corollary 1. If R0 < 1, thus the DFE, D0, of the system (2.5) is locally asymptotically stable. And D0

is unstable if R0 > 1 .

Corollary 2. The BE, D1, of the system (2.5) is always unstable in Ω. And, the BE, D2, is locally
stable in Ω if RInv < 1 and is unstable in Ω if RInv > 1.

Remark: The analysis of the local stability of the CEE using this theory was not successful since
we have to deal with a characteristic transcendental equation, with an infinite number of roots. Thus
we will study the stability of the CEE numerically in Section 5.

4. Global stability

In this section we shall investigate the global dynamics of the system (2.5) by constructing a suitable
Lyapunov functional.

4.1. Global stability of the DFE

Theorem 5. If R0 ≤ 1, then the DFE, D0, of the system (2.5) is globally attractive in Ω.

Proof. First, denote the positive function, for i = 1, 2,

Πi(t) =

∫ ∞

0
γIi(s)Pi(t − s)e−d(t−s)ds. (4.1)

Consider h(z) = z − 1 − ln(z), z ∈ R∗+. Then, h ≥ 0.
Let L be the function

L(t) =
1

d + γ
(h(S ) + I1 + I2 + I21 + I12 + R1 + R2 + Π1 + Π2) , (4.2)

so,

L(t) =
1

d + γ
(S − 1 − ln (S ) + I1 + I2 + I21 + I12 + R1 + R2)
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+
1

d + γ

(∫ ∞

0
γI1(s)P1(t − s)e−d(t−s)ds +

∫ ∞

0
γI2(s)P2(t − s)e−d(t−s)ds

)
is well-posed, is a Lyapunov functional, with L ≥ 0, where the equality being true if and only if S = 1
and, Ii = 0, Ri = 0, Ii j = 0 for i, j = 1, 2, since h (S ) ≥ 0, for any S > 0.

Now, differentiating L along the solution of the system (2.5) we have

L′ =
1

d + γ

(
d
(
2 − S −

1
S

))
(4.3)

+
1

d + γ

[
(−(d + γ) + β1N∗)(I1 + I21) + (−(d + γ) + β2N∗)(I2 + I12)

]
(4.4)

+
1

d + γ
(−d(R1 + R2 + Π1 + Π2)) (4.5)

+
1

d + γ

(∫ ∞

t
γI1(s)P′1(t − s)e−d(t−s)ds +

∫ ∞

t
γI2(s)P′2(t − s)e−d(t−s)ds

)
. (4.6)

Since S + 1
S ≥ 2, we have that the term in (4.3) is always non-positive in Ω. Also, since R0 ≤ 1, we

have that the term in (4.4) is always non-positive in Ω. R1 and R2 are in Ω and, Π1 and Π2 are positive
functions of t, thus the term in (4.5) is always non-positive. The last term in (4.6) is non-positive
because Pi(t) is decreasing, and therefore, P′i is negative. Therefore, L′ ≤ 0 in Ω and, the equality is
true if and only if each term of the equation is zero. From (4.3) the equality is true if and only if S = 1
and, with R0 < 1, from (4.4) to (4.6), we conclude that I1 = I2 = R1 = R2 = C1 = C2 = I12 = I21 = 0.

In the case that R0 = 1, since S = 1, from the first equation of the system we have that S ′ =

−βi(Ii + I ji) < 0. But this is a contradiction with the fact that, since S = 1, it implies that S ′ = 0. Thus,
Ii + I ji = 0. Therefore, for instance, if R0 = 1, we still have that I2 = 0 and I12 = 0. In this way, defining
E = {(S , I1, I2,C1,C2,R1,R2, I12, I21,R) ∈ Ω ; L′(t) = 0}, thus, the singleton D0 is the largest invariant
set in E. By the Invariance Principle for IDE [36, 37] we have that the DFE, D0, of the system (2.5) is
globally asymptotically stable in Ω.

�

4.2. Global stability of the Boundary Equilibrium

We proved, in the previous section (3.1.1), that for β2 > β1 the BE, D2, is locally asymptotically
stable, when R2 > 1 and RInv < 1. Now we are able to show that under these same conditions
the trajectories with initial conditions in Ω − {(S , I1, I2,C1,C2,R1,R2, I12, I21,R) ∈ Ω ; I2 = 0} approach this
equilibrium. We need, first, the following result.

Lemma 1. If R2 > 1 and RInv < 1 then the trajectories of system (2.5) that start in Ω approach the
invariant set Ω2 = {(S , I1, I2,C1,C2,R1,R2, I12, I21,R) ∈ Ω ; I1 = C1 = R1 = I12 = I21 = R = 0}.

Proof. Consider the Lyapunov functional

L1(t) = Π1 + R1 + I12, (4.7)

with Π1 being the same function definite in (4.1).
Thus, differentiating L1 along the solution of the system (2.5) we have

L′1 =Π′1 + R′1 + I′12
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= − dΠ1 +

∫ ∞

0
γI1(t)P′1(t − s)e−d(t−s)ds − dR1 − (d + γ)I12 −

∫ t

0
γI1(t)P′1(t − s)e−d(t−s)ds

= − dΠ1 −

(
−

∫ ∞

t
γI1(t)P′1(t − s)e−d(t−s)ds

)
− dR1 − (d + γ)I12

Therefore, L′1 ≤ 0 in Ω and, the equality is true if, and only if, R1 = 0, I12 = 0, Π1 = 0 and
−

∫ ∞
t
γI1(t)P′1(t − s)e−d(t−s)ds = 0. In addition, from the equation of the system and, from the equality

above, we have directly that I1 = 0 and, C1 goes to zero when t goes to infinity. Also, since I1 = 0 we
have that

0 = I′1(t) = β1S I21.

Then, S = 0 or I21 = 0. If S = 0 then, for the first equation of the system, we have S ′(t) = d > 0,
which is a contradiction, since S = 0 implies S ′ = 0. Then I21 = 0. Therefore, we have shown that
the maximal invariant set contained in the set of all points in Ω, where L

′

1 = 0, is Ω2. This shows the
lemma.

�

This lemma shows that under certain conditions is sufficient to study the dynamics of the delay
system (2.5) only on the projection of Ω2, this is, in the set Ω2p = {(S , I2,C2,R2); S + I2 +C2 + R2 ≤ 1)
in R4. In this set, the initial system is reduced to

dS (t)
dt

= d − dS − β2S I (4.8)

dI(t)
dt

= β2S I − (d + γ)I

dC(t)
dt

= γI − dC +

∫ t

0
γI(s)P′2(t − s)e−d(t−s)ds

dR(t)
dt

= −dR −
∫ t

0
γI(s)P′2(t − s)e−d(t−s)ds.

This system has two equilibria D0p = (1, 0, 0, 0) and D2p = ( d+γ
β2
, d
β2

(R2 − 1),C∗,R∗) corresponding to the
projections of D0 and D2, respectively. The following theorem shows that all solutions of the system
(4.8) with initial conditions in Ω2p − {(S , I,C,R) ∈ R4; I = 0} approach the equilibrium D2p when
R2 > 1.

Theorem 6. If R2 > 1 then the Endemic equilibrium D2p of the system (4.8) is globally stable in Ω2p .

Proof. Proof is straightforward from the classical SIR Model. Since the first two equations do not
depend on C and R, when R0 > 1, the solutions converge to the endemic equilibrium. And, once I
converges to I∗, C converges to C∗. �

The local asymptotic stability of D2, the lemma and the theorem above, demonstrate the global
stability of D2 in Ω under the conditions R2 > 1 and RInv < 1.
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Table 1. Numerical values of the parameters used in simulations

Parameter Meaning Value Reference
d mortality rate 0.015 y−1 [38]
γ recovery rate 52 y−1 [2, 39]
βi infection rate (individuals susceptible) 40 − 200 ?

αi reinfection rate (individuals recovered from j) 40 − 200 ?

φ ADE factor 0 − 5 [40]

? These values were calculated to give reasonable Basic Reproduction numbers for dengue. For in-
stance, in Massad and colleagues [41,42] estimate the range ofR0 between 1.38 to 7.86 with a Brazilian
dataset. Reiner [43] estimates the range of the Basic Reproduction number varied from 0.76 to over 5,
with a dataset from Peru. With a dataset from Thailand, Ferguson [44] estimates the R0 from 1.38 to
7.70, with an average of 3.2.

5. Numerical results

In this paper we shall use a numerical approach to obtain information on the local stability of the
CEE. The numerical values for the parameters are shown in the Table 1.

It is also necessary to choose a function that can represent the immunity period. This function was
chosen to describe the biological feature of the temporary cross-protection period as described in [2].
For this initial numerical analysis, we choose to work with the cubic polynomial,

P(s) =

2s3 − 3s2 + 1, 0 ≤ s ≤ 1
0, s ≥ 1

in order to not work with infinity time, that describes the decreasing and loss of cross protection, con-
sidering the average time being 1

2 year [2]. In addition, we assume that after one year cross immunity
is no longer effective and after this period the individual is susceptible again to other strains [2].

5.1. Stability of the Coexistence Endemic equilibrium

As we saw in Section 3, the CEE D3 exists only if R0 > 1 and, if RInv > 1. In this case, the BE
loses stability, and the CEE, with the coexistence of the two strains, rises and remains in the invariant
region.

Figures 1a and 1b show the parameter region for the stability of the BE and, for the DFE and the
parameter region for the existence of the CEE. Note that, as the value φ increases, the parameter region
of the stability for the BE decreases, forcing the CEE to coexist within the region. Additionally, there
is a threshold for the value of φ, in each case, that satisfies RInv > 1.

The characteristic equation of the system is a transcendental equation, typically having infinitely
many roots. Thus, we shall make a numerical analysis in order to study the stability of the CEE,
analyzing the roots of the characteristic equation, numerically, for some values of the parameter φ,
using it as a bifurcation parameter.

We separated in two cases:
Case (i): R0 > 1, R1 < 1
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Figure 1. Stability and existence region of the equilibriums. The blue region represents the
parameter region for which the DFE is globally stable (R0 ≤ 1). The green region represents
where the BE is locally stable (RInv ≤ 1). The coral region represents the existence region of
the CEE (RInv > 1).

In this case, with values for the parameters in table (1) chosen β1 = 45 and β2 = 180, which gives
R1 = 0.87, and R0 = 3.46. The RInv is bigger than one for φ = 1.23. Then, for all value of φ > 1.23 we
have the existence of the CEE, and the corresponding eigenvalues, as show in Figures 2a to 2f.
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(f) φ = 2.52

Figure 2. The figures show the eigenvalues of the Endemic equilibrium in the complex plane,
for each value of φ. Figure 2d show that a purely imaginary eigenvalue appears for φ ≈ 2.19.

Figures 2a to 2f show that the characteristic equation has a pair of conjugated complex roots, that
change the sign of the real part as φ increases. Thus, a Hopf bifurcation occurs when the parameter
φ ≈ 2.19.

Case (ii): R0 > 1, R1 > 1
In this case, with values for the parameters in Table 1 chosen β1 = 120 and β2 = 180, which gives
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R1 = 2.31, and R0 = 3.46. The RInv is bigger than one for φ = 0.205. Then, for all value of φ > 0.205
we have the existence of the CEE, and the corresponding eigenvalues, as show in Figures 3a to 3f.
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Figure 3. The figures show the eigenvalues of the Endemic equilibrium in the complex plane,
for each value of φ. Figure 3c show that a purely imaginary eigenvalue appears for φ ≈ 0.244.

Figures 3a to 3f show that the characteristic equation has a pair of conjugated complex roots, that
change the sign of the real part as φ increases. Thus, a Hopf bifurcation occurs when the parameter
φ ≈ 0.244.

Furthermore, after the Hopf Bifurcation, the CEE will be unstable, leading to a complex dynamic
where sometimes the strain one resists resulting in the other becoming almost extinct, and sometimes
the the opposite. Models that carry these mechanisms that can cause the coexistence of pathogens, and
therefore this switch between the strains has an important role since, according to VinodKumar [26],
different serotypes have been co-circulating in the same area, with one of them being dominant during
an outbreak.

5.1.1. Bifurcation Structure

As seen in the figures in Section 5.1, the CEE change the stability as the parameter φ changes. As
φ increase from a small value to the critical value φc, the steady state changes from a stable focus to an
unstable steady state. Therefore, Hopf bifurcation occurs, and thus we conclude that closed periodic
orbit will be found in a small neighborhood of φc.

The Hopf bifurcation occurs at φc = 2.19 ( Figure 4a ) and at φc = 0.244 ( Figure 4b) and, therefore,
the solutions exhibit a small amplitude limit cycle around the endemic equilibrium. A stable limit cycle
arises close to the critical Bifurcation point and goes away from the unstable equilibrium. Thus, it is
possible to conclude that a supercritical Hopf bifurcation occurred.

This change of stability, and thus, the Hopf bifurcation, is local. Therefore, the Hopf bifurcation

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2950–2984.



2968

2.1 2.12 2.14 2.16 2.18 2.2 2.22 2.24 2.26 2.28 2.3
0.2

0.22

0.24

0.26

0.28

0.3

0.32

S
us

ce
pt

ib
le

 S
ub

po
pu

la
tio

n 
(M

ax
 a

nd
 M

in
) 

Bifurcation Diagram R
1
< 1

(a) Case R1 = 0.87: φc = 2.19
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(b) Case R1 = 2.31 : φc = 0.244

Figure 4. On the horizontal axis the parameter φ varies in the vicinity of φc while on the
vertical axis the maximum and minimum value for susceptible population are plotted.

does not specify what happens when the parameter is further beyond the vicinity of its critical bifurca-
tion value [45,46]. Because of this, solutions will be plotted, in the next section, for different values of
φ, to show the asymptotic behavior also for parameter values further from the bifurcation value.

5.1.2. Solutions of the system

Case (i): R0 > 1, R1 < 1
Figures 5a to 5e show the solutions of the system for the case R1 < 1 and R0 > 1. Figure (5a) for

φ = 0.5 and RInv < 1. Thus, as R0 > 1 the solution converges to the value of BE.
Figures 5b and 5c for φ = 1.4 and φ = 2.1, respectively, where RInv > 1. Since φ is smaller than the

critical value of HB, the solution thus converges to the CEE, that is, the CEE is stable.
Figure 5d for φ = 2.21 and RInv > 1. Since the value of φ is closed to the HB critical value, periodic

solutions are seen. Figure 5e for φ = 3.5 where the parameter is bigger than the HB critical value.
Thus, for long term behavior the solutions seen not to converge to periodic orbit, showing complex
dynamics.

Case (ii): R0 > 1, R1 > 1
Figures 6a to 6e show the solutions of the system for the case R1 > 1 and R0 > 1. In Figure 6a for

φ = 0.1, the RInv < 1. Thus, as R0 > 1 the solution converges to the value of BE. In Figure 6b for
φ = 0.23, smaller than the HB critical value, thus the solution converges to the CEE, that is, the CEE
is stable.

Figure 6c shows the solution for RInv > 1 and φ = 0.26, closed to the HB critical value, thus periodic
solutions are seen. In Figure 6d for φ = 0.8, the RInv > 1, then the parameter is bigger than the HB
critical value. Thus, for long term behavior the solutions seem to converge to periodic orbit. Figure 6e
for φ = 2, bigger than the HB critical value. Also, in this case solutions converge to periodic orbits.

Although we conclude numerically that the solutions of the system, for values of the parameter
far from the bifurcation critical value, reach an equilibrium or to a periodic orbit, in some cases the
solutions seem not to converge, showing complex dynamics.
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Figure 5. Times series for different values of φ, in case (i), with R1 = 0.87.

Therefore, biologically speaking, since the value for the ADE parameter is unknown, it is hard to
give the smallest interval that is a representative value for ADE. This means that it is hard to predict the
next episode of the disease since we may have different scenarios: coexistence of infections, periodic
outbreaks, or even complex dynamics, depending on the parameter interval value for ADE.

6. Discussion and conclusions

In this study, we have developed a mathematical model that can be applied to a multi strain infec-
tious disease such as dengue fever, which is endemic in more than 100 countries [1] and remains a
major public health problem.

Over the years, some mathematical models for infectious diseases, especially for dengue fever, have
been developed, most of which are in the format of ODEs. However, the propagation of epidemics is
not instantaneous, and it is more appropriate to model epidemics incorporating continuously distributed
delay and not discrete delay or constant time.

We proposed a model with a time delay in temporary immunity, allowing general periods of im-
munity. The time delay was used to model phenomena so that an individual may not be immediately
susceptible after recovering. In addition, a constant parameter describes the ADE effect.

A special form for the temporary immunity function was considered in Section 2. By considering
the temporary immunity time as exponentially distributed, we are able to reduce the IDE system to an
ODE system. The qualitative analysis of the ODE system thus gave us a visual picture of the dynamic
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Figure 6. Times series for different values of φ, in case (ii), with R1 = 2.31.

behavior.
In Section 3, using results from IDE systems, we were able to prove the existence of four equilibria

and their stability, proving that the disease will die out if R0 < 1. If RInv < 1, one strain will die out,
and the other will persist. And, in the last scenario, the two strains will coexist if RInv > 1.

Lyapunov functionals can be an effective tool to prove the global stability of IDE systems. Never-
theless, we were able to prove the global stability of DFE and of the BE when RInv < 1. This result
means, biologically, that there is a range of values for the infection force so that strain one cannot
invade the population if strain two is endemic. In this way, infection two may protect the population
from infection one.

When comparing the particular case (exponential distributed function) with the general case, the
qualitative behavior of the system was not altered by the distributed delay. However, the invasion
number depends on the average cross-protection time, which depends on the choice of the function,
and this can affect whether the infection can coexist.

The ADE effect was studied by considering it as a bifurcation parameter. Thus, the possibility of
Hopf bifurcation was examined through a numerical analysis. This kind of bifurcation is local, and
therefore, only for values close to the bifurcation critical point, can we conclude that a limit cycle
exists, and that the solutions will show periodic behavior. This means that, in the scenario where the
strains coexist, they can either coexist in an equilibrium or, for a specific value, they can show periodic
behavior, according to the value of the ADE parameter.

For solutions of the system, for values further from the bifurcation critical value, numerical results
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show that the solutions either reach an equilibrium or go into a periodic orbit. However, it will be
necessary to further analyze other kinds of bifurcations.

Since ADE is still an unknown factor, we can only suggest scenarios such as periodic solutions or
coexistence of strains, as well as complex dynamics, depend on its value. However, a possible outbreak
will be hard to predict.

Lastly, mathematical models focus on understanding the spread of infectious diseases as well as
suggesting interventions to control or even predict the consequences of their propagation. With this
model, we tried to understand the dynamics of different strains at the population level and explain why
it is so hard to predict dengue fever. We concluded that there are certain mechanisms and intrinsic
characteristics of dengue fever, such as ADE and cross protection, which may hinder the prediction of
the next outbreaks of the disease.
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Supplementary material

A particular case: Exponential immunity

Here we are going to analyze qualitatively the ODE system, a particular case of the model studied.
If we assume the length of immunity being exponentially distributed, then the fraction of temporarily
immune individuals who remain in the Ci class is Pi(t) = e−ωit, with ωi > 0, for i = 1, 2, then the
IDE system became an ODE system. Thereby, the system already normalized, where the variables
represent the fractions of the populations, can be described as follows:

dS (t)
dt

= d − dS (t) − β1S (t)(I1(t) + I21(t)) − β2S (t)(I2(t) + I12(t))

dI1(t)
dt

= −(d + γ)I1(t) + β1S (t)(I1(t) + I21(t))

dI2(t)
dt

= −(d + γ)I2(t) + β2S (t)(I2(t) + I12(t))

dC1(t)
dt

= −dC1(t) + γI1(t) − ω1C1(t)

dC2(t)
dt

= −dC2(t) + γI2(t) − ω2C2(t) (6.1)

dR1(t)
dt

= −dR1(t) − α2φR1(t)(I12(t) + I2(t)) + ω1C1

dR2(t)
dt

= −dR2(t) − α1φR2(t)(I21(t) + I1(t)) + ω2C2
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dI12(t)
dt

= −(d + γ)I12(t) + α2φR1(t)(I2(t) + I12(t))

dI21(t)
dt

= −(d + γ)I21(t) + α1φR2(t)(I1(t) + I21(t)).

Clearly, the system (6.1) always has a Disease-free equilibrium (DFE), namely,

E0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0).

In the case of the extinction of one of the strains, we are able to find the Boundary equilibrium (BE)
of the system:

E1 =

(
d + γ

β1
,

d
β1

[
β1

d + γ
− 1

]
, 0,

γ

d + ω1
I∗1, 0,

ω1

d
γ

d + ω1
I∗1, 0, 0, 0, 0

)
. (6.2)

And, the BE

E2 =

(
d + γ

β2
, 0,

d
β2

[
β2

d + γ
− 1

]
, 0,

γ

d + ω2
I∗2, 0,

ω2

d
γ

d + ω2
I∗2, 0, 0, 0

)
. (6.3)

For biological reasons, we are looking for steady states that belong to Ω, a positively invariant
region, where Ω = {(S , I1, I2,C1,C2,R1,R2, I12, I21,R) ∈ R10

+ such that S + I1 + I2 + C1 + C2 + R1 + R2 +

I12 + I21 + R ≤ 1}. In this way, the BE, Ei, i = 1, 2 is in Ω as long as
βi

d + γ
> 1.

In the case of the coexistence of the two strains, we are able to find the Coexistence Endemic
equilibrium (CEE) that is given by

C∗1 =
γ

d + ω1
I∗1

C∗2 =
γ

d + ω2
I∗2

R∗1 =
d + γ − β2S ∗

α2φ

R∗2 =
d + γ − β1S ∗

α1φ
(6.4)

I∗12 =
(d + γ)I∗2 − β2S ∗I∗2

β2S ∗

I∗21 =
(d + γ)I∗1 − β1S ∗I∗1

β1S ∗

I∗1 + I∗2 =
d(1 − S ∗)

d + γ

and, S ∗ is the root of the cubic polynomial O(S ) = b3S 3 + b2S 2 + b1S + b0 where

b3 = β1β2[α2(β1 − α1φ)(d + γ)(d + ω2)((d + ω1)(d + γ) − γω1)

+ α1(β2(d + γ)(d + ω1) − α2φγω1)((d + ω2)(d + γ) − γω2)]

b2 = (d + γ)3(d + ω1)(d + ω2)[β1α2(−β1 + α1φ) + β2α2(−β1 + α1φ) − β2α1(β1 + β2)]
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+ (d + γ)2β1β2((d + ω2)γω1α2 + (d + ω1)γω2α1)

+ β1β2α1α2φ[(d + γ)2(d + ω1)(d + ω2) − ω2γ
2ω1]

b1 = (d + γ)3(d + ω1)(d + ω2)[(d + γ)(β2α1 + β1α2 − α2α1φ) − α1α2φ(β1 + β2)]

b0 = φα1α2(d + γ)4(d + ω1)(d + ω2).

Moreover, S ∗ has to satisfy that S ∗ < d+γ

βi
, i = 1, 2, in order to have the CEE, E3, in the Ω region.

Otherwise, if S ∗ does not satisfy this inequality, the variables that represent the recovered and infected
populations will be negative.

These discussions support and demonstrate the following theorems.

Theorem 7. If β1
d+γ

> 1 then the system of equations (6.1), always has a BE, E1, given by (6.2) in Ω.
And, if β2

d+γ
> 1 then the system of equations (6.1), always has a BE, E2, given by (6.3) in Ω.

Theorem 8. Without loss of generality, suppose that β2 > β1. If max{ β1
d+γ
, β2

d+γ
} > 1 and,

RInv =
β1

β2
+

(
β2

d + γ
− 1

)
α1φγω2

β2(d + ω2)(d + γ)
> 1 (6.5)

then, the system (6.1) admits a CEE in Ω with the coexistence of the two strains.

Proof. The independent term, b0, of the polynomial O(S ) is always positive. Since the equilibrium is
given by (6.4) with S ∗ being a root of the polynomial O, and this equilibrium will be in the region Ω if
S ∗ < d+γ

βi
, for i = 1, 2 let us define

S min = min{
d + γ

β1
,

d + γ

β2
} =

d + γ

β2
.

Then, if β2
d+γ

> 1 and RInv > 1, the polynomial O at S min is

O(S min) =
[(d + γ)2γω1α2β1]

β2
2

[(d + ω2)(d + γ)2(β2 − β1) + γω2α1φ((d + γ) − β2)] < 0.

This shows that we have a root S ∗ of the polynomial O, such that, 0 < S ∗ < S min. Therefore, for this
S ∗ we have a positive equilibrium of the system (6.1), in Ω, with the coexistence of the two strains. �

Basic Reproduction number

We defined the Basic Reproduction number in the subsection 2.1.1 of this study. We defined

R1 =
β1

d + γ
(6.6)

as the Basic Reproduction n for strain one. And,

R2 =
β2

d + γ
(6.7)
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as the Basic Reproduction number for strain two.
In addition, the system’s overall reproduction number was defined as R0 = max{R1,R2}.
Another important threshold value, the Invasion Reproduction number, was defined in that subsec-

tion, and it is given by

RInv =
R1

R2
+ (R2 − 1)

α1φγω2

β2(d + ω2)(d + γ)
. (6.8)

Remark: For our purpose and without loss of generality, we are assuming that the infection has
different forces and, therefore, we assume for now on that β2 > β1. Thus, R0 = R2.

Stability Analysis

The local stability of the equilibria will be determined by the classical method of determining the
stability of the steady states of some ODE systems, by analysis of the eigenvalues of the Jacobian
matrix of the system at each equilibrium.

Theorem 9. If R0 then the DFE, E0, of the system (6.1) is locally asymptotically stable. And, E0 is
unstable if R0 > 1.

Proof. The eigenvalues of Jacobian matrix of the system evaluated at the DFE (E0) are

λ1 = −d

λ2 = −(d + ω1)

λ3 = −(d + ω2)

λ4 = −(d + γ)

λ5 = −(d + γ)

λ6 = −d

λ7 = −d

λ8 = −(d + γ) + β1

λ9 = −(d + γ) + β2.

Clearly if R0 < 1 thus all the eigenvalues will be negative. If R0 > 1 thus at least one eigenvalue
will be positive. Which proves the theorem. �

Theorem 10. The BE, E1, of the system (6.1) is always unstable in Ω region. And the BE, E2, is stable
in Ω if RInv < 1, and unstable in Ω, if RInv > 1.

Proof. The eigenvalues of the Jacobian matrix of the system evaluated at E1 are

λ1 = −d

λ2 = −(d + ω1)

λ3 = −(d + ω2)

λ4 = −(d + γ)
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λ5 = −(d + γ)

λ6 = −d
(
1 +

α1φ

β1
(R1 − 1)

)
λ7 =

1
2

(
−dR1 −

√
(dR1)2 − 4d(d + γ)(R1 − 1)

)
λ8 =

1
2

(
−dR1 +

√
(dR1)2 − 4d(d + γ)(R1 − 1)

)
λ9 =

α2φγω1(R1 − 1)
β1(d + ω1)

+
(β2 − β1)(d + γ)(d + ω1)

β1(d + ω1)
.

Since β2 > β1, the eigenvalue λ9 will be always positive. In addition, the eigenvalues of the Jacobian
matrix of the system evaluated at E2 are

λ1 = −d

λ2 = −(d + ω1)

λ3 = −(d + ω2)

λ4 = −(d + γ)

λ5 = −(d + γ)

λ6 = −d
(
1 +

α2φ

β2
(R2 − 1)

)
λ7 =

1
2

(
−dR2 −

√
(dR2)2 − 4d(d + γ)(R2 − 1)

)
λ8 =

1
2

(
−dR2 +

√
(dR2)2 − 4d(d + γ)(R2 − 1)

)
λ9 =

α1φγω2(R2 − 1)
β2(d + ω2)

+
(β1 − β2)(d + γ)(d + ω2)

β2(d + ω2)
.

If RInv < 1 thus, the eigenvalue λ9 < 0. Furthermore, the other eigenvalue has a negative real part.
Therefore, the BE, E2, will be stable.

If RInv > 1 thus, the eigenvalue λ9 > 0. This proves the theorem. �

Remark: We can rewrite the threshold RInv as

RInv =
R1

R2
+
α1φ

β1

γ

(d + γ)
ω2

(d + ω2)
R1

(
1 −

1
R2

)
. (6.9)

Thus, if
α1φ

β1
≤ 1, we have that RInv < R1. This result means that there is a range of values for β1 for

which strain one cannot invade the population if the strain two is endemic. In this way, strain two may
protect the population from strain one.

The analysis of the local stability of the CEE using the classical theory was not successful. We will
have to deal with a characteristic polynomial of a 9×9 matrix and, with the fact that it was not possible
to describe the value of S ∗ in terms of the parameters. Thus, in order to study the stability, we will
analyze it numerically, in Section 6.
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Numerical analysis

The numerical values for the parameters are shown in the Table 2.

Table 2. Numerical values of the parameters used in simulations

Parameter Meaning Value Reference

d mortality rate 0.015 y−1 [38]
γ recovery rate 52 y−1 [2, 39]
ωi cross immunity protection rate 2 y−1 [2, 39]
βi infection rate (individuals susceptible) 40 − 200 ?

αi reinfection rate (individuals recovered from j) 40 − 200 ?

φ ADE factor 0 − 5 [40]

? These values were calculated to give reasonable Basic Reproduction numbers for dengue. For in-
stance, Massad and colleagues [41, 42] estimate the range of R0 between 1.38 to 7.86 with a Brazilian
dataset. Reiner [43] estimates the range of the Basic Reproduction number varied from 0.76 to over 5,
with a dataset from Peru. With a dataset from Thailand, Ferguson [44] estimates the R0 from 1.38 to
7.70, with an average of 3.2.

Stability of the Coexistence Endemic equilibrium

In this section we are going to explore the stability of the CEE numerically. As we saw in section
(6) the CEE, E3, exists only if R0 > 1 and RInv > 1. In this case, the BE loses stability, and the CEE,
with the coexistence of the two strains, rises and remains in the invariant region.

1 2 3 4 5
R_2

1

2

3

4

5

R_1

R_inv=1

R_1=R_2

Estability Region DFE

(a) φ = 0.2
1 2 3 4 5

R_2

1

2

3

4

5

R_1

R_inv=1

R_1=R_2

Estability Region DFE

(b) φ = 4.2

Figure 7. Stability and existence region of the equilibriums. The blue region represents the
parameters region for which the DFE is globally stable (R0 ≤ 1). The green region represents
where the BE is locally stable (RInv ≤ 1). The coral area represents the existence region of
the CEE (RInv > 1).

Figures 7a and 7b show the parameter region for the stability of the BE and, for the DFE and, the
parameter region for the existence of the CEE. Note that, as the value φ increases, the parameter region
of the stability for the BE decreases, forcing the CEE to coexist within the region.

To show the stability of the CEE numerically, we need to guarantee that the values of the parameters
satisfy RInv > 1. φ, the parameter used to describe the ADE effect, is a parameter that its value is
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unknown. As we saw in Figures 7a and 7b there is a threshold for the value of φ, in each case, that
satisfies RInv > 1. Starting from this threshold value, the CEE will be in the positive region and,
therefore, we can look for the eigenvalues of the Jacobian Matrix at CEE. Note that the CEE can be in
the invariant region even if the strain one is not established. Thus, we separated in two cases:

Case (i): R0 > 1, R1 < 1

In this case, with values for the parameters in Table 2, chosen β1 = 45 and β2 = 180, which gives
R1 = 0.87, and R0 = 3.46. The RInv is bigger than one for φ bigger than 1.23. Then, for all values of
φ > 1.23 we have the CEE and, the corresponding eigenvalues, as shown in Figures 8a to 8f.
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Figure 8. Eigenvalues of the Endemic equilibrium in the complex plane, for each value of φ.
Figures 8a to 8f show that the real part of a pair of complex eigenvalues change the sign as φ
increases.

Figures 8a to 8f give the stability of the CEE, E3, for each value of φ. We can see that the matrix
has two conjugated complex roots that change the sign of the real part as φ increases. Thus, a Hopf
bifurcation occurs when the parameters φ ≈ 2.52 ( Figure 8d ).

Case (ii): R0 > 1, R1 > 1

In this case, with the values for the parameters in Table 2 chosen β1 = 120 and β2 = 180, which
gives R1 = 2.31, and R0 = 3.46. The RInv is bigger than one for φ bigger than 0.21. Then, for all value
of φ > 0.21 we have the CEE and, the corresponding eigenvalues, as shows in Figures 9a to 9f.

Figures 9a to 9f give the stability of the CEE, E3 for each value of φ. We can see that the matrix
has two conjugated complex roots, which change the sign of the real part as φ increases. Thus, a Hopf
bifurcation occurs when parameters φ ≈ 0.244 ( Figure 9c ).

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2950–2984.



2981

-2.5 -2.0 -1.5 -1.0 -0.5 0.5
Real part

-1.0

-0.5

0.5

1.0

Imaginary part
Eigenvalues for ϕ= 0.21, R_1 > 1

(a) φ = 0.21

-2.5 -2.0 -1.5 -1.0 -0.5 0.5
Real part

-1.0

-0.5

0.5

1.0

Imaginary part
Eigenvalues for ϕ= 0.235, R_1 > 1

(b) φ = 0.235

-2.5 -2.0 -1.5 -1.0 -0.5 0.5
Real part

-1.0

-0.5

0.5

1.0

Imaginary part
Eigenvalues for ϕ= 0.245, R_1 > 1

(c) φ = 0.244

-2.5 -2.0 -1.5 -1.0 -0.5 0.5
Real part

-1.0

-0.5

0.5

1.0

Imaginary part
Eigenvalues for ϕ= 0.8, R_1 > 1

(d) φ = 0.8

-2.5 -2.0 -1.5 -1.0 -0.5 0.5
Real part

-1.0

-0.5

0.5

1.0

Imaginary part
Eigenvalues for ϕ= 1, R_1 > 1

(e) φ = 1

-2.5 -2.0 -1.5 -1.0 -0.5 0.5
Real part

-1.5

-1.0

-0.5

0.5

1.0

1.5

Imaginary part
Eigenvalues for ϕ= 2.1, R_1 > 1

(f) φ = 2.1

Figure 9. Eigenvalues of the Endemic equilibrium in the complex plane, for each value of φ.
Figures 9a to 9f show that the real part of a pair of complex eigenvalues change the sign as φ
increases.

Bifurcation Structure

As seen in the figures in Section 6, as φ increase from small value trough critical value, φc, the steady
state changes from a stable focus to an unstable steady state. Therefore, Hopf bifurcation occurs and
thus, we conclude that closed periodic orbit will be found in a small neighbourhood of φc. In order
to see the limit cycle around the equilibrium, in a small vicinity of the critical value, the bifurcation
diagrams are shown in Figures 10a and 10b.

The Hopf bifurcation occurs at φc = 2.52 (Figure 10a ) and at φc = 0.244 ( Figure 10b ) and,
therefore, the solutions exhibit a small amplitude limit cycle around the CEE. A stable limit cycle
arises close to the critical bifurcation point and moves away from the unstable equilibrium. Thus, it is
possible to conclude that a supercritical Hopf bifurcation occurred.

This change in the stability, and thus, the Hopf bifurcation is local. Therefore, the Hopf bifurcation
does not specify what happens when the parameter is further beyond the vicinity of its critical bifurca-
tion value [45–47]. Because of this, solutions will be plotted, in the next section, for different values
of φ, to also show the asymptotic behaviour for parameter values further from the bifurcation value.

Solutions of the system: a particular case

In this section, we shall numerically explore the solutions of the system in order to obtain informa-
tion about the dynamics and also for values of φ further from the bifurcation value.

Case (i): R0 > 1, R1 < 1
Figures 11a to 11e show the solutions of the system for the case R1 < 1 and R0 > 1. Figure 11a for
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(a) Case R1 = 0.87: φc = 2.52
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Figure 10. In the horizontal axis, the parameter φ varies in a vicinity of φc, while in the
vertical axis, the maximum and minimum value for susceptible population are plotted.
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Figure 11. Times series for different values of φ, in case (i), with R1 = 0.87.

φ = 0.5 and RInv < 1. Thus, as R0 > 1 the solution converges to the value of BE.
Figures 11b and 11c the RInv > 1, for φ = 1.4 and φ = 2.1 respectively. Since the value of φ is

smaller than the value of φc, thus the solutions converge to the CEE, this is, the CEE is stable. Figure
11d the RInv > 1, for φ = 2.55 close to φc. Thus, periodic solutions are seen.

Figure 11e the RInv > 1, for φ = 3.5 bigger than the value of φc. For long term behavior the solutions
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seem not to converge to periodic orbit, showing complex dynamic.

Case (ii): R0 > 1, R1 > 1
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(c) φ = 0.26
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(d) φ = 0.8
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(e) φ = 2

Figure 12. Times series for different values of φ, in case (ii), with R1 = 2.31.

Figures 12a to 12e show the solutions of the system for the case R1 > 1 and R0 > 1. Figure 12a for
φ = 0.1 the RInv < 1. Thus, as R0 > 1 the solution converges to the value of BE.

Figure 12b the RInv > 1, for φ = 0.23, smaller than the value of φc, thus the solution converges to
the CEE, this is, the CEE is stable. Figure 12c the RInv > 1, for φ = 0.26 close to φc. Thus, periodic
solutions are seen.

Figure 12d the RInv > 1, for φ = 0.8 bigger than the value of φc. For long term behaviour the
solutions seen to converge to periodic orbit. Figure 12e the RInv > 1, for φ = 2 bigger than the value of
φc. Also, in this case, solutions converge to periodic orbits.

Although we conclude numerically that the solutions of the system reach an equilibrium or a pe-
riodic orbit, for values further from the bifurcation value, in some cases solutions do not converge,
showing complex dynamics. Thus, analysis of other kinds of bifurcations would be necessary.

Therefore, biologically speaking, since the value of the ADE parameter is unknown, it is hard to
give the smallest interval that is a representative value for ADE. This means that it is hard to predict the
next episode of the disease, since we can have different scenarios: coexistence of infections, periodic
outbreaks, or even complex dynamics, depending on the parameter interval value for ADE.
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Definition Lyapunov Functional

Let Ω ⊂ D be a compact set, L : D→ R be a continuously differentiable function such that:
· L(x) = 0 if and only if x = 0;
· V(x) > 0 ∀x ∈ Ω, x , 0;
· L̇(x) = ∇L · x′ ≤ 0, ∀x ∈ Ω.
Then, L is called a Lyapunov functional [36, 48, 49].
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