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Abstract: A generalized “SVEIR” epidemic model with general nonlinear incidence rate has been
proposed as a candidate model for measles virus dynamics. The basic reproduction number R, an
important epidemiologic index, was calculated using the next generation matrix method. The existence
and uniqueness of the steady states, namely, disease-free equilibrium (E0) and endemic equilibrium
(E1) was studied. Therefore, the local and global stability analysis are carried out. It is proved that E0

is locally asymptotically stable once R is less than. However, if R > 1 then E0 is unstable. We proved
also that E1 is locally asymptotically stable once R > 1. The global stability of both equilibrium E0

and E1 is discussed where we proved that E0 is globally asymptotically stable once R ≤ 1, and E1 is
globally asymptotically stable once R > 1. The sensitivity analysis of the basic reproduction number
R with respect to the model parameters is carried out. In a second step, a vaccination strategy related
to this model will be considered to optimise the infected and exposed individuals. We formulated a
nonlinear optimal control problem and the existence, uniqueness and the characterisation of the optimal
solution was discussed. An algorithm inspired from the Gauss-Seidel method was used to resolve the
optimal control problem. Some numerical tests was given confirming the obtained theoretical results.

Keywords: “SVEIR” epidemic model; nonlinear incidence rate; lyapunov function; LaSalle’s
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1. Introduction

Measles is an infectious disease caused by a virus of the genus Morbilivirus and belonging to a
group RNA viruses. The extremely contagious measles virus is spread when people cough or sneeze,
through close contact between people or through direct contact with nasal, laryngeal secretions or with
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contaminated objects [1, 2]. Symptoms of measles are characterized by a high fever accompanied
by cough, runny nose, red and watery eyes, and Koplik’s spot, which appear about 10–12 days after
exposed to the virus [1]. In 2018, more than 140,000 people worldwide died from measles in part
large are children under 5 years of age [3]. Measles immunization is given to infants aged 9 months
because babies under that age still have innate immunity from their mother. Measles virus quickly
killed by ultraviolet rays, chemicals, acids, and heating. Hence, early handling against measles can
be done after going through laboratory confirmation by doing serological examination (patient blood
collection/blood serum) or virological examination (patient urine collection) [2].

In the current context where we live serious health crises both in the industrialized countries and
those who are less industrialized, one of the disciplinary fields of predilection embraced by mathemat-
ical modeling is public health. Several research teams are interested in the potential of mathematical
models in the development of new tools and methods to control the spread of a disease [4]. Mathemati-
cal modeling of infectious diseases makes it possible to study the unexplained questions of an epidemic
in a population, its dynamics of transmission, the probability that the epidemic will spread or die out
in the susceptible population, the best vaccination strategy that would be effective to be undertaken
by governments and any possibility of treatment of the disease. Develop, validate and use mathemat-
ical models to analyze and predict the dynamics of infectious diseases such as HIV, tuberculosis and
hepatitis using the available data [5]. In the context of predictions and insights for the time-evolution
related to infectious diseases, several researchers developed mathematical compartmental models; for
example, see [6–15].

The spread of infectious diseases can be modeled with an epidemiological model, using either de-
terministic or stochastic approach [16–21]. In the health sector, epidemiological models can be used
for proposing and testing theories, as well as for comparing, planning, implementing, and evaluat-
ing various detection, prevention, or control programs [22]. One of the basic models for the spread
of disease was proposed by Kermack and McKendrick [23] in 1927. In their original model, Ker-
mack and McKendrick introduced a model of dividing differential equations population into three com-
partments, namely the infected population compartment (I), the susceptible population compartment
(S ), and the recovered population compartment (R), known as the Susceptible (susceptible)-Infected
(infected)-Recovered (“SIR”) model [23]. The “SIR” model is used to model disease assuming that
it is an individual have permanent immunity or temporary immunity for a very long period of time.
Measles epidemic models have been studied by several researchers using deterministic models, as
in [2, 7, 24, 25]. In [25], Momoh et al. used the “SEIR” (Susceptible, Exposed, Infected, Recovered)
to analyze the effect of testing and therapy for measles during the incubation period (exposed) against
the dynamics of the spread of measles. Furthermore, Edward et al. [24] using the “SVEIR” model
(Susceptible, Vaccinated, Exposed, Infected, Recovered) taking into account the proportion of immi-
grants who have been vaccinated, the proportion of the population that has been vaccinated twice, and
the rate of effectiveness of the first vaccine. It is modified by Aldila and Asrianti [7] by differentiating
the compartments of the population that have been vaccinated once and the population compartment
that has been vaccinated twice, as well as the population compartment that has been vaccinated do
quarantine. Fakhruddin et al. [2] modified the “SIR” model by adding a hospitalized (Hospitalized)
infected population compartments.

The application of the “SVEIR” model to the spread of measles as reviewed in this article is in line
with government efforts to control, reduce, and even eliminate the spread of measles human population,
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by carrying out a mass measles vaccine since 2000 [2]. Based on Therefore, the model reviewed in this
article modifies the model proposed by Momoh et al. [25] with add vaccinated population compart-
ments, and analyze the dynamics of the spread measles by looking at the influence of the proportion
of susceptible population who have been vaccinated and the rate of infection when susceptible indi-
viduals interact with infected individuals. In [26], Wei et al. proposed an “SVEIR” epidemic model
where a pulse vaccination was given for each individual. The strategy is to vaccinate each individual
several times by separating doses of a definite time of a certain age group. Therefore, in the present
article, we shall revisit and analyse the model first proposed by Hethcote [18], then studied by Gumel
et al. [12], Wei et al. [26], Adda et al. [27], and then by Nkamba et al. [28] but by considering general
nonlinear increasing incidence rate with respect to the infected individuals. Our choice is motivated by
the fact that the number of effective contacts between infected individuals and susceptible individuals
or between vaccinated individuals and infected individuals may increase at high infective levels due to
crowding of infected individuals. Further, we proposed an optimal vaccination strategy relative to this
epidemic model in order to minimize the number of both infected and exposed individuals.

The organization of the paper is as follows: In a first step, we present, in Section 2, a description of
the investigated model. Further, the basic properties of the model for the existence of the solutions are
obtained. The basic reproduction number R was calculated using the next generation matrix method.
Then existence, uniqueness of the model equilibria was studied. Local stability of the equilibria of
the proposed model was investigated in Section 3. The global stability and asymptotic behaviour of
the solution are discussed in Section 4. In Section 5, the sensitivity analysis of the basic reproduc-
tion number R with respect to the model parameters is carried out. In Section 6, we proposed and
formulated an optimal vaccination strategy in order to optimize the number of infected and exposed in-
dividuals. We discussed the existence, uniqueness and characterisation of the optimal solution. Finally,
in Section 7, we give some numerical simulations, validating the theoretical results where we applied
an appropriated numerical scheme inspired from the competitive Gauss-Seidel like implicit difference
method.

2. Mathematical model and results

We assume that the total population is divided into five classes (compartments) according to their
status concerning disease: susceptible S (t), vaccinated V(t), exposed E(t), infected I(t), and recovered
R(t) classes. The susceptible class, S (t), represents the individuals that having the risk to catch the
infection because of the close contact with the infected individuals. The vaccinated class, V(t), con-
sists of those individuals who may be given an imperfect vaccine that reduces their susceptibility to
the disease; still, they can get the infection under some suitable conditions. The infected class, I(t),
represents the individuals who already cached the disease, and they are able to infect the susceptible
individuals for some suitable conditions. The recovered class, R(t), represents the individuals who
are already infected, and now they recovered their healthy due to either treatment or immunization.
Schematically, the spread of measles using the “SVEIR” model is presented in the following transfer
diagram.

To build a deterministic model for the “SVEIR” spread of measles, several things are assumed
following.

• Λ is the recruitment rate of susceptible individuals.
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• p describe the rate of vaccination.
• θ ∈ [0, 1] is the effectiveness rate of the vaccination.
• Each compartment has a specific natural mortality rate. ms, mv, me, mi and mr are the mortality

rates of susceptible, vaccinated, exposed, infected and recovered individuals, respectively.
• Measles can cause death (fatal) with a mortality rate of ζ.
• f represents the saturated incidence rate.
• ε the rate at which an exposed individuals become infectious. 1/ε is the average latency time

spent in compartment E.
• γ the rate at which infectious agents recover their health. 1/γ is the average duration elapsed in

compartment I.
• Individuals who have been vaccinated will no gain permanent immunity so they will can be in-

fected again.
• Measles has an incubation period so that when the incubation period ends, individuals in the

Exposed (E) compartment will move to the Infected (I) compartment at a rate of ε.
• The recovery rate of individuals infected with measles is γ.
• Recovered individuals will not re-infect.

V

E I R

S
Λ

pS
εE γI

f (I)S

θ f (I)V
(mi + ζ)ImeE mrR

msS

mvV

Figure 1. “SVEIR” epidemic compartmental model.

The generalized “SVEIR” mathematical model of the ones given in [12, 26–28] for the spread of
the epidemic based on the transfer diagram in Figure 1 is given by:
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Ṡ = Λ − (ms + p)S − f (I)S ,
V̇ = pS − mvV − θ f (I)V,
Ė = f (I)(S + θV) − (me + ε)E,
İ = εE − (mi + ζ + γ)I,
Ṙ = γI − mrR,

(2.1)

with positive initial condition (S (0),V(0), E(0), I(0),R(0)) ∈ R5
+ .

Table 1. Variables and parameters description.

Variable Description Parameter Description
S (t) Susceptible individuals f Saturated incidence rate
V(t) Vaccinated individuals Λ Susceptible recruitment rate
E(t) Exposed individuals ε Infection transmission rate
I(t) Infected individuals γ Recovery rate
R(t) Recovered individuals θ ∈ [0, 1] Effectiveness rate of the vaccination
Parameter Description Parameter Description
mv Mortality rate of vaccinated individuals ms mortality rate of susceptible individuals
me Mortality rate of exposed individuals p vaccination rate

mi + ζ Total mortality rate of infected individuals
1
ε

Average latency time spent in compartment E

mr Mortality rate of recovered individuals
1
γ

Average duration elapsed in compartment I

Assumption 1. The function f is non-negative C1(R+), increasing bounded and concave such that
f (0) = 0.

Any function f satisfying Assumption 1 satisfies the following lemma.

Lemma 1. f ′(I)I < f (I) ≤ f ′(0)I for all I > 0.

Proof. For I ∈ R+, let h1(I) = f (I)−I f ′(I). Since f is an increasing and concave function then f ′(I) ≥ 0
and f ′′(I) ≤ 0. Therefore h′1(I) = −I f ′′(I) ≥ 0 and h1(I) ≥ h1(0) = 0 or also f (I) ≥ I f ′(I). Similarly,
let h2(I) = f (I) − I f ′(0) then h′2(I) = f ′(I) − f ′(0) ≤ 0 since f is concave. Then h2(I) ≤ h2(0) = 0 then
f (I) ≤ I f ′(0).

Remark 1. The Monod (or Holling’s type II) functions satisfy the assumption 1 and then can express
the transmission rate.

f (I) =
f̄ I

k + I

f̄ designs the maximum transmission rate and k represents the Monod constant.

In order to prove that the system (2.1) is well-posed, we will give some general properties. Let
m = min(ms,mv,me,mi + ζ,mr), then

Proposition 1. The compact set Ω1 = {(S ,V, E, I,R) ∈ R5
+ / S + V + E + I + R ≤

Λ

m
} is positively

invariant for system (2.1).
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Proof. Since Ṡ |S =0 = Λ > 0, V̇|V=0 = pS > 0, Ė|E=0 = f (I)(S + θV) > 0, İ|I=0 = εE > 0 and
Ṙ|R=0 = γI > 0, then the solution of system (2.1) is non-negative.

Consider a new variable T = S + V + E + I + R −
Λ

m
, then by adding all equations of (2.1), T satisfies:

Ṫ = Ṡ + V̇ + Ė + İ + Ṙ
= Λ − msS − mvV − meE − (mi + ζ)I − mrR
≤ Λ − m(S + V + E + I + R)

≤ m(
Λ

m
− S − V − E − I − R)

≤ −mT.

Hence

T (t) ≤ T (0)e−mt. (2.2)

Since all variables are non-negative then all variables are bounded and thus Ω1 is positively invariant
for system (2.1).

In epidemiology, a major health index calculating the average number of people an infectious per-
son infects while they are contagious, is called the basic reproduction number, and it is denoted R.
Recall that R is the number of secondary infections produced by a single typical infection in a suscep-
tible population, a very common question is how to define R when there are several types of infected
individuals, for example we can have an atypical infection in a disease vector-borne such as malaria,
or sexually transmitted infections when there are large asymmetries in transmission, such as HIV,
or a multiple-host pathogen such as influenza. The key concept is that we now need to average the
expected number of news infections in our case. If there are several compartments representing infec-
tious individuals, the next-generation matrix method introduced by Diekmann [4] and developed later
by van den Driessche and Watmough [5] is used to calculate the basic reproduction number R. Let

S 0 =
Λ

ms + p
,V0 =

pΛ

mv(ms + p)
, E0 = 0, Ī0 = 0 and R0 = 0. The Jacobian of the sub-system (E, I) of

the original system (2.1) at the disease-free equilibrium point E0 = (S 0,V0, E0, I0,R0) is given by

J(E0) =

(
(me + ε) f ′(0)(S 0 + θV0)
−ε (mi + ζ + γ)

)
= F + V

where F =

(
0 f ′(0)(S 0 + θV0)
0 0

)
and V =

(
(me + ε) 0
−ε (mi + ζ + γ)

)
.

The determinant of V is given by det(V) = (me + ε)(mi + ζ + γ) > 0 and thus the inverse matrix of V is

V−1 =


1

(mi + ζ + γ)
0

ε

(me + ε)(mi + ζ + γ)
1

(me + ε)


and the next-generation matrix is given by

FV−1 =

 ε f ′(0)(S 0 + θV0)
(me + ε)(mi + ζ + γ)

f ′(0)(S 0 + θV0)
(me + ε)

0 0

 .
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Then, the basic reproduction number of system (2.1) is calculated as the spectral radius of the matrix
FV−1:

R =
ε f ′(0)(S 0 + θV0)

(me + ε)(mi + ζ + γ)
=

Λε f ′(0)(mv + θp)
mv(me + ε)(mi + ζ + γ)(ms + p)

. (2.3)

Note that in absence of vaccination (p = 0), the system (2.1) becomes the standard SEIR model
with

R0 = R|p=0 =
Λε f ′(0)

ms(me + ε)(mi + ζ + γ)
. (2.4)

Proposition 2. System (2.1) admits a trivial (disease-free) equilibrium point E0 = (S 0,V0, E0, I0,R0)
and if R > 1, system (2.1) admits a unique non-trivial (endemic) equilibrium point E1 =

(S 1,V1, E1, I1,R1) with S 1,V1, E1, I1,R1 > 0.

Proof. An equilibrium point for the system (2.1) satisfies

0 = Λ − (ms + p)S − f (I)S ,
0 = pS − mvV − θ f (I)V,
0 = f (I)(S + θV) − (me + ε)E,
0 = εE − (mi + ζ + γ)I,
0 = γI − mrR,

(2.5)

which reduces to

S =
Λ

(ms + p + f (I))
,

V =
pS

(mv + θ f (I))
=

pΛ

(mv + θ f (I))(ms + p + f (I))
,

E =
f (I)

(me + ε)
(S + θV) =

Λ f (I)(mv + θp + θ f (I))
(me + ε)(ms + p + f (I))(mv + θ f (I))

,

I =
ε

(mi + ζ + γ)
E =

εΛ f (I)(mv + θp + θ f (I))
(mi + ζ + γ)(me + ε)(ms + p + f (I))(mv + θ f (I))

,

R =
γ

mr
I =

γεΛ f (I)(mv + θp + θ f (I))
mr(mi + ζ + γ)(me + ε)(ms + p + f (I))(mv + θ f (I))

.

(2.6)

From the fourth equation of (2.6) one deduces that

I =
εΛ f (I)(mv + θp + θ f (I))

(mi + ζ + γ)(me + ε)(ms + p + f (I))(mv + θ f (I))
.

Since all parameters are non-negative then either I = 0 or

εΛ f (I)(mv + θp + θ f (I)) = I
(
(mi + γ)(me + ε)

(
ms + p + f (I)

)(
mv + θ f (I)

))
.

• If I = 0 then R = 0, E = 0, S =
Λ

ms + p
= S̄ and V =

pS
mv

=
pΛ

mv(ms + p)
= V̄ . This equilibrium

known as the disease-free equilibrium denoted here by E0 = (S 0,V0, E0, I0,R0).
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• For I , 0, define the continuous function g

g(I) = 1 −
εΛ

f (I)
I

(mv + θp + θ f (I))

(mi + ζ + γ)(me + ε)(ms + p + f (I))(mv + θ f (I))
.

The derivative of g is given by

g′(I) =
−εΛ

(mi + ζ + γ)(me + ε)(ms + p + f (I))2(mv + θ f (I))2

×

([ f ′(I)I − f (I)
I2 (mv + θp + θ f (I)) + θ f ′(I)

f (I)
I

]
(ms + p + f (I))(mv + θ f (I))

−
f ′(I) f (I)

I
(mv + θp + θ f (I))(mv + θ f (I) + θ(ms + p + f (I)))

)

=

−εΛ
f ′(I)I − f (I)

I2 (mv + θp + θ f (I))

(mi + ζ + γ)(me + ε)(ms + p + f (I))(mv + θ f (I))

−

εΛ
f ′(I) f (I)

I
(mi + ζ + γ)(me + ε)(ms + p + f (I))2(mv + θ f (I))2

×

(
θ(ms + p + f (I))(mv + θ f (I)) − (mv + θp + θ f (I))

(
mv + θ f (I) + θ(ms + p + f (I))

))

=

−εΛ
f ′(I)I − f (I)

I2 (mv + θp + θ f (I))

(mi + ζ + γ)(me + ε)(ms + p + f (I))(mv + θ f (I))

+

εΛ
f ′(I) f (I)

I

(
(mv + θp + θ f (I))(mv + θ f (I)) + θ2 p(ms + p + f (I)))

)
(mi + ζ + γ)(me + ε)(ms + p + f (I))2(mv + θ f (I))2 .

Since all parameters are non-negative and since the function f satisfies f ′(I)I < f (I) for all I > 0,
one can easily deduce that the function g is an increasing function.
A simple calculus gives

lim
I 7→0

g(I) = 1 −
εΛ lim

I 7→0

f (I)
I

(mv + θp + θ lim
I 7→0

f (I))

(mi + ζ + γ)(me + ε)(ms + p + lim
I 7→0

f (I))(mv + θ lim
I 7→0

f (I))

= 1 −
εΛ lim

I 7→0

f (I)
I

(mv + θp)

mv(mi + ζ + γ)(me + ε)(ms + p)

= 1 −
εΛ f ′(0)(mv + θp

mv(mi + ζ + γ)(me + ε)(ms + p)
= 1 − R,
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and

g(
Λ

m
) = 1 −

εm f (
Λ

m
)(mv + θp + θ f (

Λ

m
))

(mi + ζ + γ)(me + ε)(ms + p + f (
Λ

m
))(mv + θ f (

Λ

m
))

> 1 −
εm f (

Λ

m
)(mv + θp + θ f (

Λ

m
))

(mi + ζ)ε(ms + p + f (
Λ

m
))(mv + θ f (

Λ

m
))

> 1 −
εm f (

Λ

m
)(mv + θp + θ f (

Λ

m
))

mε(ms + p + f (
Λ

m
))(mv + θ f (

Λ

m
))

> 1 −
εm f (

Λ

m
)(mv + θp + θ f (

Λ

m
))

mε f (
Λ

m
)(mv + θ f (

Λ

m
)) + mεpθ f (

Λ

m
) + mεmsmv

=
εmsmv

ε f (
Λ

m
)(mv + θ f (

Λ

m
)) + εpθ f (

Λ

m
) + εmsmv

> 0

Since R > 1, lim
I 7→0

g(I) < 0 and g(
Λ

m
) > 0, the equation g(I) = 0 admits a unique solution I1 in

(0,
Λ

m
) and then the uniqueness of the endemic equilibrium E1 = (S 1,V1, E1, I1,R1).

In the section below, we discussed the local stability of equilibria with respect to the value of the
basic reproduction number R.

3. Local stability analysis of the DFE

Theorem 1. If R < 1 , then the disease-free equilibrium (DFE) point E0 is locally asymptotically stable
and it is unstable if R > 1.

Proof. The Jacobian matrix associated to the system (2.1) at a given point (S ,V, E, I,R) is calculated
as follows:

J =


−(ms + p) − f (I) 0 0 − f ′(I)S 0

p −mv − θ f (I) 0 −θ f ′(I)V 0
f (I) θ f (I) −(me + ε) f ′(I)(S + θV) 0
0 0 ε −(mi + ζ + γ) 0
0 0 0 γ −mr
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It’s value, evaluated at E0, is given by:

J̄ =


−ms − p 0 0 − f ′(0)S 0 0

p −mv 0 −θ f ′(0)V0 0
0 0 −me − ε f ′(0)(S 0 + θV0) 0
0 0 ε −mi − ζ − γ 0
0 0 0 γ −mr


which admits five distinguish eigenvalues given by λ1 = −(ms + p) < 0, λ2 = −mv < 0, λ3 = −mr < 0
and two other eigenvalues corresponding to the sub-matrix(

−(me + ε) f ′(0)(S 0 + θV0)
ε −(mi + ζ + γ)

)
.

The corresponding characteristic polynomial is calculated as follows

P(λ) = λ2 + (me + mi + ζ + ε + γ)λ + (1 − R)(me + ε)(mi + ζ + γ).

Only if R < 1, then the roots of P(.) have negative real parts. Then E0 is locally asymptotically
stable only if R < 1. E0 is unstable once R > 1.

In the next section, the global stability behavior of the equilibria will be discussed.

4. Global stability analysis

Corollary 1. The set Ω2 = {(S ,V, E, I,R) ∈ R5
+ / S + V + E + I + R ≤

Λ

m
; S ≤ S 0,V ≤ V0} is positively

invariant for system (2.1).

Proof. It is already proved that Ω1 is invariant for system (2.1). Note that Ṡ (t) < 0 for S (t) > S 0

therefore lim inf S (t) ≤ S 0. Let ξ > 0 be a constant and S (0) be an initial condition. Then ∃ T ≥
0; S (t) ≤ S 0 + ξ ∀t ≥ T . Therefore

V̇(t) < p(S 0 + ξ) − mvV for all t ≥ T.

Consider V̄ = V −
p(S 0 + ξ)

mv
which satisfies

˙̄V(t) < −mvV̄ for all t ≥ T. (4.1)

Then

˙̄V(t) < Ṽ(0)e−mvt for all t ≥ T. (4.2)

Therefore lim inf V̄(t) ≤ 0 and lim inf V(t) ≤
p(S 0 + ξ)

mv
for all ξ > 0 thus lim inf V(t) ≤

pS 0

mv
= V0.

This completes the proof.

Theorem 2. E0 is globally asymptotically stable if R ≤ 1 however it is unstable if R > 1.
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Proof. Let the function F0 given by:

F0 = εE + (me + ε)I.

Since f (I) ≤ f ′(0)I, the time-derivative of F0 is given by:

Ḟ0 = εĖ + (me + ε)İ
= ε

(
f (I)(S + θV) − (me + ε)E

)
+ (me + ε)

(
εE − (mi + ζ + γ)I)

= ε f (I)(S + θV) − (me + ε)(mi + γ)I
≤ ε f ′(0)I(S + θV) − (me + ε)(mi + ζ + γ)I
≤

(
ε f ′(0)(S + θV) − (me + ε)(mi + ζ + γ)

)
I

≤ (me + ε)(mi + ζ + γ)
( ε f ′(0)(S + θV)
(me + ε)(mi + ζ + γ)

− 1
)
I

≤ (me + ε)(mi + ζ + γ)
( ε f ′(0)(S̄ + θV̄)
(me + ε)(mi + ζ + γ)

− 1
)
I , since S ≤ S̄ ,V ≤ V̄

= (me + ε)(mi + ζ + γ)
(
R − 1

)
I, ∀(S ,V, E, I,R) ∈ Ω2.

If R ≤ 1, then Ḟ0 ≤ 0 for all S ,V, E, I,R > 0. Let W0 = {(S ,V, E, I,R) : Ḟ0 = 0} = {E0}. Then by
LaSalle’s invariance principle [29] E0 is globally asymptotically stable once R ≤ 1 (see [9, 20, 21, 30]
for some applications). Then the solution of system (2.1) converges to E0 as t → +∞.

Hereafter, we study the global stability analysis for the endemic equilibrium E1.

Theorem 3. If R > 1, then the endemic equilibrium E1 is globally asymptotically stable.

Proof. Let the function F1, given by

F1 = (S − S 1 ln(
S
S 1

)) + (V − V1 ln(
V
V1

)) + (E − E1 ln(
E
E1

)) +
me + ε

ε
(I − I1 ln(

I
I1

)).

The function F1 admits its minimum value F1min = S 1 + V1 + E1 +
me + ε

ε
I1 once S = S 1,V =

V1, E = E1, I = I1. The time-derivative of F1, along solutions of system (2.1) is given by

Ḟ1 = (1 −
S 1

S
)Ṡ + (1 −

V1

V
)V̇ + (1 −

E1

E
)Ė +

me + ε

ε
(1 −

I1

I
)İ

= (1 −
S 1

S
)
(
Λ − (ms + p)S − f (I)S

)
+ (1 −

V1

V
)
(
pS − mvV − θ f (I)V

)
+(1 −

E1

E
)
(

f (I)(S + θV) − (me + ε)E
)

+
me + ε

ε
(1 −

I1

I
)
(
εE − (mi + ζ + γ)I

)
= Λ − msS − Λ

S 1

S
+ msS 1 + pS 1 + f (I)S 1 − mvV − pS

V1

V
+ mvV1 + θ f (I)V1 − f (I)(S + θV)

E1

E
+(me + ε)E1 −

me + ε

ε
(mi + ζ + γ)I − (me + ε)E

I1

I
+

me + ε

ε
(mi + ζ + γ)I1

= msS 1 − msS − ms
S ∗

2

S
+ msS 1 + mvV1 − mv

S 1

S
V1 + mvV1

−mvV + mvV1 + mvV1 − mv
V∗

2

V
S
S 1

+ f (I1)(S 1 + θV1)

− f (I1)
S ∗

2

S
− θ f (I1)V1

S 1

S
+ θ f (I1)V1 + f (I1)S 1 − θ f (I1)

V∗
2

V
S
S 1
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+θ f (I)V1 − f (I)(S + θV)
E1

E
+ f (I)(S 1 + θV1)

−
me + ε

ε
(mi + ζ + γ)I − (me + ε)E

I1

I
+

me + ε

ε
(mi + ζ + γ)I1

= msS 1(2 −
S
S 1
−

S 1

S
) + mvV1(3 −

S 1

S
−

V
V1
−

V1

V
S
S 1

)

+3 f (I1)S 1 − f (I1)
S ∗

2

S
− f (I1)S 1

E
E1

I1

I
− f (I)S

E1

E

−3θ f (I1)V1 + θ f (I1)V1 − θ f (I1)
V∗

2

V
S
S 1
− θ f (I)V

E1

E
− θ f (I1)V1

E
E1

I1

I
−θ f (I1)V1

S 1

S
−

me + ε

ε
(mi + ζ + γ)I + f (I)(S 1 + θV1)

= msS 1(2 −
S
S 1
−

S 1

S
) + mvV1(3 −

S 1

S
−

V
V1
−

V1

V
S
S 1

)

+ f (I1)S 1(3 −
S 1

S
−

I
I1

S
S 1

E1

E
−

E
E1

I1

I
) + θ f (I1)V1(4 −

V1

V
S
S 1
−

I
I1

V
V1

E1

E
−

E
E1

I1

I
−

S 1

S
).

Since

x1 + x2 + x3 + · · · + xn ≥ n n
√

x1.x2.x3 · · · xn, x1, x2, x3, · · · , xn ≥ 0 (4.3)

then (2 −
S
S 1
−

S 1

S
) ≤ 0, (3 −

S 1

S
−

V
V1
−

V1

V
S
S 1

) ≤ 0, (3 −
S 1

S
−

I
I1

S
S 1

E1

E
−

E
E1

I1

I
) ≤ 0, (4 −

V1

V
S
S 1
−

I
I1

V
V1

E1

E
−

E
E1

I1

I
−

S 1

S
) ≤ 0. Therefore Ḟ2 ≤ 0 . Thank’s to Lyapunov theorem, E1 is stable.

Now, we have to show the asymptotic stability of E1 using the Lasalle invariance principle.

Define A = (2 −
S
S 1
−

S 1

S
), B = (3 −

S 1

S
−

V
V1
−

V1

V
S
S 1

),C = (3 −
S 1

S
−

I
I1

S
S 1

E1

E
−

E
E1

I1

I
),

D = (4−
V1

V
S
S 1
−

I
I1

V
V1

E1

E
−

E
E1

I1

I
−

S 1

S
). Then Ḟ1(S ,V, E, I,R) = 0 if and only if A = B = C = D = 0.

A = 0 means that S = S 1 and B = 0 means that V = V1. If moreover C = 0 then
E
E1

=
I
I1

. To conclude

Ḟ1(S ,V, E, I,R) = 0⇔ S = S 1,V = V1,
E
E1

=
I
I1
.

Let a =
E
E1

=
I
I1

, then E = aE1 and I = aI1.

The endemic equilibrium satisfies∣∣∣∣∣∣∣∣∣∣∣
Λ = (ms + p)S 1 + f (I1)S 1,

pS 1 = mvV1 + θ f (I1)V1,

f (I1)(S 1 + θV1) = (me + ε)E1,

εE1 = (mi + ζ + γ)I1.

Then
pS 1 = mvV1 + θ f (I1)V1, a = 1
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and thus I = I1 and E = E1. Finally

Ḟ1(S ,V, E, I,R) = 0⇔ (S = S 1,V = V1, E = E1, I = I1,R = R1).

Therefore {(S ,V, E, I,R) |Ḟ1 = 0} = {E1}. Then by LaSalle’s invariance principle [29] E1 is globally
asymptotically stable once R > 1 (see [9, 20, 21, 30] for some applications).

5. Sensitivity analysis

The sensitivity analysis helps to determine how the variability of the model outputs can be attributed
to different sources of variation of its input parameters [31, 32]. It can thus have various objectives:

• Identify the input parameters that most contribute to an output of interest from the model. Conse-
quently, this makes it possible to prioritize the parameters to be estimated rather than to estimate
all the uncertain parameters in order to save simulation time considerable (most common goal).
• Detect and quantify the effects of interactions between input parameters.
• Determine possible simplifications of the model.

In our case, the sensitivity analysis can tells us how important each parameter with respect to the
disease transmission. Thus we have to discover the parameters that have the most high impact on the
basic reproduction numberR. These parameters will be targeted by any possible intervention strategies.
A key parameter known as the normalized forward sensitivity index describe the ratio of the relative
change in the variable to the relative change in this parameter. If the result is positive, this means
that an increase in the parameter value induces an increase in the basic reproduction number value.
However, a negative sensitivity index means that the parameter and the basic reproduction number are
inversely proportional [33].

Definition 1. (see [31, 32]). The normalized forward sensitivity index of R that depends differentiably
on a parameter ρ is defined by

YRρ =
∂R

∂ρ
×

ρ

|R|
.

For instance, YRρ = 1 implies an increase (decrease) of ρ by y% increases (decreases) R by the same
percentage. On the other hand, YRρ = −1 indicates an increase (decrease) of ρ by y% decreases
(increases) R by y%. In this case, ρ is called a highly sensitive parameter.

Proposition 3. The explicit expression of R is given by

R =
Λε f ′(0)(mv + θp)

mv(me + ε)(mi + ζ + γ)(ms + p)
.

The basic reproduction number R depends on some parameters, we calculate analytical expressions
for its sensitivity to each of these parameters by calculating the normalized forward sensitivity index
as the following:

Proof. This follows immediately from Definition 1.
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Table 2. Sensitivity of R for the parameter values.

Parameter Sensitivity index of R Sign

Λ YR
Λ

=
∂R

∂Λ
×

Λ

R
= 1 +ve

ε YRε =
∂R

∂ε
×
ε

R
=

me

me + ε
+ve

θ YRθ =
∂R

∂θ
×
θ

R
=

θp
mv + θp

+ve

p YRp =
∂R

∂p
×

p
R

=
(θms − mv)p

(ms + p)(mv + θp)

mv YRmv
=
∂R

∂mv
×

mv

R
=
−θp

mv + θp
-ve

ms YRms
=
∂R

∂ms
×

ms

R
= −

ms

ms + p
-ve

me YRme
=
∂R

∂me
×

me

R
= −

me

me + ε
-ve

mi YRmi
=
∂R

∂mi
×

mi

R
= −

mi

mi + ζ + γ
-ve

ζ YRζ =
∂R

∂ζ
×
ζ

R
= −

ζ

mi + ζ + γ
-ve

γ YRγ =
∂R

∂γ
×
γ

R
= −

γ

mi + ζ + γ
-ve

From the Table 2, it is to be noted that the parameters Λ, ε and θ are positive and hence an increase
of the values of parameters Λ, ε and θ leads to an increase of the value of R. Note that the dependence
of R on p depend on the sign of (θms − mv), and the dependence of R on the remaining parameters are
negative and hence an increase of the values of these parameters leads to a decrease of the value of R.

6. Optimal control problem

The optimal control strategy for epidemic models remains a wide open research area [20,34,35]. In
this section, we proposed an optimal vaccination strategy as the limit of preventive strategies for which
vaccination effort is minimized. Since the fifth equation doesn’t affect the other equations, let consider
the reduced system given by 

Ṡ = Λ − (ms + p)S − f (I)S ,
V̇ = pS − mvV − θ f (I)V,
Ė = f (I)(S + θV) − (me + ε)E,
İ = εE − (mi + ζ + γ)I,

(6.1)

where p = p(t) is a function that will be considered as control.

Note that the compact set Ω1 = {(S ,V, E, I) ∈ R4
+ / S + V + E + I ≤

Λ

m
} is positively invariant for

system (6.1).
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Assume moreover that f is globally Lipschitz with an upper bound f̄ = sup
I>0

f (I) and a Lipschitz

constant L f . Consider the admissible space

Vad =
{
p| p(t) is measurable, pmin ≤ p(t) < pmax, 0 ≤ t ≤ T

}
where pmin and pmax are the bounds of the control.

The optimal control problem considered here is

min
p∈Vad

J(p) = min
p∈Vad

∫ T

0

(a
2

p2(t) + αE(t) + βI(t)
)

dt subject to (6.1). (6.2)

Our objective for the work is to minimize the number of exposed E(t) and infective I(t) in the
population and the cost of vaccination by using the optimal vaccination rate p(t). The quantities α and
β denote the weight constants of the exposed and infective human population.

For ϕ = (S ,V, E, I)t, the system (6.1) takes a new form

ϕ̇ = Aϕ + G(ϕ) = F(ϕ) (6.3)

where A =


−ms − p 0 0 0

p −mv 0 0
0 0 −me − ε 0
0 0 ε −mi − ζ − γ

 and G(ϕ) =


Λ − f (I)S
−θ f (I)V

(S + θV) f (I)
0

.
Proposition 4. The continuous function F is uniformly Lipschitz.

Proof. The continuous function G is uniformly Lipschitz since

|G(ϕ1) −G(ϕ2)| = 2
∣∣∣∣ f (I1)S 1 − f (I2)S 2

∣∣∣∣ + 2θ
∣∣∣∣ f (I1)V1 − f (I2)V2

∣∣∣∣
≤ 2

∣∣∣∣S 1

(
f (I1) − f (I2)

)
+ f (I2)(S 1 − S 2)

∣∣∣∣
+2θ

∣∣∣∣V1

(
f (I1) − f (I2)

)
+ f (I2)(V1 − V2)

∣∣∣∣
≤ 2

∣∣∣∣Λm(
f (I1) − f (I2)

)
+ f̄ (S 1 − S 2)

∣∣∣∣
+2θ

∣∣∣∣Λm(
f (I1) − f (I2)

)
+ f̄ (V1 − V2)

∣∣∣∣
≤ 2

Λ

m
L f |I1 − I2| + 2 f̄ |S 1 − S 2| + 2θ

Λ

m
L f |I1 − I2| + 2 f̄ |V1 − V2|

≤ 2 max(
Λ

m
L f , θ

Λ

m
L f , f̄ )

(
|S 1 − S 2| + |V1 − V2| + |I1 − I2|

)
≤ M|ϕ1 − ϕ2|

where M = 2 max(
Λ

m
L f , θ

Λ

m
L f , f̄ ). Since

|Aϕ1 − Aϕ2| ≤ ‖A‖|ϕ1 − ϕ2| (6.4)

where ‖.‖ is the matrix norm, then

|F(ϕ1) − F(ϕ2)| ≤ K|ϕ1 − ϕ2| (6.5)

where K = max(M, ‖A‖) and the continuous function G is therefore uniformly Lipschitz .
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Once the continuous function F is uniformly Lipschitz thus the existence and uniqueness of the
solution of system (6.3).

By using Pontryagin’s Maximum Principle [20,34–36], necessary conditions for our optimal control
and corresponding states can be derived. Define the Hamiltonian H for the optimal control problems
(6.1) and (6.2)

H(S ,V, E, I, p, λ1, λ2, λ3, λ4) =
a
2

p2 + αE + βI + λ1Ṡ + λ2V̇ + λ3Ė + λ4 İ

=
a
2

p2 + αE + βI + λ1(Λ − (ms + p)S − f (I)S )

+λ2(pS − mvV − θ f (I)V) + λ3( f (I)(S + θV) − (me + ε)E)
+λ4(εE − (mi + ζ + γ)I).

For a given optimal control p∗, there exist adjoint functions λ1, λ2, λ3 and λ4 corresponding to the
states S ,V, E and I such that:

λ̇1 = −
∂H
∂S

= p(λ1 − λ2) + f (I)(λ1 − λ3) + msλ1,

λ̇2 = −
∂H
∂V

= θ f (I)(λ2 − λ3) + mvλ2,

λ̇3 = −
∂H
∂E

= −α + ε(λ3 − λ4) + meλ3,

λ̇4 = −
∂H
∂I

= −β + f ′(I)S (λ1 − λ3) + θ f ′(I)V(λ2 − λ3) + (mi + ζ + γ)λ4.

(6.6)

Initial conditions of the adjoint variables are given at the time t = T by λ1(T ) = 0, λ2(T ) =

0, λ3(T ) = 0, λ4(T ) = 0.
Since the Hamiltonian is minimized with respect to p∗ thus the singular case could occur if the

partial derivative function,
∂H
∂p

= ap − λ1S + λ2S , (6.7)

is zero on a non-trivial interval of time. Since the optimal control must be between an upper and lower

bounds such that:
∂H
∂p

< 0 or > 0.

In our case, the singular expression is given by

psingular(t) =
S
a

(λ1 − λ2) if pmin ≤
S
a

(λ1 − λ2) ≤ pmax.

7. Numerical simulations

For the transmission rate of infection, we used Monod function (Known also as Holling’s type II):

f (I) =
f̄ I

k + I
. f̄ designs the maximum transmission rate and k is a non-negative constant. Note that

f is globally Lipschitz function on R+. For all numerical simulations presented hereafter, we used the
parameter values given in Table 3.
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Table 3. Used parameters for numerical simulations.

Parameter f̄ k ms mv me mi ζ mr p θ

Value 5 3 0.2 0.1 0.3 0.25 0.15 0.2 1 0.5

7.1. Direct problem

We give first some numerical simulations confirming the global stability of the equilibria of system
(2.1).

For the both two cases where R < 1, the solution of system (2.1) converges asymptotically to
E0 = (S̄ , V̄ , 0, 0, 0) (Figure 2). This confirms the global stability of E0 when R ≤ 1. Similarly, the both
last cases where R > 1, the solution of system (2.1) converges asymptotically to E1 (Figure 3). This
validate the global stability of E1 when R > 1.

0 10 20 30 40 50 60 70 80

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70 80

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 2. Λ = 0.5, ε = 1, γ = 3,R = 0.94 < 1 (left) and Λ = 0.5, ε = 0.5, γ = 4,R = 0.59 <
1 (right).
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Figure 3. Λ = 1, ε = 0.5, γ = 0.3,R = 10.82 > 1 (left) and Λ = 5, ε = 0.5, γ = 0.5,R =

28.94 > 1 (right).
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7.2. Optimal control problems (6.1) and (6.2)

Concerning the numerical resolution of the control problem, we used an improved Gauss-Seidel
implicit scheme for the state variables and a first-order backward-difference scheme for the adjoint-
state variables [37]. For the numerical simulations of the optimal control problems (6.1) and (6.2),
we used the same values as for the direct problem system (2.1) given in the Table 3 with Λ = 5, ε =

0.5, γ = 0.5 with a variable p such that p(0) = 1 and with bounds pmin = 0 and pmax = 10. We plot in
Figure 4 the behaviours of the state variables S (t),V(t), E(t) and I(t) for different values of α and β.
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Figure 4. Behaviours for α = 1, β = 10 (left) and α = 10, β = 1(right).

As seen in the Figure 4, vaccinated individuals increases about 37% however the exposed and
infected individuals decrease about 33 and 46%, respectively, of their number at steady-state in Figure
3 (right). As it can be noted that no considerable influence of the values of α and β on the behaviour of
the variables S (t),V(t), E(t) and I(t) (Figure 4).

8. Conclusions

In this paper, we have proposed and studied a generalized “SVEIR” epidemic model with general
nonlinear incidence rate. We discussed the stability of the equilibrium points (the trivial equilibrium
point E0 and the nontrivial equilibrium point E1). E0 is locally asymptotically stable once the basic
reproduction number R ≤ 1 and unstable once R > 1. We studied the uniqueness and existence of the
nontrivial equilibrium point E1 therefore we studied its stability with respect to the basic reproduction
number R. We proved that E1 is locally asymptotically stable when R is greater than 1. Later, we
studied the global stability of both equilibrium points of system (2.1). We proved that E0 is globally
asymptotically stable once R ≤ 1, and that E1 is globally asymptotically stable once R > 1. The
sensitivity analysis of the basic reproduction number R with respect to the model parameters was
carried out. In a second step, we proposed an optimal vaccination strategy to optimise the number of
infected and exposed individuals. We formulated this strategy in terms of a nonlinear optimal control
problem. We discussed the existence, uniqueness and the characterisation of the optimal solution.
Finally, some numerical simulations that support the obtained analytical results are given.
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A. Appendix

A.1. Appropriated numerical scheme

Let a subdivision of the time interval [0,T ] such that [0,T ] =

N−1⋃
n=0

[tn, tn+1], tn = ndt, dt = T/N.

Let S n,Vn, En, In, λn
1, λ

n
2, λ

n
3, λ

n
4 and pn be an approximation of S (t), V(t), E(t), I(t), λ1(t), λ2(t), λ3(t),

λ4(t) and the control p(t) at the time tn. S 0,V0, E0, I0, λ0
1, λ

0
2, λ

0
3, λ

0
4 and p0 as the state variables, the

adjoint-state variables and the control at initial time. S N ,VN , EN , IN , λN
1 , λ

N
2 , λ

N
3 , λ

N
4 and pN as the state

variables, the adjoint-state variables and the control at final time T . The following appropriated scheme
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was then applied:

S n+1 − S n

δt
= Λ − (ms + pn)S n+1 − f (In)S n+1,

Vn+1 − Vn

δt
= pnS n+1 − mvVn+1 − θ f (In)Vn+1,

En+1 − En

δt
= f (In)(S n+1 + θVn+1) − (me + ε)En+1,

In+1 − In

δt
= εEn+1 − (mi + ζ + γ)In+1,

λN−n
1 − λN−n−1

1

δt
= pn(λN−n−1

1 − λN−n
2 ) + f (In+1)(λN−n−1

1 − λN−n
3 ) + msλ

N−n−1
1 ,

λN−n
2 − λN−n−1

2

δt
= θ f (In+1)(λN−n−1

2 − λN−n
3 ) + mvλ

N−n−1
2 ,

λN−n
3 − λN−n−1

3

δt
= −α + ε(λN−n−1

3 − λN−n
4 ) + meλ

N−n−1
3 ,

λN−n
4 − λN−n−1

4

δt
= −β + f ′(In+1)S n+1(λN−n−1

1 − λN−n−1
3 )

+θ f ′(In+1)Vn+1(λN−n−1
2 − λN−n−1

3 ) + (mi + ζ + γ)λN−n−1
4
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Hence, the following algorithm was applied.

Algorithm 1: Optimal control resolution

S 0 ← S 0,V0 ← V0, E0 ← E0, I0 ← I0, λN
1 ← 0, λN

2 ← 0, λN
3 ← 0, λN

4 ← 0,
for n = 0 to N − 1 do

S n+1 ←
S n + δtΛ

1 + δt(ms + pn) + δt f (In)
,

Vn+1 ←
Vn + δtpnS n+1

1 + δtmv + δtθ f (In)
,

En+1 ←
En + δt f (In)(S n+1 + θVn+1)

1 + δt(me + ε)
,

In+1 ←
In + δtεEn+1

1 + δt(mi + ζ + γ)
,

λN−n−1
1 ←

λN−n
1 + δtpnλN−n

2 + δt f (In+1)λN−n
3

1 + δtpn + δt f (In+1) + δtms
,

λN−n−1
2 ←

λN−n
2 + δtθ f (In+1)λN−n

3

1 + δtθ f (In+1) + δtmv
,

λN−n−1
3 ←

λN−n
3 + δtα + δtελN−n

4

1 + δtε + δtme
,

λN−n−1
4 ←

λN−n
4 + δtβ − δt f ′(In+1)S n+1(λN−n−1

1 − λN−n−1
3 )

1 + δt(mi + ζ + γ)

−
δtθ f ′(In+1)Vn+1(λN−n−1

2 − λN−n−1
3 )

1 + δt(mi + ζ + γ)

pn+1 ← max(min(
(λN−n−1

1 − λN−n−1
2 )S n+1

a
, pmax), pmin).

end
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