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Abstract: In the process of spreading infectious diseases, the media accelerates the dissemination of
information, and people have a deeper understanding of the disease, which will significantly change
their behavior and reduce the disease transmission; it is very beneficial for people to prevent and con-
trol diseases effectively. We propose a Filippov epidemic model with nonlinear incidence to describe
media’s influence in the epidemic transmission process. Our proposed model extends existing mod-
els by introducing a threshold strategy to describe the effects of media coverage once the number
of infected individuals exceeds a threshold. Meanwhile, we perform the stability of the equilibriua,
boundary equilibrium bifurcation, and global dynamics. The system shows complex dynamical be-
haviors and eventually stabilizes at the equilibrium points of the subsystem or pseudo equilibrium. In
addition, numerical simulation results show that choosing appropriate thresholds and control intensity
can stop infectious disease outbreaks, and media coverage can reduce the burden of disease outbreaks
and shorten the duration of disease eruptions.
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1. Introduction

With the development of human civilization, infectious diseases have emerged gradually. For in-
stance, in the mid-14th century, the Black Death killed 25 million Europeans, or a third of the total
population of Europe at the time [1]. In 2003, the SARS epidemic swept through 32 countries and
regions around the world, and infected 8422 people [2, 3]. Regarding COVID-19 at the end of 2019,
it took a great toll on humanity. As of August 20, 2021, according to the latest real-time statistics
from the World Health Organization, the cumulative number of confirmed COVID-19 cases world-
wide was approximately 200 million and the cumulative death toll was approximately 4 million [4–6].

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2022130


2836

Therefore, infectious diseases are an important research topic, that have attracted the attention of many
scholars, who have been trying to establish and improve realistic mathematical models of infectious
disease transmission dynamics to increase their knowledge and understanding of infectious diseases.

Based on epidemic transmission dynamics, researchers are increasingly focusing on the effect of
social factors on disease transmission, such as vaccination, lifestyle, and media coverage. The impact
of vaccination on disease control has been studied in the literature [7–9]. At the same time, mass media
(internet, books, newspapers and others) can be effective as an important way to obtain information and
deliver preventive health messages at the beginning of a disease outbreak. A large number of people
can learn the disease, media coverage will have a profound psychological impact on people, which will
greatly change their personal behaviors, and reduce the spread of the disease. It is very beneficial for
people to actively prevent the disease and control it effectively [10,11]. Accordingly, the establishment
of mathematical models related to media coverage and in-depth research are also of great practical
importance for the prevention and control of infectious diseases. The timeliness of the media impact
is also a very important issue in the control of epidemics. Therefore, to further identify the potential
effects of media coverage on the spread of infectious diseases, with the aid of mathematical modeling
methods, we explore and analyze the predicted spread of diseases to provide a rational qualitative
description of disease transmission dynamics [12–14].

The media is regarded as an important factor in disease transmission, and a great number of scholars
have conducted thorough research on this issue. In 2008, Cui and Sun [12] proposed a nonlinear trans-
mission rate as β (I) = µe−mI , where µ is a positive number. When parameter m = 0, the transmission
rate is linear, and when m > 0, this reflects the effect of media coverage on contact transmission. In
2008, Liu and Cui [13] proposed the SIR model with the transmission rate β (I) = β1 −

(
β2

(mI+I)

)
, which

is a good response to the media’s effect on the disease transmission process. Furthermore , the Filippov
system provides a natural and reasonable framework for many realistic problems, and has been widely
used in the process of various epidemics and the predator-prey relationship, particularly in controlling
epidemics. When the number of infected individuals is less than a certain level, no measures are taken,
and when the number of infected individuals is greater than a certain level, the media begins to report
the disease. Thus, threshold strategies provide a natural description of such systems. For example, in
2012, Xiao et al., [14] proposed the SIR model with a threshold strategy using β (1 − f) S I to reflect
the effect of the media. In 2015, Xiao et al., [15] proposed a Filippov model with the transmission rate
β(I) = exp−M1(t)β0 to reflect the impact of media coverage. Additionally, the impact of the media on
infectious diseases has also been thoroughly explored [16, 17].

Based on the aforementioned research, in this study, we present a Filippov epidemic model that re-
lies on the number of infected individuals using a threshold strategy, and include a nonlinear incidence
rate. Our proposed model extends the existing model by introducing a threshold strategy to describe
the effect that is revealed by media coverage once the number of infected individuals exceeds a thresh-
old. We implement an epidemiological model using adaptive switching behavior when the number of
infected individuals exceeds a threshold. We also investigate which threshold levels can be used to
guide the eradication of infectious diseases.

The remainder of the paper is organized as follows: In Section 2, we develop a Filippov epidemic
model with nonliner incidence. In Section 3, we examine the dynamic behaviors of two subsystems:
free system S 1 and control system S 2. In Section 4, we present the sliding mode dynamics and identify
the pseudo-equilibrium, and show that it exists under certain conditions and is asymptotically stable. In
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Section 5, we discuss the global dynamics analysis of the Filippov system. In Section 6, we perform
boundary equilibrium bifurcation analysis. In Section 7, we investigate the effect of key parameters of
the Filippov system. Finally, we present the conclusion and discussion in the last section.

2. SIR model and preliminaries

2.1. Model establishment

In the classical model of infectious diseases, the transmission rate is bilinear. However, media
reports, vaccination, and population density may directly or indirectly affect it, and the bilinear trans-
mission rate function cannot adequately explain the complex phenomenon of epidemic transmission.
Meanwhile, at the beginning of the disease outbreak, media can be effective as an important way to
obtain information and deliver preventive health messages. A large number of people can learn about
the disease that is prevalent, and simultaneously, media coverage will have a profound psychological
impact on people, which will greatly change their personal behaviors, and reduce the spread and pro-
liferation of the disease. It is very beneficial for people to actively prevent the disease and control it
effectively; hence, we choose βS I

1+αI2 as the transmission rate. It can be used to explain the ”psychologi-
cal” effect and show the effect of the media.

When the number of infected individuals reaches a critical level I0, the media makes relevant reports
and people go out less to avoid being infected, which reduces the effective exposure and transmission
rate. Meanwhile, the government implements control measures to reduce the spread of the disease.
Based on the work in [14,15], we classify the population into three types, that is, susceptible, infected,
and recovered, and establish a SIR model with a threshold strategy. Let S (t), I (t) and R (t) refer to the
proportions of susceptible, infected, and removed individuals at the time t changes, respectively. Thus,
the model is as follows: 

dS
dt = Λ −

βS I
1+εαI2 − µS ,

dI
dt =

βS I
1+εαI2 − µI − γI,

dR
dt = γI − µR,

(2.1)

with

ε =

{
0, I < I0 ,

1, I > I0 .
(2.2)

System (2.1) with (2.2) is a particular form of Filippov system, where a (constant) recruitment birth
rate Λ is introduced in the susceptible population, β is the transmission rate, µ is the natural death rate,
and γ is the recovered rate.

Because the recovered class R in system (2.1) does not affect the dynamics of the first and second
equations, we only consider the first two equations of system (2.1) with (2.2) in the following, which
are easily obtained as: {

(S , I) ∈ R2
+|0 < S + I ≤ Λ/µ

}
= Ω.

For (S , I) ∈ Ω, dS/dt|S =0 > 0, dI/dt|I=0 = 0, and d (S + I)/dt|S +I=Λ/µ < 0. Thus, all solutions are in
the Ω region; hence, Ω is an attractive domain. Let H (Z) = I − I0 be a function with a threshold value
that depends on the number of infected individuals, and ε be a segmentation function that depends on
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I − I0. For convenience, let the vector Z = (S , I)T . Then the discontinuous switching surface Σ can be
defined as

Σ =
{
Z ∈ R2

+|H (Z) = 0
}
,

we call Σ the switching manifold, which is the separating boundary of the regions [18–20]. The two
regions represent the free system (S 1 ) and the control system (S 2 ).

G1 =
{
Z ∈ R2

+|H (Z) < 0
}

and G2 =
{
Z ∈ R2

+|H (Z) > 0
}
.

Let

F1 (Z) =

[
F11

F12

]
=

[
Λ − βS I − µS
βS I − µI − γI

]
, (2.3)

F2 (Z) =

[
F21

F22

]
=

[
Λ −

βS I
1+αI2 − µS

βS I
1+αI2 − µI − γI

]
. (2.4)

Hence, system (2.1) can be rewritten as the Filippov system using the following form:

Ż =

{
F1 (Z) , Z ∈ G1,

F2 (Z) , Z ∈ G2.
(2.5)

For convenience, we present the following definitions of all the types of equilibria of the Filippov
system [21, 22].

Definition 2.1. If the equilibrium point Z∗ of the sliding line region Σs of system 2.1 satisfies λF1 (Z∗)+

(1 − λ) F2 (Z∗) = 0,H (Z∗) = 0 with 0 < λ < 1, where

λ =
〈HZ(Z∗), F2 (Z∗)〉

〈HZ(Z∗), F2 (Z∗) − F1 (Z∗)〉
,

then Z∗ is called the pseudo-equilibrium point of the system.

Definition 2.2. If Z ∈ G1 and F1 (Z) = 0 or Z ∈ G2 and F2 (Z) = 0, then Z is the real equilibrium point
of system 2.1. If Z ∈ G1 and F2 (Z) = 0 or Z ∈ G2 and F1 (Z) = 0, then Z is the virtual equilibrium
point of system 2.1.

Definition 2.3. If Z ∈ Σ and F1(Z) = 0 or F2(Z) = 0, then Z is called the boundary point of system 2.1.
Moreover, if Fi(Z) = 0 is invertible, we say that a boundary equilibrium bifurcation occurs at Z.

These bifurcations are classified as the boundary focus bifurcation and boundary node bifurcation
in [23–25].

Definition 2.4. If Z ∈ Σ and HF1(Z) = 0 or HF2(Z) = 0, then Z is called the tangent point of system
2.1.

3. Dynamics analysis of subsystems

Before analyzing the complete switching system, it is first necessary to determine the dynam-
ical behaviors of the two subsystems. According to the method in [26, 27], the basic reproduc-
tion number is considered as R0 =

βΛ

(µ+γ)µ in system S 1. Meanwhile, according to this equation
µα (µ + γ) I2+ (µ + γ) βI + µ (µ + γ) − Λβ= 0, we obtain the basic reproduction number Rc =

βΛ

(µ+γ)µ

in system S 2. Therefore, it is obvious that R0 = Rc =
βΛ

(µ+γ)µ .
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3.1. Dynamics for the free system S 1

In this section, we analyze the stability of the equilibrium point in the free system and define a
suitable Lyapunov function to verify the global stability. The free system has two equilibrium points:
disease-free equilibrium and endemic equilibrium. The disease-free equilibrium point is E0 =

(
Λ
µ
, 0

)
and the endemic equilibrium point is E1 =

(
µ+γ

β
,

Λβ−(µ2+µγ)
β(µ+γ)

)
.

Lemma 1. The disease-free equilibrium point E0 =
(

Λ
µ
, 0

)
in system S 1 is globally asymptotically

stable if R0 < 1 and unstable if R0 > 1, whereas the endemic equilibrium point E1 = (S 1, I1) is globally
asymptotically stable if R0 > 1.

3.2. Dynamics for the control system S 2

For the control system S 2, the disease-free equilibrium point is easily obtained as E2 = E0 =
(

Λ
µ
, 0

)
and the endemic equilibrium point is the solution of the following algebraic equation:{

Λ −
βS I

1+αI2 − µS = 0,
βS I

1+αI2 − µI − γI = 0,

the equation for I is obtained as
AI2+BI + C= 0,

where
A = µα (µ + γ) ,

B = (µ + γ) β,

C = µ (µ + γ) [1 − R0] .

Then, we can solve the equation with respect to I to obtain

Ii =
−B ±

√
∆

2A
(i = 3, 4),

where
∆ = (µβ + γβ)2

− 4α
(
µγ + µ2

)2
[1 − R0] .

Because parameters µ, α, β, γ are non-negative, A > 0 and B > 0. When C < 0, that is, R0 > 1, a
unique positive solution

I3 =
−B +

√
∆

2A
> 0

exists; hence, we have the following summary:
i) If R0 < 1, then no positive equilibrium exists.
ii) If R0 > 1, then a unique positive equilibrium E3 = (S 3, I3) exists, which is called the endemic

equilibrium and given by

S3 =
(µ + γ)

(
1 + αI2

3

)
β

,

I3 =
− (µβ + γβ) +

√
∆

2µα (µ + γ)
.
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Lemma 2. If R0 < 1, then the disease-free equilibrium point E2 in the system S2 is globally
asymptotically stable.

Theorem 1. If R0 > 1, then the endemic equilibrium point E3 is locally asymptotically stable.
proof. The Jacobian matrix of the control system S 2 at E3 is

M =


−βI3

1+αI2
3
− µ −βS3

1+αI2
3

+
2αβS3I2

3

(1+αI2
3)

2

βI3

1+αI2
3

βS3

1+αI2
3
−

2αβS3I2
3

(1+αI2
3)

2 − µ − γ

 ,
the characteristic equation, for this matrix, becomes

λ2 − tr (M) λ + det (M) = 0,

where

det (M) =

(
βI3

1 + αI2
3

+ µ

)
(µ + γ) +

µβS3

(
αI2

3 − 1
)

(
1 + αI2

3

)2 ,

tr (M) =
−βI3

1 + αI2
3

− 2µ +
βS3

1 + αI2
3

−
2αβS3I2

3(
1 + αI2

3

)2 − γ.

If det(M) > 0, tr(M) < 0, that is, R0 > 1, then the endemic equilibrium point E3 is a stable focus or
node.

4. Sliding mode and its dynamics

In this section, we consider the sliding mode and its dynamics. First, we review the definition of
the sliding mode segment, calculate the pseudo-equilibrium point, and provide sufficient conditions for
the existence of the pseudo-equilibrium point. In mathematics, there are two approaches to determine
sufficient conditions for the appearance of sliding mode on discontinuous surfaces: the Filippov con-
vex method [28] and Utkin’s equivalent control method [29]. Then, according to Definition 2.1, we
determine the existence of the sliding mode domain of system 2.1.

Let
σ (Z) = 〈HZ(Z), F1 (Z)〉 〈HZ(Z), F2 (Z)〉 ,

where 〈·, ·〉 denotes the standard scalar product and HZ(Z) is the invariant gradient of the smooth scalar
function H(Z) in Σ. The sliding domain is defined as Σs = {Z ∈ Σ|σ (Z) < 0}, and H (I) = I − I0, which
means that HZ (Z) = (0, 1)T . Since F1 (Z) = (F11 (Z) , F12 (Z))T , F2 (Z) = (F21 (Z) , F22 (Z))T . For more
information about the Filippov system, readers can refer to [30–32].

When
σ (Z) = 〈HZ(Z), F1 (Z)〉 〈HZ(Z), F2 (Z)〉 = F12 (Z) F22 (Z) ≤ 0,

then it’s obvious that F12 (Z) > F22 (Z). Hence, we obtain

Σs = {(S , I) ∈ Σ|F12 (S , I) ≥ 0, F22 (S , I) ≤ 0} .
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Let the endpoints of the slide segment be A (S L, I0) , B (S R, I0), where S L =
µ+γ

β
, S R =

(µ+γ)(1+αI2
0)

β
;

hence, the sliding domain of the Filippov system is as follows:

Σs =
{
(S , I) ∈ R2

+|S L ≤ S ≤ S R, I = I0

}
.

Assuming that the second equation of the system (2.1) is equal to 0, we obtain βS I
1+εαI2 = µI + γI.

Substituting I = I0 and βS I
1+εαI2 = µI + γI into the first equation of system (2.1), we obtain

dS
dt

= Λ − µI0 − µS − γI0 = f (S ) .

Let f (S ) = 0. Thus, we obtain

S p =
Λ − µI0 − γI0

µ
,

therefore, the coordinates of the possible pseudo-equilibrium point are given by Ep =
(
S p, I0

)
.

When
S p − S L =

Λ − µI0 − γI0

µ
−

(µ + γ)
β

=
Λβ − (µ + γ) βI0 − µ (µ + γ)

µβ
> 0,

S p − S R =
Λ − µI0 − γI0

µ
−

(µ + γ)
(
1 + αI2

0

)
β

=
Λβ − (µ + γ) βI0 − µ (µ + γ)

(
1 + αI2

0

)
µβ

< 0,

(i.e., (µ + γ) (βI0 + µ) < Λβ < (µ + γ)
[
βI0 + µ

(
1 + αI2

)]
). Thus, when S L ≤ S p ≤ S R, the pseudo-

equilibrium point Ep is in sliding mode. Additionally, because f
(
S p

)′
≤ 0, the pseudo-equilibrium

point Ep is locally asymptotically stable. When S p > S R or S p < S L, the pseudo-equilibrium point Ep

is not in the sliding mode.
To analyze the relationship between the sliding domain and the attraction domain, we solve the

following equation:

µ + γ

β
=

Λ

µ
− I and

(µ + γ)
(
1 + αI2

)
β

=
Λ

µ
− I.

It is easy to derive

I1
0 =

Λ

µ
−
µ + γ

β
, I3

0 =
−µβ +

√
∆

2µα (µ + γ)
,

where
∆ = (µβ)2

− 4µα (µ + γ)
[
µ (µ + γ) − Λβ

]
.

Regarding the bifurcation set phase diagram of the control intensity α − I0 shown in Figure 1, we
obtain the following: If I0 < I3 (i.e., region Γ1 in Figure 1), the equilibrium point E1 of the free system
S 1 is virtual, which is denoted by EV

1 , and the equilibrium point E3 of the control system S 2 is real,
which is denoted by ER

3 . If I3 < I0 < I1 (i.e., region Γ2 ∪ Γ3 in Figure 1), the endemic equilibria E1 and
E3 of both system S 1 and system S 2 are virtual, which are denoted by EV

1 and EV
3 , respectively. At this

moment, EV
1 , EV

3 , and Ep coexist. When I1 < I0 (i.e., region Γ4 ∪ Γ5 ∪ Γ6 in Figure 1), the endemic
equilibrium point E1 of the free system S 1 is real, which is denoted by ER

1 . The endemic equilibrium
point E3 of the control system S 2 is virtual, which is denoted by EV

3 (see Definition 2.2 for details).
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Figure 1. System 2.1 with 2.2 on the branching set of the control intensity α and the threshold
I0. Let Γ1 be the domain bounded by α = 0, α = 2, I0 = 0 and the curve I0 = I3; Γ2 is the
domain bounded by α = 2, I0 = I1, the curve I0 = I3

0 and the curve I0 = I3; Γ3 be the domain
bounded by α = 2, I0 = I1 and the curve I0 = I3

0 ; Γ4 be the domain bounded by α = 0, I0 = I1

and the curve I0 = I3
0 ; Γ5 is the domain bounded by α = 2, I0 = I1, I0 = I1

0 and the curve
I0 = I3

0 ; Γ6 is the domain bounded by α = 0, α = 2, I0 = I1
0 and I0 = 5, which we fix the other

parameters as Λ = 1; β = 1; µ = 0.2; γ = 0.3.

5. Global behavior of the Filippov system

In the previous section, we studied the regular equilibrium, virtual equilibrium, and pseudo-
equilibrium. The pseudo-equilibrium point exists and is locally asymptotically stable under certain
conditions. In this section, we discuss the dynamical behaviors of the Filippov system 2.1 with 2.2.
We adjust the parameters and find that the system changed from stable to unstable because of the
change of parameter β. The phase portrait of system 2.1 shows that S and I eventually tended to a
stable value as time t changed, as shown in Figure 2. The time response of the states of system 2.1 for
different initial values is shown in Figure 3(a),(b). The S-I phase portrait presents the periodic solution,
as shown in Figure 3(c).

Next, we specifically describe the branching phase diagram in (Figure 1). If R0 < 1, the disease is
eradicated; hence, we only consider the dynamical behaviors of the system if R0 > 1.

1) If I0 < I3 (region Γ1), the endemic equilibrium point E1 is virtual in the free system S 1, which
is denoted by EV

1 , and the endemic equilibrium point E3 in the control system S 2 is real , which is
denoted by ER

3 . The trajectories of different initial values eventually converge to the real equilibrium
ER

3 , as shown in Figure 4(a),(b).
2) If I3 < I0 < I1 (region Γ2 ∪ Γ3), the endemic equilibrium points E1 and E3 in the free system and

control system are virtual denoted by EV
1 and EV

3 , respectively. In this case , the pseudo-equilibrium
point exists and is locally asymptotically stable, as shown in Figure 4(c). The trajectories of different
initial values eventually converge to the pseudo-equilibrium point Ep, as shown in Figure 4(c),(d).

3) If I1 < I0 (region Γ4 ∪Γ5 ∪Γ6), the endemic equilibrium point E1 of the free system S 1 is the real
equilibrium point, which is denoted by ER

1 , and the endemic equilibrium point E3 of the control system
S 2 is the virtual equilibrium point, which is denoted by EV

3 . The trajectories of different initial values

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2835–2852.
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Figure 2. The parameters values are Λ = 100; β = 0.0022; µ = 0.2;α = 0.3; γ = 0.3, at the
moment, the system is stable.

eventually converge to the real equilibrium ER
1 , as shown in Figure 4(e),(f).

To obtain the richer dynamical behaviors that the system may exhibit, we chose the parameters
α = 0.6 and γ = 0.1, and all other parameters remained unchanged. The corresponding simulations
are shown in Figure 5.

In Figure 5, for different initial values, our main results show that the system eventually stabilizes
at the equilibrium points E1 and E3, or the pseudo-equilibrium Ep, which is strongly related to the
threshold value I0. In particular, when we choose a sufficiently small threshold level I0 (i.e., I0 < I3),
the control policy is always triggered; hence, the solution of the system eventually tends to the endemic
equilibrium or disease-free equilibrium (not labeled in the Figure), as shown in Figure 5(a),(b). Then,
we choose the threshold I0 as an intermediate value (i.e., I3 < I0 < I1), the trajectories of different
initial values eventually converge to the pseudo-equilibrium point Ep, as shown in Figure 5(c). When
we choose a sufficiently large threshold level I0 (i.e., I0 > I1), the control strategy is not triggered, and
the solution converges to the endemic equilibrium ER

1 of the subsystem at this moment, which depends
on the individual parameter values, as shown in Figure 5(d). Clearly, the trajectories are influenced by
the isoclines and the switching line in Figures 4 and 5.

6. Boundary equilibrium bifurcation analysis

To demonstrate the boundary equilibrium bifurcation of system 2.1, we choose I0 as the bifurcation
parameter and fix the other parameters. The definitions of the boundary equilibrium point and tangent
point are shown in the Definitions 2.3 and 2.4, respectively. The equations satisfied by the boundary
equilibrium of system 2.1 are as follows:

∧ −
βS I

1 + εαI2 − µS = 0,
βS I

1 + εαI2 − µI − γI = 0, I = I0.

To ensure that the boundary equilibrium point exists, for both ε = 0 and ε = 1, it is necessary to
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Figure 3. (a) and (b) represents the phase diagram of S, I as time t, (c) represents the S-I
phase diagram. In (a) and (b), the parameters are Λ = 100, β = 0.022, µ = 0.2, α = 0.3,
γ = 0.3, while the system 2.1 is unstable and forms a periodic solution.

satisfy

Λ
(
1 + εαI2

0

)
βI0 + µ

(
1 + εαI2

0

) =
(µ + γ)

(
1 + εαI2

0

)
β

,

which indicates that I0 = I1 (I0 = I3) for ε = 0 (ε = 1). Thus, there are four possible boundary equilib-
ria:

E11
b =

(
Λ

βI1 + µ
, I1

)
, E21

b =

 Λ
(
1 + αI2

1

)
βI1 + µ

(
1 + αI2

1

) , I1

 ,
E12

b =

(
Λ

βI3 + µ
, I3

)
, E22

b =

 Λ
(
1 + αI2

3

)
βI3 + µ

(
1 + αI2

3

) , I3

 .
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Figure 4. The phase plane S-I for SIR model with the system 2.1 with respect to S-I,
showing the behaviors of the solution for different parameters and thresholds. The isoclinic
lines(green) g1

1 (g1
s) and (pink) g2

1 (g2
s) are plotted for the free (control) system S 1(S 2). Param-

eters values are Λ = 1; β = 1; µ = 0.2; γ = 0.3, where the control intensity and thresholds
are (a) α = 0.3,I0 = 0.3, (c) α = 0.3, I0 = 1.7, (e) α = 0.3, I0 = 3. (b)α = 2, I0 = 0.3,
(d)α = 2, I0 = 1.7, (f) α = 2, I0 = 3, different kinetic behaviors are also obtained.
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Figure 5. The phase plane S-I for SIR model with the system 2.1. The isoclinic lines (green)
g1

1 (g1
s) and (pink) g2

1 (g2
s) are plotted for the free (control) system S 1(S 2). Parameters values

are Λ = 1; β = 1; µ = 0.2; α = 0.6; γ = 0.1, where the thresholds are (a) I0 = 0.3, (b)
I0 = 1.7, (c) I0 = 3, (d) I0 = 3.5.
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The equation satisfied by the tangent point is as follows:

βS I
1 + εαI2 − µI − γI = 0, I = I0,

by solving the above equation, we obtain the tangent point as

T1 =

(
µ + γ

β
, I0

)
, T2 =

 (µ + γ)
(
1 + αI2

0

)
β

, I0

 .
When the threshold value I0 passes a certain critical value, a boundary equilibrium bifurcation

may occur if the real equilibrium, tangent point, and pseudo-equilibrium (or tangent point and real
equilibrium) collide [14, 23, 30]. When the threshold value I0 passes the first critical value I0 = I3, the
equilibrium ER

3 , pseudo-equilibrium point Ep, and tangent point T2 collide, which is denoted by E1
B, as

shown in Figure 6, where I0 = 1.2122. In this case, the boundary equilibrium E1
B is an attractor. When

the threshold value I0 passes the second critical value I0 = I1, the equilibrium ER
1 , pseudo-equilibrium

point Ep, and tangent point T1 collide, which is denoted by E2
B, where I0 = 1.8. In this case, the

boundary equilibrium E1
B is an attractor. Overall, there are two boundary equilibrium bifurcations in

Figure 6.
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Figure 6. Boundary equilibrium bifurcations for system 2.1. The isoclinic lines (green) g1
1

(g1
s) and (pink) g2

1 (g2
s) are plotted for the free (control) system S 1(S 2). The parameter values

are Λ = 1; β = 1; µ = 0.2; α = 0.3; γ = 0.3, where the thresholds are I0 = 0.5, I0 = 1.2122,
I0 = 1.6, I0 = 1.8, I0 = 2.5, I0 = 3, I0 = 4, respectively.

7. The effect of the key parameters of the Filippov system

For system 2.1, our aim is to find an effective strategy to adjust the infected population below
a certain value or to be eliminated. It is important to implement the control strategy by setting an
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Figure 7. The dynamic behaviors of infected in system 2.1 within time. Parameters values
are (a) Λ = 1; β = 1; µ = 0.2; α = 0.2; γ = 0.3. In (b) and (c), all other parameters are the
same as shown in (a), except α and γ, which are illustrated in each subfigure.
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appropriate threshold I0. We choose control intensity α and recovery rate γ as key parameters and
study how these parameters affect the dynamics of the system.

The red dashed line represents the free system and the blue solid line represents the control system
affected by the media coverage. From Figure 7(a), it can be obtained that the media coverage makes
the peak lower and delays the appearance of the peak. In Figure 7(b), we find that the peak reduces
as the control intensity α increases. A similar trend appears in Figure 7(c), which means that media
coverage and recovery treatment can be helpful in controlling infectious diseases.

8. Conclusions and discussion

In early epidemic models, incidence rates were bilinear, but bilinear incidence rates cannot explain
the spread of epidemics very well under realistic conditions. Meanwhile, the Filippov system pro-
vides a natural and reasonable framework for many realistic problems and has been widely used in the
process of various epidemics and the predator-prey relationship, particularly in controlling epidemics.
Accordingly, we proposed a Filippov epidemic model with nonlinear incidence to describe the influ-
ence of the media on the epidemic transmission process. Our proposed model extends existing models
by introducing a threshold strategy to describe the media effects.

When the number of infected individuals reaches or exceeds threshold I0, another adaptive system
with a nonlinear incidence rate is used, at which time the disease is widely reported immediately and
people become aware of the disease, and thus take certain protective measures to reduce the possibility
of being infected. Thus, the number of new infections per day is reduced to a certain level. This
shows that the typical threshold behavior is completely valid. First, we analyzed the stability of each
equilibrium in system 2.1. Then, we used the theory of the Filippov system [28, 31, 32] to discuss
the existence of sliding regions, the pseudo-equilibrium, and the real and virtual properties of each
equilibrium of the system. Next, we studied the global stability of system 2.1 and boundary equilibrium
bifurcation. Finally, we obtained biological conclusions from the theoretical and numerical simulation
results of the system.

Our main results showed that the system eventually stabilized at the equilibrium points E1 or E3

or the pseudo-equilibrium Ep, which was strongly related to the threshold value I0. Meanwhile, our
findings indicate that by setting the appropriate threshold I0, the relevant health authorities can decide
whether to intervene to effectively control the disease at a relatively low level. Simultaneously, the
media’s real-time coverage of the disease has had a psychological impact on humans that leads them to
change their behavior, which results in a decrease in the number of infections. In Figure 7, we find that
media coverage decreases the peak of the disease outbreak and delays its occurrence. Meanwhile, to
a certain extent, the peak of the disease outbreak decreases with the increase of media coverage. This
implies that media coverage is effective in controlling infectious diseases. We further demonstrated
that media coverage is important for disease prevention and control.

Although we determined meaningful implications for disease control in this study, it still has some
drawbacks. For example, we only considered the relationship between the number of infected indi-
viduals and a certain threshold to construct the switching condition. Actual disease-control strategies
depend on more than the number of infected individuals. We did not take rapid growth rates into
account, and this will be our next step in future work.
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