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Abstract: The purpose of this paper is to apply conditional Ulam stability, developed by Popa, Raşa,
and Viorel in 2018, to the von Bertalanffy growth model dw

dt = aw
2
3 − bw, where w denotes mass and

a > 0 and b > 0 are the coefficients of anabolism and catabolism, respectively. This study finds
an Ulam constant and suggests that the constant is biologically meaningful. To explain the results,
numerical simulations are performed.
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1. Introduction

Metabolism can be divided into catabolism and anabolism. It is known that body weight depends
on their balance. In this paper, we consider the von Bertalanffy growth model

dw
dt

= aw
2
3 − bw (1.1)

for t ≥ 0, where w denotes mass (body weight) and a > 0 and b > 0 are the coefficients of an-
abolism (synthesis) and catabolism (destruction), respectively. Bertalanffy [1] proposed this equation
as a model for fish growth and suggested that the exponent 2

3 is appropriate. Many studies in biology
on the von Bertalanffy growth model have shown that the solution to the equation is a good represen-
tation of fish weight growth, e.g., [2,3]. Many generalizations about the von Bertalanffy growth model
have been reported. For example, see [4, 5] and the references cited therein. In many cases, trying to
describe a real phenomenon using a mathematical model requires a very complicated model, and the
match may still not be perfect. Although it is not possible to build a mathematical model that exactly
matches the original phenomenon, the references above suggest that even a simple model may produce
a fairly close match. In the present paper, a mathematical model that completely describes the original
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phenomenon is simply referred to as the real phenomenon. The present study focuses on the following
problem. Under the assumption that the difference between a real phenomenon and its mathematical
model (von Bertalanffy growth model) is less than a constant ε > 0, is there always a solution for the
mathematical model that is close to the solution for the real phenomenon? This problem is a kind of
perturbation problem, but note that ε > 0 does not have to be small. A concept related to this pro-
posed by Ulam has recently evolved into an important field of study in differential equations. See [6].
Many results have been reported for linear differential equations. For example, for first-order linear
differential equations, Onitsuka [7] and Onitsuka and Shoji [8] studied constant coefficient equations,
Fukutaka and Onitsuka [9, 10] studied periodic coefficient equations, and Popa and Raşa [11], Wang,
Zhou and Sun [12] and Zada, Shah and Shah [13] studied variable coefficient equations, for second-
order linear differential equations, see [14–16], and for fractional differential equations, see [17, 18],
and the references cited therein. Nonlinear differential equations have not received as much attention
because in many cases it is necessary to solve the solution concretely. When the solution cannot be
found, the Lipschitz condition and the fixed point theorems are used. For example, for the results
obtained using the Lipschitz condition, see [19–22], and for the fixed point approaches, see [23–25];
however, in such cases, the detailed behavior of the solution is not clarified. In 2018, Popa, Raşa, and
Viorel [26] researched the stability of the logistic model

dw
dt

= w(1 − w) = w − w2

for t ≥ 0. They proposed conditional Ulam stability and developed a stability theory for nonlinear
equations. The present author [27] considered the conditional Ulam stability of the equation

dw
dt

= w(p + qw)

for t ≥ 0, and applied it to the logistic model

dP
dt

= r
(
1 −

P
K

)
P

for t ≥ 0, where P denotes population size and r > 0 and K > 0 are the intrinsic growth rate and the
carrying capacity, respectively.

Conditional Ulam stability is defined as follows. Let [0,Tw) be the maximal existence interval for
the solution w. Define the class C as

C :=
{
w ∈ C1 [0,Tw) : w(0) ∈ D ⊆ R,Tw > 0 with Tw = ∞ or |w(t)| → ∞ as t ↗ Tw

}
.

Let M ⊆ (0,∞). The nonlinear differential equation

dw
dt

= F(w) (1.2)

is conditionally Ulam stable on
[
0,min

{
Tw,Tφ

})
in the class C if there exists a constant N > 0 such

that for every ε ∈ M and every approximate solution φ ∈ C that satisfy∣∣∣∣∣dφdt
− F(φ)

∣∣∣∣∣ ≤ ε for 0 ≤ t < Tφ,
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there exists a solution w ∈ C of Equation (1.2) such that

|φ(t) − w(t)| ≤ Nε for 0 ≤ t < min
{
Tw,Tφ

}
.

We call such N an Ulam constant for Equation (1.2) on
[
0,min

{
Tw,Tφ

})
. If M = (0,∞) and D = R,

then this definition is exactly the same as that for the standard Ulam stability.
The main result in this paper is as follows.

Theorem 1. Equation (1.1) is conditionally Ulam stable on [0,∞), with M =

(
0, a

3

(
2a
3b

)2
]
, in the class

C =

{
w ∈ C1[0,∞) : w(0) ≥

(
2a
3b

)3
}

and with an Ulam constant N = 3
b

(
19
12

) 5
2 .

If we can estimate the error between a real phenomenon and its mathematical model, we can then
conclude that the multiplication of the error and an Ulam constant is the magnitude of the difference
between the solutions. Hence, the Ulam constant indicates the accuracy of the mathematical model.

The rest of this paper is organized as follows. In Section 2, we investigate the behavior of the
approximate solutions of a special Bertalanffy model using the comparison principle. In Section 3, we
deal with conditional Ulam stability for the special model. In Section 4, we apply the obtained result
to the von Bertalanffy growth model and complete the proof of Theorem 1. To explain the theorem,
numerical simulations are performed. Finally, in Section 5, we give the conclusions.

2. Approximate solutions of dz
dτ = z

2
3 − z

Let τ := bt and z :=
(

b
a

)3
w. Then, Equation (1.1) is reduced to the nonlinear differential equation

dz
dτ

= z
2
3 − z (2.1)

for τ ≥ 0. In Section 4, it will be shown that this transformation reduces the conditional Ulam stability
of Equation (1.1) to that of Equation (2.1). Let δ > 0 be given and let z0 ∈ R. Now, we consider the
perturbed equations

dζ
dτ

= ζ
2
3 − ζ + f (τ), | f (τ)| ≤ δ, (2.2)

dx
dτ

= x
2
3 − x − δ, (2.3)

and
dy
dτ

= y
2
3 − y + δ (2.4)

for τ ≥ 0, where f ∈ C[0,∞). Let

z(0) = ζ(0) = x(0) = y(0) = z0. (2.5)

We can see that the right-hand side of Equations (2.1), (2.2), (2.3), and (2.4) is continuously differen-
tiable with respect to z > 0, ζ > 0, x > 0, and y > 0, respectively. Hence, if a positive initial condition
(2.5) is given, then the local existence and uniqueness of the solutions are guaranteed in the positive
domain. However, we must pay attention to the global existence of the solutions. By limiting the initial
values, the existence of the global solutions is guaranteed. The following result is derived using the
comparison principle.
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Proposition 2. Let z ∈ C1 [
0,Tz), ζ ∈ C1

[
0,Tζ

)
, x ∈ C1 [0,Tx), and y ∈ C1

[
0,Ty

)
be the solutions of

Equations (2.1), (2.2), (2.3), and (2.4) with (2.5), respectively. If

0 < δ ≤
4

27
and z0 ≥

8
27
,

then Tz = Tζ = Tx = Ty = ∞ and
8

27
≤ x(τ) ≤ ζ(τ) ≤ y(τ) and x(τ) < z(τ) < y(τ)

for τ ∈ (0,∞).

Proof. Assume that

0 < δ ≤
4

27
=

1
3

(
2
3

)2

and z0 ≥
8

27
=

(
2
3

)3

.

Define F(z) := z
2
3 − z for z ∈ R. Then, F(0) = F(1) = 0 holds; that is, z = 0, 1 are the equilibrium

points of Equation (2.1). From dF
dz (z) = 2

3z−
1
3 −1, we see that dF

dz (z) > 0 on
[
0, 8

27

)
; dF

dz

(
8
27

)
= 0; dF

dz (z) < 0

on
(

8
27 ,∞

)
. This implies that the function F(z) takes the maximum value 4

27 when z = 8
27 . Moreover,

we see that F(z) > 0 on (0, 1) and F(z) < 0 on (1,∞).
First, we will prove 8

27 ≤ x(τ) for all τ ≥ 0. Now, we consider the function F(z) − δ. If δ = 4
27 , then

F
(

8
27

)
− δ = F

(2
3

)3 − 1
3

(
2
3

)2

= 0

holds; that is, z = 8
27 is the unique equilibrium point of Equation (2.3). Hence, x(τ) ≡ 8

27 is the unique
global solution of Equation (2.3) with x(0) = 8

27 . Because of the uniqueness of the solutions, x(0) > 8
27

implies 8
27 < x(τ) for τ ≥ 0. Next, we consider the case 0 < δ < 4

27 . In this case, we have

F
(

8
27

)
− δ > 0.

This indicates that Equation (2.3) has two positive equilibrium points E1 and E2 that satisfy F(E1)−δ =

F(E2) − δ = 0 and

0 < E1 <
8

27
< E2.

Because F(x) − δ > 0 for 8
27 ≤ x < E2, we see that x′ > 0 for 8

27 ≤ x < E2. Therefore, integrating this
inequality yields

x(τ) ≥ x(0) ≥
8

27
for τ ≥ 0. Based on this and the uniqueness of the solutions, we see that x(0) ∈

[
8
27 , E2

)
implies

E2 > x(τ) ≥ x(0) ≥
8

27

for τ ≥ 0. Thus, if x(0) ∈
[

8
27 , E2

)
, then Tx = ∞. x(τ) ≡ E2 is a global unique solution of Equation

(2.3). On the other hand, because F(x) − δ < 0 holds for E2 < x, we have x′ < 0 for E2 < x. Thus, if
x(0) ∈ (E2,∞), then

E2 < x(τ) ≤ x(0) < ∞

for τ ≥ 0, and so if x(0) ∈ (E2,∞), then Tx = ∞. Hence, 8
27 ≤ x(0) implies the global existence of the

solution x of Equation (2.3) and 8
27 ≤ x(τ) for all τ ≥ 0.
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Next, we will prove x(τ) ≤ ζ(τ) ≤ y(τ) for τ ≥ 0. Let ψ(τ) := ζ(τ) − x(τ) for τ ≥ 0. By way of
contradiction, we suppose that there exists σ1 ≥ 0 such that ψ(σ1) < 0. Because ψ is continuously
differentiable and ψ(0) = 0, we can choose 0 ≤ τ1 ≤ σ1 such that ψ(τ1) = 0 and

ψ(τ) < 0

for τ1 < τ ≤ σ1. Then, we have

dψ
dτ

(τ) =
dζ
dτ

(τ) −
dx
dτ

(τ) =
(
ζ

2
3 (τ) − x

2
3 (τ)

)
− (ζ(τ) − x(τ)) + f (τ) + δ

≥

ζ 2
3 (τ) − x

2
3 (τ)

ζ(τ) − x(τ)
− 1

 (ζ(τ) − x(τ)) − | f (τ)| + δ

≥

ζ 2
3 (τ) − x

2
3 (τ)

ζ(τ) − x(τ)
− 1

ψ(τ)

for τ1 < τ ≤ σ1. This implies that

d
dτ

ψ(τ) exp
−∫ τ

τ1

ζ 2
3 (s) − x

2
3 (s)

ζ(s) − x(s)
− 1

 ds
 ≥ 0,

and thus

ψ(τ) ≥ ψ(τ1) exp
∫ τ

τ1

ζ 2
3 (s) − x

2
3 (s)

ζ(s) − x(s)
− 1

 ds
 = 0

for τ1 < τ ≤ σ1. This contradicts the fact that ψ(τ) < 0 for τ1 < τ ≤ σ1. Therefore, we have x(τ) ≤ ζ(τ)
for τ ≥ 0. Using the same technique, we obtain ζ(τ) ≤ y(τ) for τ ≥ 0.

Next, we will show that x(τ) < z(τ) < y(τ) for τ > 0. Let ω(τ) := z(τ) − x(τ) for τ ≥ 0. From the
above inequality with f (τ) ≡ 0, we see that ω(τ) ≥ 0 for τ ≥ 0. By ω(0) = 0, we have

dω
dτ

(0) =
(
z

2
3 (0) − x

2
3 (0)

)
− (z(0) − x(0)) + δ > 0.

This together with the continuous differentiability of ω implies that ω takes a positive value near τ = 0.
By way of contradiction, we suppose that there exists σ2 > 0 such that ω(σ2) = 0 and ω(τ) > 0 for
0 < τ < σ2. Then, we have

dω
dτ

(τ) >
z

2
3 (τ) − x

2
3 (τ)

z(τ) − x(τ)
− 1

ω(τ),

and so
d
dτ

ω(τ) exp
−∫ τ

0

z
2
3 (s) − x

2
3 (s)

z(s) − x(s)
− 1

 ds
 > 0

for 0 < τ < σ2. Integrating this inequality from σ2
2 to σ2 yields

ω(σ2) > ω
(
σ2

2

)
exp

∫ σ2

σ2
2

z
2
3 (s) − x

2
3 (s)

z(s) − x(s)
− 1

 ds
 > 0.

This contradicts ω(σ2) = 0. Hence, we have x(τ) < z(τ) for τ > 0. Using the same technique, we see
that z(τ) < y(τ) for τ > 0.

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2819–2834.



2824

Finally, we will show that y(τ) is bounded above for τ ≥ 0. We consider the function F(z)+δ, where
F(z) = z

2
3 − z. For any 0 < δ ≤ 4

27 , we have

F
(

8
27

)
+ δ > 0,

and so Equation (2.4) has two equilibrium points E3 and E4 that satisfy F(E3) + δ = F(E4) + δ = 0 and

E3 < 0 <
8

27
< 1 < E4.

We have only to prove that the solution y of Equation (2.4) with y(0) > E4 is bounded above for τ ≥ 0.
Because of the uniqueness of the solutions, any solution of Equation (2.4) with y(0) ≤ E4 is below the
solution y of Equation (2.4) with y(0) > E4. Because y(t) ≡ E4 is a global unique solution of Equation
(2.4) and y′ = F(y) + δ < 0 holds for y > E4, we see that

E4 < y(τ) ≤ y(0)

for τ ≥ 0. Therefore, y(τ) is bounded above for τ ≥ 0. Hence, combining this with the inequality
8
27 ≤ x(τ) ≤ ζ(τ) ≤ y(τ) for τ ≥ 0, we conclude that Tz = Tζ = Ty = ∞. The proof is now complete. �

Figure 1 shows a sketch of the claim in Proposition 2. Three initial points, namely z0 = 0.4, 1.1,
and 1.9, are selected. x, y, and z each converge to a constant, but ζ does not necessarily converge to a
constant.

10 20
t

8

27

1

2

z

x

y

z

ζ

Figure 1. Sketch of claim in Proposition 2.

Remark 3. Now, we consider the case δ > 4
27 . For γ > 0, let δ = 4

27 + γ. From the first paragraph in
the proof of Proposition 2, we see that

dx
dτ

= F(x) − δ ≤ −γ < 0,

where F(x) = x
2
3 − x for x ∈ R. This indicates that

x(τ) ≤ x(0) − γτ,

and thus x(τ) takes a negative value when τ > x(0)
γ

. Unfortunately, we see that Equation (2.3) does not

have a real solution for τ > x(0)
γ

because it includes x
3
2 . This means that the solution of Equation (2.3)

will disappear at least after this time. Therefore, we note that we cannot discuss Ulam stability for
global solutions when δ > 4

27 . For this reason, we can conclude that δ = 4
27 is the threshold.
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Remark 4. Now, we consider the case δ = 4
27 and x(0) < 8

27 . From the first paragraph in the proof of
Proposition 2, we see that

dx
dτ

= F(x) − δ ≤ 0.

This indicates that
x(τ) ≤ x(0) <

8
27
,

and thus
dx
dτ

(τ) = F(x(τ)) − δ ≤ F(x(0)) − δ < 0

for τ ≥ 0 because F(x) is increasing on
[
0, 8

27

)
. Integrating this inequality yields

x(τ) ≤ x(0) + (F(x(0)) − δ)τ

for τ ≥ 0. From F(x(0)) − δ < 0, this inequality indicates that the solution x(τ) will hit the positive
τ-axis and it will take a negative value when

τ >
−x(0)

F(x(0)) − δ
.

Therefore, for the same reason as that given in Remark 3, the solution x(τ) of Equation (2.3) will
disappear at least after this time. Therefore, we note that we cannot discuss Ulam stability for global
solutions when δ = 4

27 and x(0) < 8
27 . For this reason, we can conclude that x(0) = 8

27 is the threshold.

3. Conditional Ulam stability for dz
dτ = z

2
3 − z

In this section, we will prove the following result. This theorem is the core of this study.

Theorem 5. Suppose that 0 < δ ≤ 4
27 and z0 ≥

8
27 . Let z ∈ C1 [

0,Tz) and ζ ∈ C1
[
0,Tζ

)
be the solutions

of Equations (2.1) and (2.2) with (2.5), respectively. Then, Tz = Tζ = ∞ and

|ζ(τ) − z(τ)| < 3
(
19
12

) 5
2

δ

for τ ∈ [0,∞).

Before discussing the proof of this theorem, we will give some technical inequalities.

Lemma 6. Define the function

G(X) :=
X + 1

X2 + X + 1
for X > 0. Then, dG

dX (X) < 0 for X > 0.

Proof. If X > 0, then
dG
dX

(X) = −
X(X + 2)

(X2 + X + 1)2 < 0

holds. Hence, the proof is complete. �
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Lemma 7. Define the function

H(τ) :=
e−

1
3 τ − 4(

4 − e−
1
3 τ
)2

+ 3

for τ ≥ 0. Then, H(τ) < − 4
19 for τ ≥ 0.

Proof. By a simple calculation, we have

d
dτ

H(τ) =

[
1
3

(
4 − e−

1
3 τ
)2
− 1

]
e−

1
3 τ[(

4 − e−
1
3 τ
)2

+ 3
]2 ≥

2e−
1
3 τ[(

4 − e−
1
3 τ
)2

+ 3
]2 > 0

for τ ≥ 0, which implies that

H(0) ≤ H(τ) < lim
τ→∞

H(τ) = −
4

19
for τ ≥ 0. This completes the proof. �

Proposition 8. Suppose that 0 < δ ≤ 4
27 and z0 ≥

8
27 . Let z ∈ C1 [

0,Tz), x ∈ C1 [0,Tx), and y ∈
C1

[
0,Ty

)
be the solutions of Equations (2.1), (2.3), and (2.4) with (2.5), respectively. Then, Tz = Tx =

Ty = ∞ and

x
2
3 (τ) − z

2
3 (τ)

x(τ) − z(τ)
− 1 <

3
2

d
dτ

[(
e−

1
3 τ − 4

)2
+ 3

]
(
e−

1
3 τ − 4

)2
+ 3

−
4

19

and

y
2
3 (τ) − z

2
3 (τ)

y(τ) − z(τ)
− 1 <

3
2

d
dτ

[(
e−

1
3 τ − 4

)2
+ 3

]
(
e−

1
3 τ − 4

)2
+ 3

−
4

19

hold for τ ∈ (0,∞).

Proof. By Proposition 2, we have Tz = Tx = Ty = ∞ and(
2
3

)3

=
8

27
≤ x(τ) < z(τ) < y(τ)

for τ ∈ (0,∞). Because the proofs of the two inequalities in Proposition 8 are the same, only the first
one is shown here. For convenience, we write

F(τ) :=
x

2
3 (τ) − z

2
3 (τ)

x(τ) − z(τ)

for τ ∈ (0,∞). Because we can solve Equation (2.1), we have

z(τ) =
[(

z
1
3 (0) − 1

)
e−

1
3 τ + 1

]3
>

(
1 −

1
3

e−
1
3 τ

)3

>

(
2
3

)3
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for τ ∈ (0,∞). Using this with Lemma 6, we obtain

F(τ) − 1 =

(
y

1
3 (τ)

)2
−

(
z

1
3 (τ)

)2(
y

1
3 (τ)

)3
−

(
z

1
3 (τ)

)3 − 1

=

(
y

1
3 (τ)

)
+

(
z

1
3 (τ)

)
(
y

1
3 (τ)

)2
+

(
y

1
3 (τ)

) (
z

1
3 (τ)

)
+

(
z

1
3 (τ)

)2 − 1

=

(
z

1
3 (τ)

)
(
z

1
3 (τ)

)2

(
y

1
3 (τ)

z
1
3 (τ)

)
+ 1(

y
1
3 (τ)

z
1
3 (τ)

)2

+

(
y

1
3 (τ)

z
1
3 (τ)

)
+ 1

− 1

=

(
z

1
3 (τ)

)
(
z

1
3 (τ)

)2 G
y

1
3 (τ)

z
1
3 (τ)

 − 1

<

(
z

1
3 (τ)

)
(
z

1
3 (τ)

)2 G
 2

3

z
1
3 (τ)

 − 1 =

(
z

1
3 (τ)

)
+ 2

3(
z

1
3 (τ)

)2
+ 2

3

(
z

1
3 (τ)

)
+

(
2
3

)2 − 1

=
−

(
z

1
3 (τ)

)2
+ 1

3

(
z

1
3 (τ)

)
+ 2

9(
z

1
3 (τ)

)2
+ 2

3

(
z

1
3 (τ)

)
+

(
2
3

)2 =
−

[(
z

1
3 (τ)

)
− 1

6

]2
+ 1

4[(
z

1
3 (τ)

)
+ 1

3

]2
+ 1

3

<
−

(
5
6 −

1
3e−

1
3 τ
)2

+ 1
4(

4
3 −

1
3e−

1
3 τ
)2

+ 1
3

=
−

(
5
2 − e−

1
3 τ
)2

+ 9
4(

4 − e−
1
3 τ
)2

+ 3

=
−e−

2
3 τ + 5e−

1
3 τ − 4(

4 − e−
1
3 τ
)2

+ 3

for τ ∈ (0,∞). Now, note that

3
2

d
dτ

[(
4 − e−

1
3 τ
)2

+ 3
]

= −e−
2
3 τ + 4e−

1
3 τ.

Hence, this together with Lemma 7 implies that

F(τ) − 1 <

3
2

d
dτ

[(
4 − e−

1
3 τ
)2

+ 3
]

(
4 − e−

1
3 τ
)2

+ 3
+

e−
1
3 τ − 4(

4 − e−
1
3 τ
)2

+ 3

<

3
2

d
dτ

[(
4 − e−

1
3 τ
)2

+ 3
]

(
4 − e−

1
3 τ
)2

+ 3
−

4
19

for τ ∈ (0,∞). This completes the proof. �
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Proof of Theorem 5. Suppose that

0 < δ ≤
4

27
and z0 ≥

8
27
.

Let z ∈ C1 [
0,Tz), ζ ∈ C1

[
0,Tζ

)
, x ∈ C1 [0,Tx), and y ∈ C1

[
0,Ty

)
be the solutions of Equations

(2.1)–(2.4), with (2.5), respectively. Then, by Proposition 2, we see that Tz = Tζ = Tx = Ty = ∞ and

8
27
≤ x(τ) ≤ ζ(τ) ≤ y(τ) and x(τ) < z(τ) < y(τ)

for τ ∈ (0,∞). Because

−(z(τ) − x(τ)) = x(τ) − z(τ) ≤ ζ(τ) − z(τ) ≤ y(τ) − z(τ)

holds, we see that
|ζ(τ) − z(τ)| ≤ max{y(τ) − z(τ), z(τ) − x(τ)} (3.1)

for τ ∈ (0,∞). Define ρ1(τ) := y(τ) − z(τ) and ρ2(τ) := z(τ) − x(τ) for τ ∈ (0,∞). Then, we have

dρ1

dτ
(τ) =

y
2
3 (τ) − z

2
3 (τ)

y(τ) − z(τ)
− 1

 ρ1(τ) + δ

and
dρ2

dτ
(τ) =

 x
2
3 (τ) − z

2
3 (τ)

x(τ) − z(τ)
− 1

 ρ2(τ) + δ

for τ ∈ (0,∞). Noticing that ρ1(τ) and ρ2(τ) are positive and using Proposition 8, we get the inequality

dρi

dτ
(τ) < η(τ)ρi(τ) + δ

for τ ∈ (0,∞) and i ∈ {1, 2}, where

η(τ) :=

3
2

d
dτ

[(
e−

1
3 τ − 4

)2
+ 3

]
(
e−

1
3 τ − 4

)2
+ 3

−
4

19
.

This implies that
d
dτ

(
ρi(τ)e−

∫ τ
0 η(s)ds

)
< δe−

∫ τ
0 η(s)ds,

and so
ρi(τ) < ρi(0) + δ

∫ τ

0
e
∫ τ

s η(u)duds = δ

∫ τ

0
e
∫ τ

s η(u)duds (3.2)

for τ ∈ (0,∞) and i ∈ {1, 2}. We need to estimate the above integral. It is easy to verify that

∫ τ

s
η(u)du = log


(
e−

1
3 τ − 4

)2
+ 3(

e−
1
3 s − 4

)2
+ 3


3
2

−
4

19
(τ − s)
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for τ ≥ s. Using this with the inequality 12 <
(
e−

1
3 τ − 4

)2
+ 3 < 19 for τ > 0, we have

∫ τ

0
e
∫ τ

s η(u)duds =

∫ τ

0


(
e−

1
3 τ − 4

)2
+ 3(

e−
1
3 s − 4

)2
+ 3


3
2

e−
4

19 (τ−s)ds

<

(
19
12

) 3
2
∫ τ

0
e−

4
19 (τ−s)ds =

19
4

(
19
12

) 3
2 (

1 − e−
4
19 τ

)
<

19
4

(
19
12

) 3
2

= 3
(
19
12

) 5
2

for τ ∈ (0,∞). Hence, combining this estimation with (3.1) and (3.2), we obtain

|ζ(τ) − z(τ)| ≤ max{ρ1(τ), ρ2(τ)} < 3
(
19
12

) 5
2

δ

for τ ∈ (0,∞). When τ = 0 this inequality is true. Therefore, for all τ ∈ [0,∞), this inequality
holds. �

Using Theorem 5, we immediately obtain the following result.

Theorem 9. Equation (2.1) is conditionally Ulam stable on [0,∞), with M =
(
0, 4

27

]
, in the class

C =
{
w ∈ C1[0,∞) : w(0) ≥ 8

27

}
and with an Ulam constant N = 3

(
19
12

) 5
2 .

4. Application to von Bertalanffy growth model

In this section, we apply the obtained result to the von Bertalanffy growth model. We can establish
the following result.

Theorem 10. Suppose that 0 < ε ≤ a
3

(
2a
3b

)2
and w0 ≥

(
2a
3b

)3
. Let w ∈ C1 [0,Tw) and φ ∈ C1

[
0,Tφ

)
be

the solutions of eEquation (1.1) and the inequality∣∣∣∣∣dφdt
− aφ

2
3 + bφ

∣∣∣∣∣ ≤ ε
with w(0) = φ(0) = w0, respectively. Then, Tw = Tφ = ∞ and

|φ(t) − w(t)| <
3
b

(
19
12

) 5
2

ε

for t ∈ [0,∞).

Proof. Suppose that

0 < ε ≤
a
3

(
2a
3b

)2

and w0 ≥

(
2a
3b

)3

.
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Let φ ∈ C1
[
0,Tφ

)
satisfy the condition φ(0) = w0 and the inequality∣∣∣∣∣dφdt

(t) − aφ
2
3 (t) + bφ(t)

∣∣∣∣∣ ≤ ε
for 0 ≤ t ≤ Tφ. Now, using the transformations τ := bt and ζ :=

(
b
a

)3
φ, we obtain the inequality

ε ≥

∣∣∣∣∣dφdt
(t) − aφ

2
3 (t) + bφ(t)

∣∣∣∣∣ = a
(a
b

)2 ∣∣∣∣∣dζdτ
(τ) − ζ

2
3 (τ) + ζ(τ)

∣∣∣∣∣
for 0 ≤ τ ≤ Tζ = bTφ. Let δ := 1

a

(
b
a

)2
ε. Then, 0 < δ ≤ 4

27 and

ζ(0) =

(
b
a

)3

φ(0) ≥
8

27

hold. Next, we consider the solution z ∈ C1[0,Tz) of Equation (2.1) with

z(0) = ζ(0) =

(
b
a

)3

φ(0) =

(
b
a

)3

w0.

By Theorem 5, we see that Tφ = Tζ = Tz = ∞ and |ζ(τ) − z(τ)| < 3
(

19
12

) 5
2
δ for all τ ≥ 0. Let

w(t) :=
(

a
b

)3
z(τ). Then, the above inequality indicates that

|φ(t) − w(t)| =
∣∣∣∣∣(a

b

)3
ζ(τ) −

(a
b

)3
z(τ)

∣∣∣∣∣ < 3
(
19
12

) 5
2 (a

b

)3
δ =

3
b

(
19
12

) 5
2

for t ≥ 0. Moreover,
dw
dt

(t) = b
(a
b

)3 (
z

2
3 (t) − z(t)

)
= aw

2
3 (t) − bw(t)

holds for t ≥ 0; that is, w(t) is a global and unique solution of Equation (1.1) with the condition

w(0) =

(a
b

)3
z(0) = w0 ≥

(
2a
3b

)3

.

This completes the proof. �

Proof of Theorem 1. Theorem 10 immediately implies the conditional Ulam stability for Equation
(1.1). The proof of Theorem 1 is now complete. �

Hereafter, we present some examples. We consider the perturbed von Bertalanffy model

dw
dt

= aw
2
3 − bw + p(t), (4.1)

where a > 0, b > 0, and p(t) is a continuous function. Let a = 3 and b = 2. Note that

a
3

(
2a
3b

)2

=

(
2a
3b

)3

= 1.
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Suppose that 0 < ε ≤ 1, w0 ≥ 1, and |p(t)| ≤ ε for t ≥ 0. Let w ∈ C1 [0,Tw) and φ ∈ C1
[
0,Tφ

)
be

the solutions of Equations (1.1) and (4.1) with w(0) = φ(0) = w0, respectively. Then, by Theorem 10,
Tw = Tφ = ∞ and

|φ(t) − w(t)| <
3
2

(
19
12

) 5
2

ε

for t ∈ [0,∞).
Now, we consider the case p(t) = 0.2 cos t for t ≥ 0. ε = 0.2 and Equation (1.1) is conditionally

Ulam stable by Theorem 1. Figure 2 is a numerical simulation of the behavior of the solution curves
of Equations (1.1) and (4.1) with a = 3, b = 2, and w(0) = 1. If we can measure the error (in this case,
ε = 0.2) between the real phenomenon and its mathematical model, we can determine the accuracy

of the fish growth model (in this case, 3
10

(
19
12

) 5
2
≈ 0.946351). We consider the case p(t) = −1.1 for

t ≥ 0. By means of Remark 3, the solution of Equation (4.1) will disappear when it hits the t-axis. See
Figure 3.

10 20
t

1

3

5

w

Figure 2. Solution curves
for Equations (1.1) and
(4.1) with a = 3, b = 2,
p(t) = 0.2 cos t; w(0) = 1;
conditionally Ulam sta-
ble.

10 20
t

1

3

5

w

Figure 3. Solution curves
for Equations (1.1) and
(4.1) with a = 3, b =

2, p(t) = −1.1; w(0) =

1; case of vanishing solu-
tion.

Hereafter, we regard Equations (4.1) and (1.1) as the real phenomenon and its mathematical model,
respectively. Seasonal fluctuations must be taken into account for fish growth. It should be assumed
that the error between the real phenomenon and its mathematical model is also affected by seasonal
fluctuations. In other words, p(t) in Equation (4.1) is required to have periodicity. However, since it is
not possible to create a real phenomenon, here we will approximate p(t) using the following settings:
Assume that the average error values in spring, summer, autumn, and winter are p1, p2, p3, and p4,
respectively. Then, p(t) can be written as follows:

p(t) =


p1 (0 ≤ t < T1)
p2 (T1 ≤ t < T1 + T2)
p3 (T1 + T2 ≤ t < T1 + T2 + T3)
p4 (T1 + T2 + T3 ≤ t < T1 + T2 + T3 + T4),

p(t + T1 + T2 + T3 + T4) ≡ p(t),
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where T1, T2, T3, and T4 are the spans of the spring, summer, autumn, and winter periods, respectively.
p(t) is a periodic function with period T1 + T2 + T3 + T4. However, because it is not a continuous func-
tion, we cannot use our theorem directly. Therefore, we treat the above step function as a continuous
function by approximating it with a Fourier series. Let m be a sufficiently large natural number. Then,
p(t) is approximated by

pm(t) :=
α0

2
+

m∑
n=1

(
αn cos

nπt
L

+ βn sin
nπt
L

)
,

where
L =

T1 + T2 + T3 + T4

2
,

and α0, αn, and βn are Fourier coefficients:

α0 =
1
L

∫ L

−L
p(t)dt, αn =

1
L

∫ L

−L
p(t) cos

nπt
L

dt , and βn =
1
L

∫ L

−L
p(t) sin

nπt
L

dt.

pm(t) is a continuous periodic function with period 2L = T1 + T2 + T3 + T4. In addition, we can easily
calculate the maximum value of |pm(t)|. Let

εm := max
0≤t≤2L

|pm(t)|.

Assume that 0 < εm ≤
a
3

(
2a
3b

)2
and w0 ≥

(
2a
3b

)3
. Let w and φ be the solutions of Equations (1.1) and (4.1)

with w(0) = φ(0) = w0, respectively. Then, by Theorem 10, we see that

|φ(t) − w(t)| <
3
b

(
19
12

) 5
2

εm

for t ∈ [0,∞). Hence, we can conclude that if we regard Equations (4.1) and (1.1) as the real phe-
nomenon and its mathematical model, respectively, then the magnitude of the error between the solu-

tions of the real phenomenon and its mathematical model is less than 3
b

(
19
12

) 5
2
εm.

5. Conclusions

This is the first study of conditional Ulam stability for the von Bertalanffy growth model. This
study considered the conditions for the global existence of approximate solutions to dz

dτ = z
2
3 − z and

clarified that a magnitude correlation holds between the approximate solutions. The combination of
this relationship with some special inequalities established conditional Ulam stability for the above
equation. It was clearly shown that the conditions related to the initial value and δ > 0 are thresholds.
The obtained result was applied to the von Bertalanffy growth model, for which conditional Ulam
stability was established. Finally, numerical simulations were presented to explain the results. This
study expands the potential of Ulam stability for growth models.
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