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Abstract: A Susceptible Infective Recovered (SIR) model is usually unable to mimic the actual epi-
demiological system exactly. The reasons for this inaccuracy include observation errors and model dis-
crepancies due to assumptions and simplifications made by the SIR model. Hence, this work proposes
calibration and prediction methods for the SIR model with a one-time reported number of infected
cases. Given that the observation errors of the reported data are assumed to be heteroscedastic, we
propose two predictors to predict the actual epidemiological system by modeling the model discrep-
ancy through a Gaussian Process model. One is the calibrated SIR model, and the other one is the
discrepancy-corrected predictor, which integrates the calibrated SIR model with the Gaussian Process
predictor to solve the model discrepancy. A wild bootstrap method quantifies the two predictors’ un-
certainty, while two numerical studies assess the performance of the proposed method. The numerical
results show that, the proposed predictors outperform the existing ones and the prediction accuracy of
the discrepancy-corrected predictor is improved by at least 49.95%.

Keywords: Inexact SIR model; Gaussian Process model; Wild bootstrap; uncertainty quantification;
Heteroscedastic noise; calibration

1. Introduction

The Susceptible Infective Recovered (SIR) model is a commonly used mathematical model for un-
derstanding the dynamics of infectious diseases [1–3]. It assumes that the total population can be
divided into three distinct classes of sub-populations: susceptible, infectious, and recovered, whose
numbers are denoted by S , I, and R, respectively. The susceptible class of individuals includes mem-
bers of the population that have the potential to contract a disease. The infected class of individuals is
assumed to have contracted the disease, while the recovered class comprises those who recovered and
cannot contract the disease again. Moreover, the SIR model assumes that the number of individuals
per class changes with time, i.e., S (t), I(t) and R(t) are functions of time t and the total population size
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N = S (t) + I(t) + R(t).
The SIR model can be expressed by the following set of ordinary differential equations:

dS
dt

= −
βIS
N

,

dI
dt

=
βIS
N
− γI,

dR
dt

= γI,

(1.1)

with initial conditions
S (0) = S 0 > 0, I(0) = I0 > 0,R(0) = 0.

Here, β is the transmission parameter. The transmission rate can dramatically decrease during the
epidemic due to governmental lockdown policies, with an exponential function describing the trans-
mission rate decrease [4]:

β(t) = β0 + β1exp(−µt). (1.2)

where β0 + β1 is the initial infection kinetic, with β0 denoting the infection kinetic at infinite time,
which can be near zero due to a long enough period of people isolation [5] and µ characterizes the time
of decrease: the larger the µ, the faster β(t) decreases to β0. The model parameter γ is the recovery
rate, which is affected by the medical resources and medical level. Improving knowledge on infectious
diseases allows healthcare systems to manage the epidemic risks effectively, i.e., the recovery rate can
be treated as a constant.

The accuracy of the SIR model is affected by the four model parameters β0, β1, µ, and γ. Estimating
these parameters by a given set of observations is called calibration for the SIR model, and these
parameters are the calibration parameters. To efficiently estimate the calibration parameters, two
uncertainty types between the actual observations and the SIR model must be fully considered.

The first uncertainty is related to the observation errors between the actual observations and the
actual epidemiological system. A most commonly used assumption for the observation errors is that
these are independent and identically distributed random variables obeying a normal distribution [6].
However, assuming the observation errors are homoscedastic is unrealistic because the observation
errors for S (I or R) tend to be more prominent when the number of susceptible (infectious or recovered)
people is high [7, 8].

Another uncertainty is the model uncertainty between the true epidemiological system and the SIR
model [9]. Compared with the true epidemiological system, the SIR model is built under many as-
sumptions, and simplifications that are not true in reality [10]. For example,

• Once a person is recovered, he is no longer susceptible and is immune
• Age, sex, race, and social status do not affect the probability of a person being affected
• The infection and recovery rates are much faster than the time scale of births and deaths

Even with an optimal set of calibration parameters, i.e., optimal parameter, these assumptions,
and simplifications impose a SIR model output that does not perfectly fit the actual observations [9].
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Therefore, the actual epidemiological system and the SIR model discrepancy cannot be ignored, and
the SIR model is an inexact model.

In summary, both the heteroscedastic observation errors and the model uncertainties must be con-
sidered in the SIR model’s calibration and prediction processes.To date, a variety of approaches have
been used to estimate the calibration parameters. Several approaches assume that the deterministic
SIR model can precisely describe the epidemiological system and the optimal parameters [7,8,11,12].
Among them, several approaches assume that the epidemiological system can be precisely described
by the deterministic SIR model and the optimal parameters. Hence, these methods ignore the model
discrepancy between the actual epidemiological system and the SIR model. Moreover, most of the ex-
isting calibration methods involving an inexact model assume the observation errors are homoscedas-
tic [13–16]. Nevertheless, Sung et al. [17] utilized replicated actual observations to calibrate an inexact
model with heteroscedastic observation errors. However, in many cases, replicates are not available.
In this work, we proposed a novel calibration and prediction method for the SIR model with one-time
reported infected data. Our contributions can be summarized as follows:

• We proposed a Weighted Least Squares estimator for the calibration parameters. The proposed
estimator makes full use of the monotonically increasing relationship between the observation
errors and the infected cases.
• We proposed two different predictors to predict the actual epidemiological system. The proposed

predictors take full consideration of the model’s uncertainty and heteroscedastic observation er-
rors.
• The proposed method improves the prediction accuracy of the SIR model without complicating

the model.
• A wild bootstrap method is adopted to quantify the uncertainties of the proposed predictors.

The remainder of this paper is organized as follows: Section 2 introduces a new calibration and
prediction method for the SIR model. Section 3 conducts two numerical studies to compare the pre-
diction performance of the proposed method against existing techniques. Finally, Section 4 concludes
this work and suggests some future search topics.

2. Methodology

We first introduce a full calibration model that considers the model uncertainty and observation
error. Then, Subsection 2.1 proposes a Weighted Least Squares (WLS) estimation method to calculate
the calibration parameters in this full model along with two predictors for the actual epidemiological
system. Subsection 2.2 demonstrates some computational difficulties in calibration and prediction,
while Subsection 2.3 presents the uncertainty quantification of these two predictors by using a wild
bootstrap method.

2.1. WLS calibration

Let the reported infected data y1, y2, . . . , yn refer to times t1, t2, . . . , tn, where ti ∈ R, i = 1, . . . , n and
ζ(·) denotes the true epidemiological system. We assume the real observation generated by:

yi = ζ(ti) + εi, i = 1, . . . , n. (2.1)
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where εi are the observation errors assumed to be independent and have zero mean. Let I(·, θ) be
the estimated number of infected population by the SIR model, where θ = (β0, β1, µ, γ)T is a set of
calibration parameters. Kennedy and O’Hagan [9] employ the following model to consider model
uncertainty:

ζ(·) = I(·, θ∗) + δ∗(·). (2.2)

where θ∗ is the optimal but unknown set of calibration parameters, δ∗ is the model discrepancy between
the true epidemiological system and the SIR model with θ = θ∗. The combination of (2.1) and (2.2) is
named the KO’s model, which has been widely used in calibrating inexact models.

The calibration goal for the SIR model is to determine θ∗ utilizing the KO’s model. Following [9],
we assume that the model’s discrepancy function is a Gaussian Process GP(0, τ2K), where τ2K is a
covariance function with variance τ2 and K is the correlation function. A common choice for K is the
power exponential correlation function given by:

Kφ(h) = exp
{
−

hα

φ

}
, (2.3)

where h = |ti−t j| is the distance between ti and t j, φ > 0 is an unknown range parameter to be estimated,
and α ∈ (0, 2] is a fixed positive parameter. In this work we adopt [18] and set α = 1.9.

As the infected cases increase, the observation errors increase and thus we adopt [7, 8] and assume
that the observation errors are in the form:

εi = ζ
η
i ei, (2.4)

where (ei)n
i=1 are independent N(0, σ2) random variables with σ2 < ∞. If η = 0, (εi)n

i=1 are independent
and identically distributed random variables following the normal distribution N(0, σ2) and since ζ(·) ≥
0, a positive value of β indicates that the variance of ε increases as ζ increases. Especially, if η = 1, the
standard deviation of ε is assumed to scale linearly with ζ. This situation is often referred to as relative
noise. If η = 1/2, the variance of ε scales linearly with ζ and in this case the observation error is called
Poisson noise.

Let Iθ = (I(t1, θ), . . . , I(tn, θ))T be a vector of the number of infected people estimated by the SIR
model with fixed θ. We denote Y = (y1, . . . , yn)T ,; δθ = (δθ(t1), . . . , δθ(tn))T , where δθ(ti) = ζ(ti)− I(ti, θ)
and E = (ε1, . . . , εn)T . The full model is presented as

Y = Iθ + δ + E,
δθ ∼ MN(0, τ2Kφ),
E ∼ MN(0, σ2Vη),

(2.5)

where Kφ = [Kφ(ti, t j)]i j, i, j = 1, . . . , n is the correlation matrix of δθ(t1), . . . , δθ(tn) and τ2 < ∞ is the
variance of δθ(ti) and Vη is a n × n diagonal matrix with (i, i) element ζ2η

i , i = 1, . . . , n. We can easily
obtain that Y follows a multivariate normal distribution. The expectation of Y is:

E(Y) = Iθ, (2.6)

and the variance of Y is

V(Y) = τ2Kφ + σ2Vη. (2.7)
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Although a maximum likelihood estimator based on the distribution of Y is a natural choice to
estimate θ, Tuo et al. [19] prove the unsatisfactory convergence properties of this maximum likeli-
hood estimator. Hence, we suggest a WLS estimator for θ, which is defined as the solution to the
minimization problem:

θ̂WLS = argminθ
1
n

n∑
i=1

(yi − I(ti, θ))2

ζ
2η
i

. (2.8)

Given θ = θ̂WLS , the posterior distribution of δθ̂WLS (t) at an unobserved input t has the closed form
expression [20]:

δθ̂WLS (t)|Y, Iθ̂WLS
∼ N

(
δ̂n(t), τ2s2

n(t)
)
. (2.9)

The posterior mean and variance of δθ̂WLS (t) are:

δ̂n(t) = KT
φ (t)Σ−1

[
Y − Iθ̂WLS

]
,

τ2s2
n(t) = τ2

{
1 − KT

φ (t)Σ−1Kφ(t) + UT (t)(1TΣ−11)−1U(t)
}
,

(2.10)

where Kφ(t) is the correlation vector between δ(t) and δ, 1 is a n × 1 vector with entries of 1, Σ =

Kφ + σ2/τ2Vη and U(t) = 1 − KT
φ (t)Σ−11. The posterior mean δ̂n(t) is considered as the best linear

unbiased estimator of δθ̂WLS (t) and τ2s2
n(t) the corresponding variance [20]. It should be noted that

δθ̂WLS (t) is different from δ∗, which is defined in Eq. (2.2). δ∗ was defined relative to the optimal
set of calibration parameters, rather than the estimated value θ̂WLS . Since θ∗ is unknown, δ̂∗ can be
approximated by δ̂n.

When we predict the underlying number of infected people at time t, two predictors can be used [21].

• Predicting the true epidemiological system by utilizing the calibrated SIR model

ζ̂I(t) = I(t, θ̂WLS ). (2.11)

• A discrepancy-reduced predictor for the true epidemiological system

ζ̂R(t) = I(t, θ̂WLS ) + δ̂n(t). (2.12)

The predictor in Eq. (2.11) inputs the estimation θ̂WLS into the SIR model and runs the model at
time t to obtain a prediction. This predictor is called model predictor, and its accuracy is determined
by the variance of θ̂WLS . The second predictor in Eq. (2.12) is corrected by an estimation of the model
discrepancy between the true epidemiological system and the calibrated SIR. This predictor is called
discrepancy-corrected predictor. Bayarri et al. [21] highlights that since an estimator of the model
discrepancy is available, the prediction accuracy of the discrepancy-corrected predictor ζ̂R(t) is much
higher than the pure model predictor ζ̂I(t).
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2.2. Computational difficulties in calibration and prediction

Evaluating θ̂WLS and δ̂n utilizing Eqs. (2.8) and (2.10) has two major practical difficulties. The
first one is that the true value ζi is unknown, and thus Eq. (2.8) cannot be calculated. To address this
problem, assuming that the observation error εi is much smaller than ζi, we replace ζi with yi. The
second problem is that the hyper-parameters η, σ2, φ, and τ2 are also unknown. Hence, we estimate
them based on maximum likelihood estimations.

By replacing ζi with yi, we define Ṽη as an n×n diagonal matrix with (i, i) element y2β
i . Furthermore,

we denote Σ̃ = Kφ + gṼη with g = σ2/τ2. Given θ = θ̂, the parameters β, φ, g andτ2 can be estimated
by maximizing the likelihood function:

L(η, φ, g, τ2) =

(
1

2πτ2

)− n
2

|Σ̃|−
1
2 exp

{
−

1
2τ2 (Y − Iθ̂)

T Σ̃−1(Y − Iθ̂)
}
,

where |A| is the determinant of the matrix A. With some direct calculations [18], the MLE of (η, φ, g)
is the maximizer of:

L(η, φ, g) ∝ −
n
2

log
{
(Y − Iθ̂)

T Σ̃−1(Y − Iθ̂)
}
−

1
2

log |Σ̃|, (2.13)

and the MLE of τ2 given η, φ and g is:

τ̂2 =
(Y − Iθ̂)T Σ̃−1(Y − Iθ̂)

n
. (2.14)

We propose estimating the calibration parameters θ and the hyper-parameters (η, φ, g, τ2) in two
stages. In the first stage, let θ̂ = θ̂OLS which is defined as:

θ̂OLS = argminθ
1
n

n∑
i=1

(yi − I(ti, θ))2 ,

and we estimate the hyper-parameters η̂0, φ̂0, ĝ0 and τ̂2
0. In the second stage, we evaluate θ̂WLS by using

Eq. (2.8), where η is replaced by its estimation η̂0. Let θ̂ = θ̂WLS , we re-estimate the MLE of β, σ2, φ
and τ2, written as η̂∗, φ̂∗, ĝ∗ and τ̂∗2.

Algorithm 1 provides the details of the calibration and prediction for the SIR model.

2.3. Uncertainty quantification by using wild bootstrap

This section considers the uncertainty quantification for ζ̂I and ζ̂R. Since the SIR model is determin-
istic the uncertainties of ζ̂I and ζ̂R depend on the randomness of θ̂WLS and δ̂n. Bootstrap methods have
been applied successfully to quantify the model uncertainty when the sample size is finite [22, 23].
Among various bootstrap methods, the wild bootstrap [24] effectively deals with the weighted least
squares inference. Thus, wild bootstrap samples for ζ̂I and ζ̂R can be generated utilizing Algorithm 2.

It should be noted that our estimation procedure involves non-parametric regression of the model
discrepancy function. To keep the approach simple, we adopt Wong et al. [23] stating that the con-
fidence regions for δ̂n can also be evaluated from the posterior distribution of Eq. (2.10) and thus
the confidence regions for ζ̂R can be evaluated by the sum of the confidence regions for ζ̂R and the
confidence regions for δ̂n.
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Algorithm 1 Calibration and prediction for the SIR model

Step 1. Evaluate θ̂OLS = argminθ
1
n

∑n
i=1 (yi − I(ti, θ))2 and let θ̂ = θ̂OLS ;

Step 2. Evaluate η̂0, φ̂0, ĝ0 by maximizing (2.13); Plug η̂0, φ̂0, ĝ0 into (2.14) to get τ̂2
0;

Step 3. Minimize the loss function l(θ) (2.15) to get θ̂WLS :

l(θ) =
1
n

n∑
i=1

(yi − I(ti, θ))2

y2η̂0
i

; (2.15)

Step 4. Let θ̂ = θ̂WLS , re-estimate the hyper-parameters by using the method in step 2. Write the
estimations of hyper-parameters as η̂∗, φ̂∗, ĝ∗ and τ̂∗2 ;
Step 5. Plug θ̂WLS , η̂∗, φ̂∗, ĝ∗ and τ̂∗2 into (2.10) to obtain δ̂n(t);
Step 6. Compute ζ̂I and ζ̂R respectively.

Algorithm 2 Uncertainty quantification

Evaluate θ̂WLS and δ̂n(t) by using Algorithm 1;
for iteration k = 1, · · · ,N do

Evaluate the errors {ε̂1, . . . , ε̂n}:

ε̂i = yi − I(ti, θ̂WLS ) − δ̂n(ti),

Next, we generate the bootstrap sample data set:

y′i = I(ti, θ̂WLS ) + δ̂n(ti) + ε̂ivi, i = 1, . . . , n (2.16)

where

vi =

−(
√

5 − 1)/2 with probability (
√

5 + 1)/(2
√

5),
(
√

5 + 1)/2 with probability (
√

5 − 1)/(2
√

5).
(2.17)

Evaluate θ̂(k)
WLS , δ̂(k)

n (t), ζ̂(k)
I and ζ̂(k)

R by using Algorithm 1, where the vector of the real observations
Y is replaced by Y′ = (y′1, . . . , y

′
n)T ;

end for
Print the confidence regions for ζ̂I and ζ̂R.
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3. Results

This section challenges the performance of ζ̂I and ζ̂R against the model predictors where θ is
estimated by the ordinary least squares (OLS) method [6], and the weighted least squares (WLS)
method [8]. These two model predictors ignore the model discrepancy and assume that the actual
epidemiological system can be precisely described by the SIR model together with the optimal param-
eters.

The ordinary least squares estimation of θ is defined as:

θ̂E
OLS = argminθ

n∑
i=1

(yi − I(ti, θ))2. (3.1)

The superscript E means that the SIR model is exact with θ = θ∗. The weighted least squares estimator
of θ is defined as:

θ̂E
WLS = argminθ

n∑
i=1

wi(yi − I(ti, θ))2, (3.2)

where {wi = 1/var(εi)}i=1,...,n is a set of weights and εi is the observation error for yi. Current works
including [7, 8] assume that wi ∝ 1/I(ti, θ)2ξ and ξ is chosen from {1/2, 1}. Given that the observation
errors is independent from the calibration parameters, assuming the variance of εi to be a function of θ
is unrealistic. Thus, this work assumes wi ∝ 1/y2ξ

i , and ξ is 1/2 or 1. We write the WLS estimator of θ
as θ̂E

WLS 1 when ξ = 1/2, and as θ̂E
WLS 2 when ξ = 1.

To fulfill the calibration and prediction for the SIR model, Section 3.1 provides two reported infected
data. A sensitivity analysis for the SIR model is conducted in Section 3.2, while Section 3.3 shows the
comparison results of four different predictors.

3.1. Data

Influenza epidemic data. Table 1 presents data for an influenza outbreak at a boys’ boarding school
in England [25]. The total population is N = 763 boys.

Table 1. Influenza epidemic data from a boys’ boarding school.

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Confirmed 3 6 25 73 222 294 258 237 191 125 69 27 11 4

The data given above is the number of infected students confined to bed throughout the epidemic,
which lasted a fortnight. Beyond being confined to bed, only ten of the ill boys received antibiotics,
i.e., the treatment the boys received was minimal.

COVID-19 data. Since Jan. 2, 2021, China’s Hebei province has suffered from a new COVID-19
wave, and the related health authorities announced a new lockdown for 11 million people in the Hebei
province. The epidemiologic data illustrated in Figure 1 are from the official open-source repository
operated by the Health Commission of Hebei Province. It should be noted that since the lockdown
measures, the Hebei outbreak is considered a closed system.
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Figure 1. Number of confirmed cases in Hebei, China.

3.2. Sensitivity analysis for the SIR model

With the help of the influenza epidemic data, we explore the relationship between the number of
infected people estimated from the SIR model and the calibration parameter values. One of the simplest
and most common approaches is the changing one-factor-at-a-time (OAT) [26] scheme, in which we
change the value of only one calibration parameter and the remaining ones are preserved 3.1.

Let S 0 = 760, I0 = 3 and R0 = 0. Set θ̂B = (0.538, 0.065, 1.392, 0.429) be the baseline values for θ,
which is randomly generated by the maximin latin hypercube sampling method [20]. Four SIR models
are executed with different calibration parameter setups, as listed in Table 2.

Table 2. Values of the calibration parameters (k = 1, 2, . . . , 6).

Model β0 β1 µ γ

model (a) 2(k−1)
5 0.065 1.392 0.429

model (b) 0.538 2(k−1)
5 1.392 0.429

model (c) 0.538 0.065 k−1
5 0.429

model (d) 0.538 0.065 1.392 2(k−1)
5

The estimated number of infected boys utilizing each SIR model is illustrated in Figure 2 high-
lighting that the calibration parameters have a significant impact on the number of infected people.
Specifically, (a) For β0 = 0, the number of infected people increases slowly, reaches the peak after
about 9 days, and then decreases slowly. For a higher value of β0, the time to reach the peak of infec-
tions is shorter, and the number of infected people decreases to a smaller value more rapidly. (b) The
relationship between β1 and I(t) is similar to the relationship of β0 and I(t). (c) A smaller value of µ
leads to a shorter time to reach the peak of infections, a faster decrease from the peak, and a smaller
number of infected people at the end of the simulation period. For µ = 0.5, the number of infected
people on the 12th day reaches its peak, which is less than 100. (d) For γ = 0, infected people increase
rapidly and reach 763 after about 6 days. Hence, if the recovery rate is 0, then all boys will ultimately
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be infected. For a higher value of γ, the peak of infections is smaller, but the time to reach the peak is
almost the same, while the number of infected people at the end of the simulation period is smaller.
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Figure 2. Infected data estimated by the SIR model with different calibration parameter
setups.

It is worth noticing that, except for the OAT method, there are many other commonly used global
sensitivity analysis methods, such as the Sobol’ method [27]. This method decomposes the variance
of the model output into fractions that can be attributed to each input parameter. Then it measures the
global sensitivity of each calibration parameter by the percentage of the corresponding fraction. With
the help of sobolshap knn function in the R package sensitivity [28], we obtain the first-order Sobol’
indices of the SIR model, which is shown in Figure 3.

From Figure 3, we can see that at the beginning of the epidemic, the first-order effects of all these
four calibration parameters are not negligible. As the epidemic spreads, the first-order effect of γ
becomes higher. If the aim is to improve the prediction accuracy of the SIR model during the whole
epidemic, these results suggest adjusting the values of all the calibration parameters. And if the goal is
to improve the model accuracy at the end of the epidemic, then it is more important to focus the efforts
on better quantifying the recovery rate γ. In this work, we focus on the prediction accuracy of the SIR
model throughout the epidemic. As a result, all the calibration parameters have significant impacts on
the number of infected people. It coincides with the result obtained by the OAT method.
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Figure 3. First-order Sobol’ indices of the SIR model .

3.3. Calibration and prediction results

This section compares the prediction performance of five different predictors: three model predic-
tors I(·, θ̂), with θ̂ = {θ̂E

OLS , θ̂
E
WLS 1, θ̂

E
WLS 2}, the model predictors ζ̂I = I(·, θ̂WLS ) and the discrepancy-

corrected predictor ζ̂R = ζ̂I + δ̂n. Absolute errors and Relative errors are used to measure the discrep-
ancy between the reported number of infected case and the predictions given by the different predictors.
The absolute error (AE) and relative error (RE) are defined as:

AEi = |yi − ŷi| ,

REi =

∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣ , i = 1, . . . , n,
(3.3)

where ŷi is the predicted number of infected cases at time ti by each method. It is evident that the
absolute and the relative error values describe the accuracy of a given prediction method. We display
the comparison results in Table 4 and Table 6 using the Influenza epidemic data and COVID-19 data,
respectively.

Influenza epidemic data. We first apply the NEWUOA algorithm [29] to evaluate θ̂E
OLS and θ̂E

WLS .
Specifically, we randomly generate 50 sets of pseudo-random numbers as the starting points utilizing
the maximin latin hypercube sampling method, utilize the NLOPT package in R to perform local
searches on all starting points to obtain the ordinary least squares estimation of θ, and use the NLOPT
package to estimate θ̂E

WLS where the initial value is θ̂E
OLS . Finally Algorithm 1 is used to obtain θ̂WLS , ζ̂I

and ζ̂R. Table 3 displays the estimated calibration parameters.
The prediction results of the five different predictors are illustrated in Figure 4 highlight that the pro-

posed predictor ζ̂R outperforms the competitor predictors at most observation time points. Moreover,
the performance of I(·, θ̂E

OLS ) and ζ̂R are similar at (t1, . . . , t10), but ζ̂R attains more accurate predictions
at (t11, . . . , t14). The predictions at (t1, . . . , t4) and (t13, t14) given by I(·, θ̂E

WLS 2) are closest to the re-
ported number of infected boys. However, at (t5, . . . , t11) the performance of I(·, θ̂E

WLS 2) is the poorest,
underestimating the infected population. The performance of I(·, θ̂E

WLS 1) and ζ̂I is similar throughout
the period.
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Table 3. Estimated calibration parameters.

Estimator β0 β1 µ γ

θ̂E
OLS 0.066 1.626 0 0.448
θ̂E

WLS 1 0.115 1.653 0 0.528
θ̂E

WLS 2 0.294 1.587 0 0.720
θ̂WLS 0.105 1.649 0 0.512
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Figure 4. Prediction results of various method against the reported number of infected
boys (circles). The predictors are the OLS predictor I(·, θ̂E

OLS ) (dashed line), WLS predic-
tor I(·, θ̂E

WLS 1) with ξ = 1/2 (dotted line), WLS predictor I(·, θ̂E
WLS 2) with ξ = 1 ( dotdash

line), and the two proposed predictors ζ̂I (longdash line) and ζ̂R (solid line) .

To further investigate the effectiveness of the proposed method, Table 4 presents the median absolute
error (MAE) and median relative error (MRE) of the evaluated predictors.

Table 4. Median absolute error (MAE) and median relative error (MRE).

Error I(·, θ̂E
OLS ) I(·, θ̂E

WLS 1) I(·, θ̂E
WLS 2) ζ̂I ζ̂R

MAE 14.249 15.196 23.232 13.271 6.002
MRE 0.144 0.299 0.348 0.283 0.046

From Table 4, we observe that the proposed predictor ζ̂R outperforms the competitor methods:
the MAE of ζ̂R is reduced by at least 57.88% and the MRE of ζ̂R is reduced by at least 68.06%.
Compared with the OLS predictor, the suggested predictor ζ̂I has a smaller MAE but a larger MRE.
The performance of I(·, θ̂E

WLS 1) is slightly inferior to ζ̂I , with MAE and MRE of I(·, θ̂E
WLS 2) being the

largest indicating the poor prediction performance of this method. Due to the poor performance of
I(·, θ̂E

WLS 2), we neglect this method in the following uncertainty quantification trials.
Next, we use the wild bootstrap method (Algorithm 2) to obtain the 95% prediction intervals of the

remaining four different predictions, as depicted in Figure 5.
From the upper- left subfigure we observe that only the reported numbers at (t1, t5, t6, t8, t10) lie in the
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2812

0 5 10 15 20

0
5
0

1
5

0
2
5

0
3
5

0

Day

I(t, θ^OLS

E

)

95% interval

0 5 10 15 20

0
5
0

1
5

0
2
5

0
3
5

0

Day

I(t, θ^WLS1

E

)

95% interval

0 5 10 15 20

0
5

0
1

5
0

2
5

0
3
5

0

Day

ζ
^

I

95% interval 

0 5 10 15 20

0
5

0
1

5
0

2
5

0
3
5

0

Day

ζ
^

R

95% interval

Figure 5. 95% prediction intervals of four different predictors, where circles in the subfigures
represent the reported number of infected boys.
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95% prediction intervals of I(·, θ̂E
OLS ). The lower endpoints of the 95% prediction interval at (t12, t13, t14)

are larger than the corresponding reported numbers. The predictions given by I(·, θ̂E
WLS 1) are closer to

the reported numbers at (t12, t13, t14), but present an inferior accuracy at (t6, . . . , t10). By comparing the
the 95% prediction interval of ζ̂I and I(·, θ̂E

WLS 1), we observe that although the prediction accuracy of
ζ̂I and I(·, θ̂E

WLS 1) are similar, the performance of ζ̂I is indeed better than the performance of I(·, θ̂E
WLS 1).

Finally, the bottom-right subfigure shows that all the reported data (nearly) lie in the 95% prediction
interval of ζ̂R.

As our methodology in Section 2.1 suggests, we also display the plots (Figure 6) estimating the
model’s discrepancy and residuals for the predictors ζ̂R. This is important to verify that the SIR model
is inexact and that the constant variance assumption about the observation errors is valid.
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Figure 6. Left: model discrepancy function estimation. Right: absolute values of the residu-
als for ζ̂R vs. the reported number of infected boys.

The left subfigure depicts the estimation of the model discrepancy function, which is a smooth

function of time. Through some calculations, we obtain ‖δ̂n‖L2 =

√∫ 14

0
δ̂2

n(t)dt = 19.282 > 0 and thus
model discrepancy between the SIR model and the true epidemiological system cannot be ignored.
The right subfigure illustrates the relationship between the absolute values of the residuals for ζ̂R and
the reported number of infected boys. This subfigure indicates that as the infected cases increase,
the residuals for ζ̂R increase. The correlation coefficient between them is 0.835, indicating a strong
relationship between the observation errors and the number of cases.

COVID-19 data. The same method is used to θ̂E
OLS , θ̂E

WLS and θ̂WLS , with Table 5 displaying the
corresponding calibration parameter estimations.

Table 5. Calibration parameter Estimations.

Estimator β0 β1 µ γ

θ̂E
OLS 0.006 1.278 0.103 0.157
θ̂E

WLS 1 0.0001 1.391 0.102 0.196
θ̂E

WLS 2 0.023 1.415 0.111 0.195
θ̂WLS 0.0009 1.319 0.099 0.184
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Since β1 > 0 and µ > 0, Figure 7 describes the decreasing of β(t) with t, where the calibration
parameter is set to be θ̂WLS . We observe that the initial transmission rate is approximately 1.320, and
due to the lockdown policies the transmission rate shall gradually decrease to zero. Table 6 presents the
MAE and MRE values of different predictors, proving that the developed predictor ζ̂R outperforms the
competitor methods. Compared to I(·, θ̂E

WLS 1), I(·, θ̂E
WLS 2) affords a smaller MAE but a larger MRE. Due

to the poor performance of I(·, θ̂E
OLS ), we neglect this method in the following uncertainty quantification

trials.
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Figure 7. β(t) with θ = θ̂WLS .

Table 6. Median absolute error and median relative error.

Error I(·, θ̂E
OLS ) I(·, θ̂E

WLS 1) I(·, θ̂E
WLS 2) ζ̂I ζ̂R

MAE 121.049 73.809 97.087 96.568 30.571
MRE 69.173 31.120 17.394 44.631 8.705

The prediction results of the competitor predictors are depicted in Figure 8, where the proposed
predictor ζ̂R outperforms the other predictors at most of the observation time points. The MAE of ζ̂R is
reduced by at least 58.58% and the MRE of ζ̂R is reduced by at least 49.95%. The predictor I(·, θ̂E

WLS 1)
underestimates the number of cases between 15 < t < 22 and overestimates the number of cases for
3 < t < 8. The predictor I(·, θ̂E

WLS 2) overestimate the number of cases between 21 < t < 28, while the
two WLS predictors I(·, θ̂E

WLS 1) and I(·, θ̂E
WLS 2) perform similar at t ≤ 13 and t ≥ 29. The performance

of ζ̂I is much better than I(·, θ̂E
WLS 1) and I(·, θ̂E

WLS 2). By comparing the the 95% prediction interval of
ζ̂I and ζ̂R we conclude that although the prediction accuracy of ζ̂R is higher, the variance of ζ̂R is larger
than the variance of ζ̂I .

Figure 9 describes the model discrepancy estimation and the residuals for predictor ζ̂R. Through

calculations, we obtain ‖δ̂n‖L2 =

√∫ 14

0
δ̂2

n(t)dt = 35.924 > 0, verifying that the model discrepancy
cannot be ignored. The correlation coefficient between the absolute values of the residuals for ζ̂R

and the reported number of infected cases is 0.519, i.e., the constant variance assumption about the
observation errors is valid.
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Figure 8. 95% prediction intervals of four different predictors: WLS predictor I(·, θ̂E
WLS 1),

where ξ = 1/2 ; WLS predictor I(·, θ̂E
WLS 2) where ξ = 1; two proposed predictors ζ̂I and ζ̂R.
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Figure 9. Left: estimation of the model discrepancy function. Right: absolute values of the
residuals for ζ̂R vs. the reported number of infected cases.
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4. Conclusion and future work

In this work, we proposed a new WLS estimator for the calibration parameters by modeling the
discrepancy between the SIR model and the actual epidemiological system through a Gaussian Process
model. The proposed estimator takes full consideration of the heteroscedastic observation errors with
one-time reported infected data. We proposed two different predictors for the epidemiological system.
One is the calibrated SIR model, and the other one is the discrepancy-corrected predictor. A wild
bootstrap method is adopted to quantify the predictors’ uncertainties. We used two numerical studies
to assess the performance of the proposed predictors. The numerical results show that the prediction
accuracy of the discrepancy-corrected predictor is improved by at least 49.95%. The 95% prediction
intervals show that the calibrated SIR model enjoys a smaller variance than the discrepancy-corrected
predictor. These results demonstrate that the proposed method improves the prediction accuracy of
the SIR model without complicating the model. We also displayed the estimation of the SIR model’s
discrepancy and residuals for the proposed predictors. These results show that the SIR model is inexact
and that there is a strong relationship between the observation errors and the number of cases.

Future research directions are multifold. First, we assumed that finite unknown parameters can
determine the variance of the observation errors. Nevertheless, there is no information about the ob-
servation errors. Hence, it is desirable to develop a method to test whether the observation error
variance is constant. For heteroscedastic errors specifically, a non-parametric method can be employed
to estimate the variance of the observation errors. Second, the theoretical properties of the proposed
predictors should be further explored. Third, developing a Bayesian version of the proposed method is
appealing, as it is more convenient to perform uncertainty quantification trials.
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