
MBE, 19(3): 2700–2719.

DOI: 10.3934/mbe.2022123

Received: 23 September 2021

Revised: 28 November 2021

Accepted: 27 December 2021

Published: 10 January 2022

http://www.aimspress.com/journal/MBE

Research article

The parallel computing of node centrality based on GPU

Siyuan Yin, Yanmei Hu* and Yuchun Ren

College of Computer and Cyber Security, Chengdu University of Technology, Chengdu, China

* Correspondence: Email: huyanmei@cdut.edu.cn.

Abstract: Many systems in real world can be represented as network, and network analysis can help
us understand these systems. Node centrality is an important problem and has attracted a lot of attention
in the field of network analysis. As the rapid development of information technology, the scale of
network data is rapidly increasing. However, node centrality computation in large-scale networks is
time consuming. Parallel computing is an alternative to speed up the computation of node centrality.
GPU, which has been a core component of modern computer, can make a large number of core tasks
work in parallel and has the ability of big data processing, and has been widely used to accelerate
computing. Therefore, according to the parallel characteristic of GPU, we design the parallel
algorithms to compute three widely used node centralities, i.e., closeness centrality, betweenness
centrality and PageRank centrality. Firstly, we classify the three node centralities into two groups
according to their definitions; secondly, we design the parallel algorithms by mapping the centrality
computation of different nodes into different blocks or threads in GPU; thirdly, we analyze the
correlations between different centralities in several networks, benefited from the designed parallel
algorithms. Experimental results show that the parallel algorithms designed in this paper can speed up
the computation of node centrality in large-scale networks, and the closeness centrality and the
betweenness centrality are weakly correlated, although both of them are based on the shortest path.

Keywords: node centrality; parallel computing; CUDA

1. Introduction

Many systems in real world can be represented as network, e.g., the proteins and their interactions
can be represented as protein-protein interaction network [1], the sensors and their communications
can be represented as wireless sensor network [2], and the social relationships can be represented as

2701

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2700–2719.

social network. The analysis of network is necessary for us to understand the world. Node centrality is
an important research problem in social network analysis, which aims to assess the importance of
nodes and thus identify the important nodes in the network. A node usually has different importance
in different applications. Thus, the centrality of nodes can be assessed from different perspectives.
Anyway, it is general that an important node determines the information propagation in the network or
plays a leader role in its group. Based on this consideration, various centrality metrics such as degree
centrality, closeness centrality, betweenness centrality and PageRank centrality [3] were proposed, and
have been widely used in the literature. However, with the rapid increase of network data, it is highly time-
consuming for many centrality metrics.

On the other hand, parallel computing, as an efficient approach to tasks with high time complexity,
has been widely concerned and applied in many fields, e.g., deep learning [4] and the parallel
implementation of the evolutionary algorithms [5−7], especially with the development of GPU
(Graphic Processing Unit) since it has superiority in a lot of parallel tasks. Therefore, it is a good
alternative to evaluate and analyze the node centrality in large-scale networks by parallel computing
using GPU. There have been some works about the parallel computing of node centrality [8−12], but
they were not demonstrated on large-scale networks and the relationships of different centralities are
not analyzed. Besides, there is no work presenting the parallel process in details, which makes the
parallel algorithms confusing. Based on this, we design two parallel algorithms on GPU for three
classical centralities, which are betweenness centrality, closeness centrality and PageRank centrality.
Specifically, based on the definitions of centrality metrics and the structure of GPU we first design the
parallel algorithms and present them in details. Then, we test the designed parallel algorithms on
several networks including large-scale networks. Finally, based on the centrality values obtained, we
analyze the correlations between different centralities in different networks. The experimental results
show that the parallel algorithms designed for node centrality in this paper can speed up the calculation
of node centrality in large-scale networks. Moreover, we find that the betweenness centrality strongly
correlates to the PageRank centrality while weakly correlates to the closeness centrality, although both
of the betweenness centrality and closeness centrality are based on the shortest path.

The organization of the remained part is as follows. Section 2 presents the related work and
Section 3 presents the centrality metrics we focus on in this paper. Section 4 presents the proposed
parallel algorithms for node centrality. Experimental results and analysis are presented in Section 5.
Finally, Section 6 concludes our work.

2. Related works

We first briefly describe the classical works on node centrality, and then introduce the most related
works about parallel computing.

2.1. Node centrality

In the current research of node centrality, most researches focus on global centrality and local
centrality. The local centrality includes degree centrality, local clustering coefficient [13] and
conductance [14] and density of the ego network [15]. Among these four centrality, although degree
centrality has been widely studied in the literature [16], it is still limited for the identification of
important nodes and is usually used to supplement other measures. Local clustering coefficient is the

2702

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2700–2719.

ratio of the actual triangle count at a node to the number of possible triangles at that node based on
how many neighbors it has. In addition, the local centrality of a node can be measured from its ego
network since the ego network represents its local structure. Density of an ego network is the
percentage of ties that are actually present in the ego network to the possible ties, and conductance is
the ratio of ties that go out the ego network to the total ties related to the nodes in the ego network.
However, local centrality doesn’t consider the whole network structure, so this paper mainly researches
the global centrality.

Global centrality takes into account the whole network structure in the calculation of
centrality and mainly includes eigenvector centrality [17], betweenness centrality [18], closeness
centrality [19] and PageRank centrality [20]. The eigenvector centrality means that the importance of
a node depends not only on the number of its neighbors, but also on the importance of its neighbors.
And both closeness centrality and betweenness centrality are measured by the shortest path between
nodes. The difference is that closeness centrality focuses on the sum of the distances from the node to
other nodes, while the betweenness centrality pays more attention to the proportion of the shortest
paths through a certain node. The later one can be used to find nodes that have a bridge effect in the
network, which plays an important role in network research. But betweenness centrality is time-
consuming if it is calculated directly from its definition. Therefore, scholars have conducted a lot of
researches to find the algorithms that can reduce the time complexity of this centrality. Fortunately,
there is an algorithm for fast computation of the betweenness centrality was found, which is based on
breadth-first search [21]. Based on this algorithm, a lot of works about the calculation of the
betweeneess centrality and its application in other fields have been witnessed [22−26]. PageRank
centrality originates in the field of information retrieval and is used to rank the related web pages in
the search engine [27]. As the WWW can be seen as a huge network, the technique of PageRank is
naturally extended to measure node importance in a network, which results in PageRank centrality. In
addition, there are also some other metrics that can evaluate the centrality of nodes. For example, a
metric based on the idea that the closer the node is to the inner layer, the more important it is [28]; the
neighbors of a node and its degree were combined to measure the centrality in [29]. Inspired by gravity,
some researchers argue that nodes have “attraction” and consider this “attraction” as a metric to
evaluate the centrality of nodes. These researches mentioned above have introduced new insights to
study the problem of node centricity, but the most widely used ones are still the closeness centrality,
the betweenness centrality and the PageRank centrality. However, these centralities as well as other
global centralities have not been analyzed in large-scale networks which are common in real
applications, because in this case it costs a lot of time to calculate them by serial methods.

2.2. Parallel implementation for node centrality

Early parallel algorithms were stuck in parallel computing using a single processor, and
various computational models for single processor parallel computing were summarized in [8]. To
speed up the computation of betweenness centrality, parallel algorithms with multicore processors
were proposed and implemented on the Cary MTA-2 shared-memory multiprocessor by reducing the
atomic operations during parallelism [9].

With the development of GUP, betweenness centrality was computed in parallel on GPU for the
first time in [10], and then parallel computing based on GPU has been attracting more and more
attention, especially for large-scale data. In [11], several parallel implementations of betweenness

2703

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2700–2719.

based on GPU were compared and then a parallel algorithm based on multi-GPUs was proposed; the
parallel implementation jointing multi-GPUs achieved a speedup ratio of more than 10 times in large
scale networks.

In addition, edge parallel computing was also studied based on GPU. In [12], the authors
implemented the edge parallel computing on GPU by considering better load balancing and less
overhead. However, some of these parallel algorithms are limited by the synchronization access of data
from multi-GPUs and high cost since GPU devices are usually very expensive; and they are not
demonstrated on large-scale networks which is very necessary. Therefore, in this paper, we implement
two parallel computing algorithms to solve the problem of node centrality in parallel and test them on
several large-scale networks. Moreover, benefited from this, we analyze the correlations of different
centralities in different networks, which can provide guidable suggestions in the practical application
of these centralities.

3. Centrality metrics

In this section, we briefly describe the three centrality metrics we focus on in this paper, namely,
closeness centrality, betweenness centrality and PageRank centrality.

3.1. Betweenness centrality

Betweenness centrality of a given node 𝑣௜ is defined as follows:

 𝐶௕௖ሺ𝑣௜ሻ ൌ ∑ ఙೞ೟
೔

ఙೞ೟
௦ஷ௜ஷ௧ , (1)

where 𝜎௦௧ is the number of the shortest paths between nodes 𝑣௦ and 𝑣௧, and 𝜎௦௧
௜ is the number of

the shortest paths that pass node 𝑣௜. It can be seen that the betweenness centrality is based on the
shortest path between nodes. For each node it needs to calculate the shortest path between each
pair of the other nodes in the network, so its time complexity reaches 𝑂ሺ𝑛ଷሻ, which is quite high
in real applications. Therefore, an algorithm for fast calculation of betweenness centrality was
proposed in [21] to reduce the time complexity.

3.2. Closeness centrality

The closeness centrality of a given node 𝑣௜ is defined based on the shortest paths of this node to
other nodes, which is shown in Eq (2). It represents the ability of nodes to reach all the other nodes in
the network, and achieves a balance between locality and globality. However, its time complexity,
which is approximate to Oሺ𝑛ଶሻ, is relatively high, especially for large-scale networks.

𝐶௖ሺ𝑣௜ሻ ൌ ௡ିଵ

∑ ௗ௜௦௧೔ೕೕಯ೔
, (2)

where 𝑑𝑖𝑠𝑡௜௝ is the shortest path between nodes 𝑣௜ and 𝑣௝. The shorter the shortest paths from node
𝑣௜ to other nodes are, the higher the centrality of node 𝑣௜ is.

2704

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2700–2719.

3.3. PageRank centrality

PageRank centrality is based on the webpage ranking from information retrieve. Initially, each
node is given an equal score, which is usually 1/𝑛; then each node passes its score to neighbors. This
process is iterated a specified number of times or until the rank of nodes stops changing. The definition
of PageRank centrality for a given node 𝑣௜ is as follows:

𝐶௣௥ሺ𝑣௜ሻ ൌ ଵିఈ

௡
൅ 𝛼 ∑

஼೛ೝሺ௩ೕሻ

ௗೕ
௩ೕ∈ேሺ௩೔ሻ , (3)

where 𝛼 is the scaling factor which is used to avoid that the nodes with no neighbors absorb all the
scores; 𝑁ሺ𝑣௜ሻ is the neighbors of node 𝑣௜; 𝑑௝ is the degree of node 𝑣௝. In practical applications, the
number of iterations is usually not large to obtain the node ranking. But for large-scale networks, its
calculation is still time-consuming.

4. The parallel algorithms for node centrality

In this section, we firstly introduce the CUDA C programming model that implements parallel
programming based on GPU, and then present the parallel algorithms for the three node centralities
described in the previous section.

4.1. The CUDA C programming model

The CUDA programming model provides an abstract computer architecture that serves as a bridge
between an application and the available hardware. It connects the main memory to the GPU memory,
and allows data to be exchanged between the two memories. A typical CUDA program has the
following steps: 1) copying data from main memory to GPU memory; 2) calling core function to
operate on the data stored in GPU memory; and 3) transferring data from GPU memory to main
memory. The core function is application-driven and is programmed by the designer of parallel
algorithm according to the application.

The CUDA programming model is composed of a host and a device (here is the GPU), each
having its own memory. There are mainly global memory and shared memory in GPU’s memory
structure. The global memory is used to store global variables and clock count variables, and the shared
memory is used to store the variables that all the threads are allowed to access. Figure 1 shows a
memory structure of GPU. The function cudaMemcpy executes the data transmission between the host
and the GPU; and the cudaMalloc function is used to allocate memory to store the data copied from
the host.

In order to facilitate the parallel execution of the core functions in all threads, CUDA requires a
standardized organization of the threads so that the developer can quickly obtain the threads needed.
See Figure 1 for an illustration of the thread hierarchy, which is composed of thread blocks and threads.
All threads share the global memory, and the threads in each block share a piece of shared memory.

2705

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2700–2719.

Figure 1. The memory structure and thread organization of GPU.

4.2. Parallel algorithms for node centrality

We classify the three node centralities described in the Section 3 into two groups, according to
their definitions. The first group contains the betweenness centrality and the closeness centrality, and
the second group contains the PageRank centrality. Next, we will describe how to calculate these three
centralities in an undirected and unweighted network in parallel using GPU.

4.2.1. The parallel calculation of betweenness centrality and closeness centrality

From their definitions, it can be inferred that both of the betweenness centrality and the closeness
centrality can be obtained by breadth-first search on the network, since the shortest path between a pair
of nodes in an undirected and unweighted network is equal to the path obtained by the breadth-first
search starting from one node to the other node. But there is a main difference: a node’s closeness
centrality only needs to perform the breadth-first search starting from this node while its betweenness
centrality needs to perform the breadth-first search starting from all the other nodes. Anyway, both of
these two centralities of each node can be obtained after performing the breadth-first search starting
from each node. Thus, the core idea of the parallel computing of the two centralities is to perform the
breadth-first search (starting from each node) in parallel. To do this, we allocate all the nodes into
different blocks according to a mapping function set up in advance, and then let each block perform
the breadth-first search from the allocated nodes in parallel. Based on this idea, the betweenness
centrality and closeness centrality the can be obtained in parallel. Next, we first describe the parallel
computing of the betweenness centrality using CUDA and then the parallel computing of the closeness
centrality, since the later one can be obtained in the first step of the former one.

The parallel computing of the betweenness centrality. It is easy to understand that the
betweenness centrality of node 𝑣௜ can be decomposed into to many parts, and each part is the
ratio of the shortest paths that pass node 𝑣௜ starting from a node 𝑠 to all of the other nodes
(denoted as 𝛿௦ሺ𝑣௜ሻ), i.e., 𝐶௕௖ሺ𝑣௜ሻ ൌ ∑ 𝛿௦ሺ𝑣௜ሻ௦ஷ௩೔

. As shown in [21], the betweenness centrality can
be calculated by the approach of reverse deduction, since it has been proved that 𝛿௦ሺ𝑣௜ሻ can be
calculated as:

2706

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2700–2719.

𝛿௦ሺ𝑣௜ሻ ൌ ∑
ఙೞೡ೔

ఙೞೢ
ሺ1 ൅ 𝛿௦ሺ𝑤ሻሻ௪:௩೔∈௣௥௘ௗሺ௦,௪ሻ , (4)

where 𝑝𝑟𝑒𝑑ሺ𝑠, 𝑤ሻ is the set of precursor nodes of 𝑤. It means that the betweenness centrality of node
𝑣௜ can be calculated by finding the precursor nodes in the shortest paths that pass node 𝑣௜, starting
from other nodes. It is therefore that the betweenness centrality can be calculated by the following
steps: 1) performing the breadth-first search starting from each node 𝑠 (𝑠 ് 𝑣௜); 2) deducing reversely
from the farthest node from 𝑠 to obtain 𝛿௦ሺ𝑣௜ሻ according to Eq (4); 3) accumulating 𝛿௦ሺ𝑣௜ሻ for each
starting node 𝑠 to obtain the betweenness centrality of each node 𝑣௜. To perform the above steps in
parallel, we can allocate all the nodes into different blocks and let each block to perform the breadth-
first search and the reverse deduction from the nodes allocated to it, i.e., obtain 𝛿∗ሺ𝑣௜ሻ for each node
𝑣௜ where ∗ denotes any node that is allocated to it. The betweenness centrality of each node 𝑣௜ is
then obtained by accumulating 𝛿∗ሺ𝑣௜ሻ from each block. It should be noted that we do this at block
granularity, rather than thread granularity, because that the later one would consume a large amount of
memory. Let’s look back to Eq (4), there is a 𝛿௦ሺ𝑣௜ሻ for each node 𝑣௜ starting from each node s. If
here we allocate each node to a thread, then each thread would keep memory as large as n floating-
point numbers (where n is the number of nodes in the network), resulting in a huge amount of memory.
But in each block the calculation of 𝛿∗ሺ𝑣௜ሻ can be done in parallel, since the breadth-first search is
performed layer by layer and the search in the same layer can be done in parallel. Assuming node 𝑠
is allocated to block j with blockdim threads, the 𝛿௦ሺ𝑣௜ሻ for each node 𝑣௜ is calculated in parallel by
the following 4 steps. Firstly, some variables are required to store important information: a variable
level represents the current level of the breadth-first search and is initialized to 0; three arrays, denoted
as dist, sigma, delta, with size n store the length of the shortest paths, the number of shortest paths and
the 𝛿௦ሺ∗ሻ, respectively, and the dist is initialized to -1 for each node except that 𝑑𝑖𝑠𝑡ሾ𝑠ሿ ൌ 0, the
sigma is initialized to 0 for each node except that 𝑠𝑖𝑔𝑚𝑎ሾ𝑠ሿ ൌ 1 and delta is initialized to 0 for each
node. These variables are all stored in the shared memory of block j and can be accessed by all the
threads in this block. Secondly, the n nodes are allocated to the blockdim threads of this block according
to 𝑛𝑜𝑑𝑒𝑖𝑑 ൌ 𝑡ℎ𝑟𝑒𝑎𝑑𝑖𝑑 ൅ 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚 ∗ 𝑖 where 𝑖 ൌ ሼ0,1, ⋯ ሽ and 𝑛𝑜𝑑𝑒𝑖𝑑 and 𝑡ℎ𝑟𝑒𝑎𝑑𝑖𝑑
represent the node id and thread id, respectively. For example, nodes with id of 0 and 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚 are
allocated to thread 0, nodes with id of 1 and 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚 ൅ 1 are allocated to thread 1. Thirdly, the
breadth-first search starting from 𝑠 is performed in parallel: for the neighbor nodes of the nodes at
current level, if they are not visited by the breadth-first search, i.e., their dist values are -1, then their
corresponding threads change their dist values to 𝑙𝑒𝑣𝑒𝑙 ൅ 1 in parallel; moreover, their sigma values
are added by the sigma values of their neighbor nodes at current level; then the current level is changed
to the next level, i.e., 𝑙𝑒𝑣𝑒𝑙 ൌ 𝑙𝑒𝑣𝑒𝑙 ൅ 1. By repeating this process until the last level, the breadth-
first search is done in parallel. Fourthly, the reverse deduction as shown in Eq (4) starting from the
nodes at the last level is performed in parallel to obtain the delta values of each node (this step is
similar to the parallel breadth-first search, except that this step starts from the last level to 𝑠). After all
the blocks finish the above four steps, the betweenness centrality of each node can be obtained by
accumulating 𝛿∗ሺ∗ሻ from each block.

For illustration, we list an example for the parallel computing of the breadth-first search and the
reverse deduction since they are the most two important steps, see Figure 2. There are 8 nodes in the
network (see Figure 2(a)), and two blocks with four threads for each block (see Figure 2(b)). Nodes
with id of 0, 2, 4, 6 and 8 are allocated to block 0 and the remained nodes are allocated to block 1.
Figure 2(c),(d) respectively show the steps of breadth-first search from node 0 and the corresponding

2707

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2700–2719.

reverse deduction in block 0 (the two steps with respect to other nodes are the same). To calculate the
𝛿଴ሺ𝑣௜ሻ in parallel by block 0, nodes are allocated to the four threads in block 0, e.g., nodes 0 and 4 are
allocated to thread 0 and nodes 1 and 5 to thread 1, and each thread only handles the nodes that
allocated to it. At first, node 0 is set to be at level 0 and the breadth-first search begins here: thread 0
does nothing about node 0 since all of its neighbor nodes have values of -1 on dist; threads 1, 2 and 3
visit nodes 1, 2 and 3 respectively, resulting in these nodes being set to be at level 1 and their dist
values and sigma values are updated; subsequently, all the threads move to level 2 and visit nodes 4, 5, 6
and 7 and update their dist values and sigma values. Next, the reverse deduction starts from level 2, and
nodes 4, 5, 6 and 7 are respectively handled by threads 0, 1, 2 and 3 to update the delta values of
nodes 1, 2 and 3; then all the threads move back to level 1 and the process of reverse deduction is end
since the starting node 0 is at level 0. It is noted that all the threads run in parallel, but a thread can
move to the current level only if all the nodes at the previous (next) level are visited (handled). It means
that synchronization is required among the four threads in block 0. Fortunately, CUDA provides
synchronization mechanism, which is guaranteed by the function “__syncthreads ()”.

0

2 6

731

5

4

block0

thread2 thread3

thread0 thread1

block1

thread2 thread3

thread0 thread1

(a) (b)

0

1

2

3thread2

dist[2]=
0+

1,sigm
a[2]+=

sigm
a[0]

4

5 6

7

(0,1)

(1,1)

(1,1)

(1,1)

(2,1)

(2,2) (2,2)

(2,1)

level=0

level=1

level=2

level=1

0

1

2

3

4

5 6

7

(0)

(1.5)

(1)

(1.5)

(0)

(0) (0)

(0)

level=0

level=2

(c) (d)

Figure 2. An example for the parallel computing of betweenness centrality. There are 8
nodes in the network (a), and two blocks with four threads for each block (b); the breadth-
first search starting from node 0 (c) and the corresponding reverse deduction (d) are
paralleled performed in block 0. The two numerical values in parentheses near the node in
(c) are the dist and sigma values and the one in (d) is the delta value.

2708

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2700–2719.

The parallel computing of the closeness centrality. It is easy to understand that a node’s
closeness centrality can be obtained by adding the dist values of other nodes after the breadth-first
search starting from it. Thus, the parallel computing of the closeness centrality follows 3 steps: firstly,
allocate all the nodes into different blocks; secondly, each block performs the breadth-first search
starting from each of the allocated nodes in parallel; thirdly, for each starting node the dist values are
accumulated to obtain its closeness centrality according to Eq (2). The first two steps are totally the
same as in the parallel computing of the betweennees centrality, so the details are referred to that part.

Algorithm 1 Parallel Algorithm I (only the computation within one block is shown)

Input: 𝐺 ൌ ሺ𝑉, 𝐸ሻ: the network with nodes numbered from 0 to 𝑛 െ 1; 𝑠: the starting node.
Output: cc: the closeness centrality of 𝑠; delta: an array that stores the 𝛿௦ሺ∗ሻ.
S1: Initialization:

1) Define variables in shared memory: an array named as dist storing the distance from the
starting node; an array named as sigma storing the number of shortest paths; an array named
as delta storing the 𝛿௦ሺ∗ሻ; an variable named as level indicating the current level at which
the breadth-first search is; an variable named as repeat controlling the execution of threads.

2) Let 𝑑𝑖𝑠𝑡ሾ𝑠ሿ ൌ 0 , 𝑠𝑖𝑔𝑚𝑎ሾ𝑠ሿ ൌ 1 , and 𝑑𝑖𝑠𝑡ሾ𝑣ሿ ൌ െ1 , 𝑠𝑖𝑔𝑚𝑎ሾ𝑣ሿ ൌ 0 for 𝑣 ് 𝑠 , and
𝑑𝑒𝑙𝑡𝑎ሾ𝑣ሿ ൌ 0 for each node 𝑣, and 𝑙𝑒𝑣𝑒𝑙 ൌ 0, 𝑟𝑒𝑝𝑒𝑎𝑡 ൌ 𝑇𝑟𝑢𝑒.

S2: Breadth-first search starting from node s:
While 𝑟𝑒𝑝𝑒𝑎𝑡 ൌ 𝑇𝑟𝑢𝑒, do:

If threadid == 0 then repeat = False
For v = threadid to n-1with interval of threadid, do: //v is the node allocated to threadid.

For each adjacent node adj of v, do:
If dist[adj] == level and dist[v] == -1 then dist[v] = level + 1 and repeat = True
If dist[adj] == level and dist[v] == level + 1 then sigma[v] += sigma[adj]

End for
End for
If threadid == 0 then level += 1 // move to the next level
__syncthreads ()

End while
S3: Reverse Deduction:

While level > 1 do:
For v = threadid to n-1with interval of threadid, do:

If dist[v] == level then do:
For each adjacent node adj of v, do:

If dist[adj] + 1 == dist[v] then do:
Atomicadd(delta[adj], sigma[adj]/sigma[v]*(1 + delta[v])

End if
End for

End if
End for
If threadid == 0 then level -= 1
__syncthreads ()

S4: Compute s’s closeness centrality based on dist according to Eq (2) and store it in cc.

2709

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2700–2719.

From the descriptions above, it can be seen that the parallel computing of the betweenness
centrality and the closeness centrality can be performed in one implementation. It is so that we
implement the parallel computing of these two centralities in one parallel algorithm, named as Parallel
Algorithm I, which is shown in Algorithm 1. It is noted that only the computation within one block
allocated with one node is shown in Algorithm 1. In the case where the block is allocated with more
than one node, the steps of S2–S4 are required to execute for each allocated node. And all the blocks
are executed in parallel to obtain the betweenness centrality and the closeness centrality. See Algorithm 1,
the first thing is the initialization which defines necessary variables such as dist, sigma, delta, level
and repeat and assign initial values to them (see S1). The variable repeat is used to control the
execution of each thread, which we will describe later. Then, the breadth-first search is performed
starting from the starting node 𝑠 in parallel: each thread iteratively checks the nodes that are allocated
to it, and visit any of them if it has neighbors at the current level (see the outer for loop in S2). This
process is repeated several times until each node is visited (corresponds to the case where repeat =
False). Actually, one execution of this process means that the nodes at the same level have been visited
by the breadth-first search. Visiting a node means that its dist value and sigma value are updated and
the variable repeat is assigned to be True once a new node is visited (see the two if statements in the
inner loop of S2). Besides, a thread that changes the variables repeat and level is required, which is set
to be thread with id 0 (see the first and the last if statements). __syncthreads () is used to synchronize
the threads in this block. After the breadth-first search is done, the reverse deduction is performed in
S3, which calculates the number of the shortest paths of each node from the starting node 𝑠, stored in
dist, and 𝛿௦ሺ∗ሻ, stored in delta. Finally, the closeness centrality of node 𝑠 is obtained based on the
dist according to Eq (2) (see S4), which can be also done by one thread, e.g., thread with id 0.

Time complexity. Suppose there are 𝑛௕ blocks with blockdim threads in each block. For a node

in a block, the breadth-first search takes time complexity of 𝑂ሺቒ ௡

௕௟௢௖௞ௗ௜௠
ቓ ∙ 𝑙𝑒𝑣𝑒𝑙௠௔௫ ∙ 𝑑̅ሻ since each

thread handles up to ቒ ௡

௕௟௢௖௞ௗ௜௠
ቓ nodes. In addition, each of these nodes is processed at most 𝑙𝑒𝑣𝑒𝑙௠௔௫

rounds, and all the neighbors of a node, which are 𝑑̅ on average, are required to be checked in each
round of processing. The accumulation of dist values over all the nodes takes time complexity of

𝑂ሺ ௡

௕௟௢௖௞ௗ௜௠
൅ 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚ሻ. This is because that the dist values of the nodes handled by the same thread

can be accumulated in this thread in 𝑂ሺ ௡

௕௟௢௖௞ௗ௜௠
ሻ, and summing the cumulative values from different

threads takes 𝑂ሺ𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚ሻ since this operation is required to be performed serially. The time

complexity of the reverse deduction is approximated to 𝑂ሺቒ ௡

௕௟௢௖௞ௗ௜௠
ቓ ∙ 𝑙𝑒𝑣𝑒𝑙௠௔௫ ∙ 𝑑̅ሻ since it is the

reverse process of the breadth-first search. All the threads can add the delta values to the resulting
betweenness centrality in parallel since the nodes handled by different threads are different, which

results in time complexity of Oሺ ௡

௕௟௢௖௞ௗ௜௠
ሻ . All the blocks are running in parallel, so the time

complexity of Parallel Algorithm I is approximated to 𝑂ሺቒ ௡మ

௡್∙௕௟௢௖௞ௗ௜௠
ቓ ∙ 𝑙𝑒𝑣𝑒𝑙௠௔௫ ∙ 𝑑̅ሻ. It should be

noted that here we assume that the threads with the same id (e.g., thread0) from different blocks do not
update a node’s betweenness centrality simultaneously, which is reasonable since a node handled by

2710

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2700–2719.

thread0 is probably at different levels in different blocks. It can be inferred that the corresponding
serial algorithm takes the time complexity of 𝑂ሺ𝑑̅𝑛ଶሻ, it is thus that the parallel algorithm is much
faster than the serial one, which is also demonstrated by the experiments (see the experimental part).
This is because that 𝑛௕, the number of blocks, and blockdim, the number of threads in each block, are
usually not small, while 𝑙𝑒𝑣𝑒𝑙௠௔௫, the maximal level, and 𝑑̅, the average number of neighbors, are
commonly small since most real networks display the phenomenon of small world and are scale-free.

4.2.2. The parallel calculation of PageRank centrality

Algorithm 2 Parallel Algorithm II

Input: G = (V, E): the network with nodes numbered from 0 to 𝑛 െ 1; 𝛼: a scaling factor; MaxT: the
number of iterations.
Output: pr: an array used to store the PageRank centrality of each node.
S1: Initialization:

1) Define global variables: an array named as pr storing the PageRank centrality; a variable named as
pr_sum storing the sum of PageRank centralities of all the nodes.
2) Let 𝑝𝑟ሾ𝑣ሿ ൌ 1/𝑛 for each node v and pr_sum = 0

S2: Calculation of the PageRank centrality:
For t = 1 to MaxT with interval of 1, do:

1) Update PageRank centrality:
For 𝑣 ൌ 𝑏𝑙𝑜𝑐𝑘𝑖𝑑 ∗ 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚 ൅ 𝑡ℎ𝑟𝑒𝑎𝑑𝑖𝑑 to n-1with interval of 𝑛௕ ∙ 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚, do:
//v is the node allocated to threadid in blockid, 𝑛௕ is the number of blocks

newRank = 0
For each adjacent node adj of v, do:

newRank += 𝑝𝑟ሾ𝑎𝑑𝑗ሿ/𝑑௔ௗ௝
End for
𝑛𝑒𝑤𝑅𝑎𝑛𝑘 ൌ 𝛼 ∗ 𝑛𝑒𝑤𝑅𝑎𝑛𝑘 ൅ ሺ1 െ 𝛼ሻ/𝑛
atomicAdd(pr_sum, newRank) //add newRank to pr_sum
𝑝𝑟ሾ𝑣ሿ ൌ 𝑛𝑒𝑤𝑅𝑎𝑛𝑘

End for
__syncthreads () // threads synchronization, all the threads have updated the allocated nodes

2) Normalize the PageRank centrality:
For 𝑣 ൌ 𝑏𝑙𝑜𝑐𝑘𝑖𝑑 ∗ 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚 ൅ 𝑡ℎ𝑟𝑒𝑎𝑑𝑖𝑑 to n-1with interval of 𝑛௕ ∙ 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚, do:

𝑝𝑟ሾ𝑣ሿ ൌ 𝑝𝑟ሾ𝑣ሿ / 𝑝𝑟_𝑠𝑢𝑚
End for
__syncthreads ()

End for

To update the PageRank centrality of a given node 𝑣௜ , only its neighbors and the PageRank
centralities of the neighbors are required (see Eq (3)). Thus, to parallelize the PageRank centrality, we
can directly allocate all the nodes to different threads, rather than blocks, and then each thread performs
the update operation shown in Eq (3) over the nodes allocated to it. The details of the parallel computing
of PageRank centrality are referred to Parallel Algorithm II, which is shown in Algorithm 2. The first thing

2711

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2700–2719.

is the initialization which defines necessary variables including pr, storing the PageRank centrality for
each node, and pr_sum, storing the sum of the PageRank centralities of all the nodes (see S1). Then,
each thread calculates the PageRank centrality of the nodes that are allocated to it in parallel: the node
id of the allocated nodes can be obtained according to the block id and thread id (see the first for
statement in the first substep of S2); for each allocated node, its new PageRank centrality, stored in the
local varibale newRank, is obtained according to Eq (3); the new PageRank centrality is also added to
the pr_sum, which is used to normalize the PageRank centrality in the second substep of S2; besides,
all the threads need to synchronize with each other in the two substeps in S2, which is guaranteed by
the function “__syncthreads ()”. The PageRank centralities of all the nodes are obtained after the two
substeps in S2 are successively repeated MaxT times.

Time complexity. Suppose there are 𝑛௕ blocks with blockdim threads in each block, which
results in 𝑛௕ ∙ 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚 threads. For a thread, it takes time complexity of 𝑂ሺ𝑑̅ሻ on average to
compute the new PageRank value of a node allocated to it, since each node has 𝑑 ഥ neighbors on average.
All the threads run in parallel, thus the time complexity of Parallel Algorithm II is approximated to

𝑂ሺቒ ௡

௡್∙௕௟௢௖௞ௗ௜௠
ቓ ∙ 𝑑̅ሻ . It can be inferred that the corresponding serial algorithm takes the time

complexity of 𝑂ሺ𝑑̅𝑛ሻ, it is thus that the parallel algorithm is faster than the serial one, which is also
demonstrated by the experiments (see the experimental part).

5. Experimental result and analysis

In this section, we conduct experiments to evaluate the parallel algorithms designed in this
paper. Before presenting the experimental results, we briefly describe the used networks and the
experimental settings.

5.1. Datasets and experimental settings

The networks used in the experiments are shown in Table 1. The first one, i.e., test, is a synthetic
network and the remained ones are real networks from the Stanford Network Analysis Platform1 and
the Open Data Visualization website2 . The size of the networks ranges from tens to hundreds of
thousands of nodes and tens to millions of edges. According to the size, the networks are classified
into small networks (including test, email-enron and email-univ) and large networks (including muase-
facebook, wave and com-amzon). In addition, we list the average degree and the degree assortativity
of each network (see the last two columns in Table 1) and show the degree distribution of each network,
which is shown in Figure 3. From Table 1 it can be seen that the average degree of each network is not
large, and the used networks are diverse on the degree assortativity. From Figure 3 it can be seen that
all the networks follow the power law distribution on degree except the networks of test and wave,
which means that all the networks except test and wave are scale-free. Overall, the used networks are
diverse on topology.

1 http://snap.stanford.edu/data/index.html

2 https://networkrepository.com, last accessed 2021/05/23

2712

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2700–2719.

Table 1. Dataset.

Dataset Number of nodes Number of sides Average Degree Degree Assortativity

test 14 27 3.86 -0.104

email-enron 143 623 8.72 -0.091

email-univ 1133 5451 9.62 0.033

musae-facebook 22,470 171,002 15.20 0.040

wave 156,317 1,059,331 13.25 -0.38

com-amazon 334,863 925,872 5.53 -0.62

(a) (b) (c)

(d) (e) (f)

Figure 3. The degree distribution graph of test (a), the degree distribution graph of email-
enron (b), the degree distribution graph of email-univ (c), the degree distribution graph of
musae-facebook (d), the degree distribution graph of wave (e) and the degree distribution
graph of com-amazon (f).

Our focus in this paper is to design parallel algorithms for three widely used centrality metrics
with the aim of speeding up the calculation. Therefore, we evaluate the designed parallel algorithms
by comparing their running times with the ones cost by the serial algorithms. The number of iterations,
the scaling factor for PageRank centrality are respectively set to be 100 and 0.85. All the
implementations3 are run on a NVIDIA GeForce GTX 1050 (2G).

3 The implementations of the two parallel algorithms have been uploaded to http://github.com/Huyanmei123/Parallel-algorithms

2713

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2700–2719.

5.2. Experimental results and analysis

5.2.1. Experimental results over small networks

The running times consumed by different algorithms over the small networks are shown in Figure 4.
It is noted that the calculation of the betweenness centrality and the closeness centrality are performed
in one implementation, including the parallel computing, which is implemented in Parallel Algorithm I,
and the serial computing. It can be seen that, in general, the parallel algorithms have no significant
advantage over serial algorithms; in details, the Parallel Algorithm I costs more running time over the
network email-enron, and the Parallel Algorithm II costs more running times over all the small
networks. This is because that these networks are too small and the calculation of node centrality in
these small networks only costs a very little time, while the parallel algorithms need extra time to copy
data between main memory and GPU memory, and manage the GPU and the threads in it, and the extra
time caused by GPU probably is more than the computing time.

Figure 4. The running times of different algorithms over small networks.

5.2.2. Experimental results over large networks

The running times consumed by different algorithms over the large networks are shown in Figure 5.
It can be seen that the parallel algorithms significantly speed up the calculation of node centrality in
large networks. Moreover, the time required by serial computing of the betweenness centrality and the
closeness centrality increases dramatically when the network size becomes large, but the time required
by Parallel Algorithm I increases much slower. See the left figure in Figure 5, the running time by
serial algorithm over com-amazon (more than 4 days) is much more than that over wave (about 3.6
hours), while Parallel Algorithm I does not take that much extra time over com-amazon (about 5.1
hours) compared with wave (about 1.7 hours). In addition, although the Parallel Algorithm II speeds
up the calculation of PageRank centrality, the difference between the Parallel Algorithm II and the
corresponding serial algorithm is relatively small (see the right figure in Figure 5); this is because that
the serial algorithm is implemented by the PageRank function in igraph [30], which has been
accelerated by prpack and arpack4. Anyway, from the results we can see that the parallel algorithms
indeed speed up the calculation of node centralities in large networks which are common in real world.

4 https://www.caam.rice.edu/software/ARPACK

2714

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2700–2719.

Figure 5. The running times of different algorithms over large networks.

5.2.3. Experimental results over networks with increasing scale

Figuer 6. The Comparison of the running times by the parallel algorithms (left for Parallel
Algorithm I and right for Parallel Algorithm II) and the corresponding serial algorithms.

To further test the designed parallel algorithms, we compare the parallel algorithms with the
corresponding serial algorithms on networks with increasing scale. Particularly, we first use BA model
to generated several scale-free synthetic networks with 100, 500, 1000, 5000, 10,000, 50,000 and
100,000 nodes, respectively. Then, we run the parallel algorithms and the corresponding serial
algorithms on these synthetic networks. The resulting running times are shown in Figure 6. From the
figures it can be seen that the parallel algorithms are much faster than the corresponding serial
algorithms on large networks. For the Parallel Algorithm I, it costs running times almost equal to the
serial algorithm on the networks with nodes no more than 10,000; but with the increase of the network
scale it becomes faster and faster than the serial algorithm. For Parallel Algorithm II, it costs running
times almost equal to the serial algorithm on the smallest network, and on other networks it is faster
than the later one; but the superiority is not that huge as Parallel Algorithm I, which may be because
that the serial computation of the PageRank centrality is not that slow compared with the ones of
betweenness centrality and closeness centrality and the used serial implementation is accelerated in
the igraph package. Anyway, the parallel algorithms are faster than the corresponding serial algorithms
with the increase of the network scale, which is consistent with the result before. This result means
that parallel algorithms have superiority over serial algorithms on large networks, but on small

0

300

600

900

1200

1500

1800

100 500 1000 5000 10000 50000 100000

T
im

e(
se

co
nd

s)

Numbers of nodes

Parallel Algorithm I

Serial Algorithm

0

50

100

150

200

250

300

100 500 1000 5000 10000 50000 100000

T
im

e(
m

il
li

se
co

nd
s)

Numbers of nodes

Parallel Algorithm II

Serial Algorithm

2715

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2700–2719.

networks the former ones have no superiority, which may be because that the parallel algorithms needs
extra time to manage the blocks and threads and exchange data between GPU and CPU.

5.2.4. Analysis of different centrality metrics

To explore the performance of different centrality metrics and observe the relationships between
different centrality metrics, we take the smallest network, i.e., test, as an example, see Figure 7(a) for
the network structure of test. Table 2 lists the centrality values of each node. For better illustration, we
visualize the network test by scaling each node proportional to the centrality value, see Figure 7(c),(d).
It can be seen that node 6, which is in the overlap between two communities, obtains the highest value
in terms of the closeness centrality and the betweenness centrality, especially that it achieves 42.666
on the betweenness centrality. This indicates that node 6 is a crucial node in the network test, as
evidenced by its location: node 6 is the sole node that links the two communities and connects to
numerous members of those communities.

(a) (b)

(c) (d)

Figure 7. The network structure of test (a), the visualization of test with each node sized
proportional to the closeness centrality value (b), the betweenness centrality value (c) and
the PageRank centrality value (d).

2716

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2700–2719.

Table 2. The centrality values of the nodes in the network test.

Nodes CC BC PR

0 0.481 11.166 0.072

1 0.371 0.5 0.057

2 0.371 0.5 0.057

3 0.481 11.166 0.072

4 0.481 3 0.071

5 0.394 2.333 0.089

6 0.619 42.666 0.103

7 0.500 9.833 0.073

8 0.406 1 0.059

9 0.419 12.5 0.083

10 0.520 17.333 0.074

11 0.500 2.666 0.072

12 0.433 3.333 0.092

In addition, nodes 7 and 10 also have high closeness centrality values since they are very close to
other members in the same community and are also connected to node 6 which is further close to other
members of the upper community; node 10 has high betweenness centrality value while node 7 has
lower betweenness centrality value, this is because that node 10 is connected to nodes 6 and 13 while
node 7 is connected to node 6 but not node 13, which makes the former one is more important to the
information propagation between nodes in the upper community and the bottom community; node 6
has the highest PageRank value than other nodes.

To further explore the relationships between different centrality metrics, we calculate the Pearson
correlation coefficients between different centrality values over different networks, see Table 3 for the
results. We can observe that the three centrality metrics are highly correlated over the small networks,
especially in the test and email-univ; however, the three centrality metrics are less correlated over the
large networks, and in certain situations, the correlation is quite low. Moreover, the PageRank
centrality and the betweenness centrality are the most correlated; although the closeness centrality and
the betweenness centrality are both based on the shortest paths between, they are only weakly related
in most situations.

Table 3. The Pearson’s correlation coefficients between different centralities.

Networks CC-BC CC-PR BC-PR

test 0.798216 0.699796 0.607519

email-enron 0.553832 0.693872 0.85

email-univ 0.670686 0.814789 0.8927

musae-facebook 0.205396 0.444965 0.600013

wave 0.17173 0.040423 0.193564

com-amazon 0.17056 0.141363 0.521867

2717

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2700–2719.

6. Conclusions

Node centrality is an important problem in network analysis and can be applied to many
practical applications such as finding the most important person in Weibo and seeking the fittest
testers for a new product. However, with the increase of network data, calculating node centrality
by serial computing cannot meet the requirements of practical applications. On the other hand,
GPU, as a good alternative to parallelize many tasks, has developed rapidly and has the ability to
handle large networks. Therefore, we propose to apply GPU to parallelize the calculation of three
widely used centralities and conduct experiments to evaluate the proposed parallel algorithms over
several networks. The experimental results show that over small networks the parallel algorithms
does not have advantage, and in some cases they even consumes more time than serial algorithms;
while over large networks, the parallel algorithms can speed up the calculation significantly.
Moreover, we also analyze the correlation between different centralities. The analysis shows that
the closeness centrality and the betweenness centrality are weakly correlated, although both of
them are based on the shortest path.

Compared with related work in the literature, we design and implement the parallel algorithms
for different centralities using GPU, and conduct experiments over larger networks. However, the
parallel algorithms are naïve, we will improve the parallel algorithms and conduct more experiments
over more networks to deeply understand the centralities in future work.

Acknowledgments

This work is supported by Natural Science Foundation of China (No. 61802034), Sichuan Science
and Technology Program (No. 2021YFG0333), National Key Research and Development Program of
China (No. 2019YFC1509602) and the Digital Media Science Innovation Team of CDUT (Grant
10912-kytd201510).

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. N. Safari-Alighiarloo, M. Taghizadeh, M. Rezaei-Tavirani, Protein-protein interaction networks
(PPI) and complex diseases, Gastroenterol. Hepatol. Bed. Bench., 7 (2014), 17–31.

2. B. Duo, Q. Wu, X. Yuan, Anti-jamming 3D trajectory design for UAV-enabled wireless sensor
networks under probabilistic LoS channel, IEEE Trans. Veh. Technol., 69 (2020), 16288–16293.
https://doi.org/10.1109/TVT.2020.3040334

3. R. Zafarani, M. A. Abbasi, H. Liu, Social media mining: an introduction, Cambridge University
Press, (2014), 41–49. https://doi.org/10.1017/CBO9781139088510

4. Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, 521 (2015), 436–444.
https://doi.org/10.1038/nature14539

2718

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2700–2719.

5. X. Li, M. Yin, Hybrid differential evolution with biogeography-based optimization for design of a
reconfigurable antenna array with discrete phase shifters, Int. J. Antennas. Propag., (2011), 685629.
https://doi.org/10.1155/2011/685629

6. X. Li, M. Yin, Design of a reconfigurable antenna array with discrete phase shifters using
differential evolution algorithm, Prog. Electromagn. Res., 31 (2011), 29–43.
http://dx.doi.org/10.2528/PIERB11032902

7. X. Li, S. Ma, Multi-objective memetic search algorithm for multi-objective permutation flow shop
scheduling problem, IEEE Access, 4 (2016), 2154–2165.
https://doi.org/10.1109/ACCESS.2016.2565622

8. R. Cypher, J. Sanz, The SIMD model of parallel computation, Springer, 1994.
http://dx.doi.org/10.1007/978-1-4612-2612-3

9. D. A. Bader, K. Madduri, Designing multithreaded algorithm for breadth-first search and st-
connectivity on the Cray MTA-2, in International Conference on Parallel Processing, IEEE,
(2006), 523–530. https://doi.org/10.1109/ICPP.2006.34

10. A. Siriam, K. Gautham, K. Kothapalli, Evaluating centrality metrics in real-world networks on
GPU, 2009. Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.622.9442

11. A. McLaughlin, D. A. Bader, Scalable and high performance betweenness centrality on the GPU,
in International Conference for High Performance Computing, Networking, Storage and Analysis,
IEEE, (2014), 572–583. https://doi.org/10.1109/SC.2014.52

12. Y. Jia, V. Lu, J. Hoberock, et al., Edge v.s node parallelism for graph centrality metrics, in GPU
Computing Gems (eds. W. W. Hwu), Elsevier, (2012), 15–28. https://doi.org/10.1016/B978-0-12-
385963-1.00002-2

13. H. Yin, A. R. Benson, J. Leskovec, The local closure coefficient: a new perspective on network
clustering, in Proceedings of the Twelfth ACM International Conference on Web Search and Data
Mining, ACM, (2019), 303–311. https://doi.org/10.1145/3289600.3290991

14. Y. M. Hu, B. Yang, H. S. Wong, A weighted local view method based on observation over ground
truth for community detection, Inform. Sci., 355 (2016), 37–57.
https://doi.org/10.1016/j.ins.2016.03.028

15. Y. M. Hu, B. Yang, Enhanced link clustering with observations on ground truth to discover social
circles, Knowl-Based. Syst., 73 (2015), 227–235. https://doi.org/10.1016/j.knosys.2014.10.006

16. B. Elbirt, The nature of networks: a structural census of degree centrality across multiple network
sizes and edge densities, Ph.D. thesis, State University of New York at BuffaloIn, 2007.

17. K. F. Cheung, M. G. H. Bell, J. J. Pan, An eigenvector centrality analysis of world container
shipping network connectivity, Transport. Res. E-Log., 140 (2020), 101991.
https://doi.org/10.1016/j.tre.2020.101991

18. T. Ioanna, B. Y. Ricardo, B. Francesco, Temporal betweenness centrality in dynamic graphs, Int. J.
Data Sci. Anal., 9 (2020), 257–272. https://doi.org/10.1007/s41060-019-00189-x

19. I. G. Adebayo, Y. X. Sun, A novel approach of closeness centrality measure for voltage stability
analysis in an electric power grid, Int. J. Emerg. Electr. Power Syst. 3 (2020).
http://doi.org/10.1515/ijeeps-2020-0013

20. A. Hashemi, M. B. Dowlatshahi, H. Nezamabadi-pour, MGFS: A multi-label graph-based feature
selection algorithm via PageRank centrality, Expert Syst. Appl., 142 (2019), 113024.
https://doi.org/10.1016/j.eswa.2019.113024

2719

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2700–2719.

21. U. Brandes, A faster algorithm for betweenness centrality, J. Math. Sociol., 25 (2001), 163–177.
https://doi.org/10.1080/0022250X.2001.9990249

22. G. Zhao, P. Jia, A. Zhou, InfGCN: Identifying influential nodes in complex networks with graph
convolutional networks, Neurocomputing, 414 (2020), 18–26.
https://doi.org/10.1016/j.neucom.2020.07.028

23. S. Buß, H. Molter, R. Niedermeier, Algorithmic aspects of temporal betweenness, in Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
ACM, (2020), 2084–2092. https://doi.org/10.1145/3394486.3403259

24. E. Y. Yu, Y. P Wang, Y. Fu, Identifying critical nodes in complex networks via graph convolutional
networks, Knowl-Based. Syst., 198 (2020), 105893. https://doi.org/10.1016/j.knosys.2020.105893

25. S. Ahamed, M. Samad, Information mining for covid-19 research from a large volume of scientific
literature, preprint, arXiv:2004.02085. http://arxiv.org/abs/2004.02085

26. L. E. Suárez, B. A. Richards, G. Lajoie, Learning function from structure in neuromorphic networks,
Nat. Mach. Intell., 3 (2021), 771–786. https://doi.org/10.1038/s42256-021-00376-1

27. S. Brin, L. Page, The anatomy of a large-scale hypertextual Web search engine, Comput. Support.
Coop. Work, 30 (1998), 107–117. https://doi.org/10.1016/S0169-7552(98)00110-X

28. U. Brandes, C. Pich, Centrality estimation in large networks, Int. J. Bifurcat. Chaos., 17 (2007),
2303–2318. https://doi.org/10.1142/S0218127407018403

29. J. Liu, Z. Ren, Q. Guo, Node importance ranking of complex networks, Acta Phys. Sinica., 62
(2013), 178901. https://doi.org/10.7498/aps.62.178901

30. G. Csárdi, T. Nepusz, The igraph software package for complex network research, Int. J. Complex
Syst., 1695 (2006), 1–9. http://igraph.sf.net

©2022 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0)

