
MBE, 19(3): 2700–2719. 

DOI: 10.3934/mbe.2022123 

Received: 23 September 2021 

Revised: 28 November 2021 

Accepted: 27 December 2021 

Published: 10 January 2022 

http://www.aimspress.com/journal/MBE 

 

Research article 

The parallel computing of node centrality based on GPU 

Siyuan Yin, Yanmei Hu* and Yuchun Ren 

College of Computer and Cyber Security, Chengdu University of Technology, Chengdu, China 

* Correspondence: Email: huyanmei@cdut.edu.cn. 

Abstract: Many systems in real world can be represented as network, and network analysis can help 
us understand these systems. Node centrality is an important problem and has attracted a lot of attention 
in the field of network analysis. As the rapid development of information technology, the scale of 
network data is rapidly increasing. However, node centrality computation in large-scale networks is 
time consuming. Parallel computing is an alternative to speed up the computation of node centrality. 
GPU, which has been a core component of modern computer, can make a large number of core tasks 
work in parallel and has the ability of big data processing, and has been widely used to accelerate 
computing. Therefore, according to the parallel characteristic of GPU, we design the parallel 
algorithms to compute three widely used node centralities, i.e., closeness centrality, betweenness 
centrality and PageRank centrality. Firstly, we classify the three node centralities into two groups 
according to their definitions; secondly, we design the parallel algorithms by mapping the centrality 
computation of different nodes into different blocks or threads in GPU; thirdly, we analyze the 
correlations between different centralities in several networks, benefited from the designed parallel 
algorithms. Experimental results show that the parallel algorithms designed in this paper can speed up 
the computation of node centrality in large-scale networks, and the closeness centrality and the 
betweenness centrality are weakly correlated, although both of them are based on the shortest path. 
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1. Introduction  

Many systems in real world can be represented as network, e.g., the proteins and their interactions 
can be represented as protein-protein interaction network [1], the sensors and their communications 
can be represented as wireless sensor network [2], and the social relationships can be represented as 
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social network. The analysis of network is necessary for us to understand the world. Node centrality is 
an important research problem in social network analysis, which aims to assess the importance of 
nodes and thus identify the important nodes in the network. A node usually has different importance 
in different applications. Thus, the centrality of nodes can be assessed from different perspectives. 
Anyway, it is general that an important node determines the information propagation in the network or 
plays a leader role in its group. Based on this consideration, various centrality metrics such as degree 
centrality, closeness centrality, betweenness centrality and PageRank centrality [3] were proposed, and 
have been widely used in the literature. However, with the rapid increase of network data, it is highly time-
consuming for many centrality metrics. 

On the other hand, parallel computing, as an efficient approach to tasks with high time complexity, 
has been widely concerned and applied in many fields, e.g., deep learning [4] and the parallel 
implementation of the evolutionary algorithms [5−7], especially with the development of GPU 
(Graphic Processing Unit) since it has superiority in a lot of parallel tasks. Therefore, it is a good 
alternative to evaluate and analyze the node centrality in large-scale networks by parallel computing 
using GPU. There have been some works about the parallel computing of node centrality [8−12], but 
they were not demonstrated on large-scale networks and the relationships of different centralities are 
not analyzed. Besides, there is no work presenting the parallel process in details, which makes the 
parallel algorithms confusing. Based on this, we design two parallel algorithms on GPU for three 
classical centralities, which are betweenness centrality, closeness centrality and PageRank centrality. 
Specifically, based on the definitions of centrality metrics and the structure of GPU we first design the 
parallel algorithms and present them in details. Then, we test the designed parallel algorithms on 
several networks including large-scale networks. Finally, based on the centrality values obtained, we 
analyze the correlations between different centralities in different networks. The experimental results 
show that the parallel algorithms designed for node centrality in this paper can speed up the calculation 
of node centrality in large-scale networks. Moreover, we find that the betweenness centrality strongly 
correlates to the PageRank centrality while weakly correlates to the closeness centrality, although both 
of the betweenness centrality and closeness centrality are based on the shortest path. 

The organization of the remained part is as follows. Section 2 presents the related work and 
Section 3 presents the centrality metrics we focus on in this paper. Section 4 presents the proposed 
parallel algorithms for node centrality. Experimental results and analysis are presented in Section 5. 
Finally, Section 6 concludes our work. 

2. Related works 

We first briefly describe the classical works on node centrality, and then introduce the most related 
works about parallel computing. 

2.1. Node centrality 

In the current research of node centrality, most researches focus on global centrality and local 
centrality.  The local centrality includes degree centrality, local clustering coefficient [13] and 
conductance [14] and density of the ego network [15]. Among these four centrality, although degree 
centrality has been widely studied in the literature [16], it is still limited for the identification of 
important nodes and is usually used to supplement other measures. Local clustering coefficient is the 
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ratio of the actual triangle count at a node to the number of possible triangles at that node based on 
how many neighbors it has. In addition, the local centrality of a node can be measured from its ego 
network since the ego network represents its local structure. Density of an ego network is the 
percentage of ties that are actually present in the ego network to the possible ties, and conductance is 
the ratio of ties that go out the ego network to the total ties related to the nodes in the ego network. 
However, local centrality doesn’t consider the whole network structure, so this paper mainly researches 
the global centrality. 

Global centrality takes into account the whole network structure in the calculation of 
centrality and mainly includes eigenvector centrality [17], betweenness centrality [18], closeness 
centrality [19] and PageRank centrality [20]. The eigenvector centrality means that the importance of 
a node depends not only on the number of its neighbors, but also on the importance of its neighbors. 
And both closeness centrality and betweenness centrality are measured by the shortest path between 
nodes. The difference is that closeness centrality focuses on the sum of the distances from the node to 
other nodes, while the betweenness centrality pays more attention to the proportion of the shortest 
paths through a certain node. The later one can be used to find nodes that have a bridge effect in the 
network, which plays an important role in network research. But betweenness centrality is time-
consuming if it is calculated directly from its definition. Therefore, scholars have conducted a lot of 
researches to find the algorithms that can reduce the time complexity of this centrality. Fortunately, 
there is an algorithm for fast computation of the betweenness centrality was found, which is based on 
breadth-first search [21]. Based on this algorithm, a lot of works about the calculation of the 
betweeneess centrality and its application in other fields have been witnessed [22−26]. PageRank 
centrality originates in the field of information retrieval and is used to rank the related web pages in 
the search engine [27]. As the WWW can be seen as a huge network, the technique of PageRank is 
naturally extended to measure node importance in a network, which results in PageRank centrality. In 
addition, there are also some other metrics that can evaluate the centrality of nodes. For example, a 
metric based on the idea that the closer the node is to the inner layer, the more important it is [28]; the 
neighbors of a node and its degree were combined to measure the centrality in [29]. Inspired by gravity, 
some researchers argue that nodes have “attraction” and consider this “attraction” as a metric to 
evaluate the centrality of nodes. These researches mentioned above have introduced new insights to 
study the problem of node centricity, but the most widely used ones are still the closeness centrality, 
the betweenness centrality and the PageRank centrality. However, these centralities as well as other 
global centralities have not been analyzed in large-scale networks which are common in real 
applications, because in this case it costs a lot of time to calculate them by serial methods. 

2.2. Parallel implementation for node centrality 

Early parallel algorithms were stuck in parallel computing using a single processor, and 
various computational models for single processor parallel computing were summarized in [8]. To 
speed up the computation of betweenness centrality, parallel algorithms with multicore processors 
were proposed and implemented on the Cary MTA-2 shared-memory multiprocessor by reducing the 
atomic operations during parallelism [9]. 

With the development of GUP, betweenness centrality was computed in parallel on GPU for the 
first time in [10], and then parallel computing based on GPU has been attracting more and more 
attention, especially for large-scale data. In [11], several parallel implementations of betweenness 
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based on GPU were compared and then a parallel algorithm based on multi-GPUs was proposed; the 
parallel implementation jointing multi-GPUs achieved a speedup ratio of more than 10 times in large 
scale networks. 

In addition, edge parallel computing was also studied based on GPU. In [12], the authors 
implemented the edge parallel computing on GPU by considering better load balancing and less 
overhead. However, some of these parallel algorithms are limited by the synchronization access of data 
from multi-GPUs and high cost since GPU devices are usually very expensive; and they are not 
demonstrated on large-scale networks which is very necessary. Therefore, in this paper, we implement 
two parallel computing algorithms to solve the problem of node centrality in parallel and test them on 
several large-scale networks. Moreover, benefited from this, we analyze the correlations of different 
centralities in different networks, which can provide guidable suggestions in the practical application 
of these centralities. 

3. Centrality metrics 

In this section, we briefly describe the three centrality metrics we focus on in this paper, namely, 
closeness centrality, betweenness centrality and PageRank centrality. 

3.1. Betweenness centrality 

Betweenness centrality of a given node 𝑣௜ is defined as follows: 

       𝐶௕௖ሺ𝑣௜ሻ ൌ ∑ ఙೞ೟
೔

ఙೞ೟
௦ஷ௜ஷ௧ ,                             (1) 

where 𝜎௦௧ is the number of the shortest paths between nodes 𝑣௦ and 𝑣௧, and 𝜎௦௧
௜  is the number of 

the shortest paths that pass node 𝑣௜. It can be seen that the betweenness centrality is based on the 
shortest path between nodes. For each node it needs to calculate the shortest path between each 
pair of the other nodes in the network, so its time complexity reaches 𝑂ሺ𝑛ଷሻ, which is quite high 
in real applications. Therefore, an algorithm for fast calculation of betweenness centrality was 
proposed in [21] to reduce the time complexity. 

3.2. Closeness centrality 

The closeness centrality of a given node 𝑣௜ is defined based on the shortest paths of this node to 
other nodes, which is shown in Eq (2). It represents the ability of nodes to reach all the other nodes in 
the network, and achieves a balance between locality and globality. However, its time complexity, 
which is approximate to Oሺ𝑛ଶሻ, is relatively high, especially for large-scale networks. 

𝐶௖ሺ𝑣௜ሻ ൌ ௡ିଵ

∑ ௗ௜௦௧೔ೕೕಯ೔
,                             (2) 

where 𝑑𝑖𝑠𝑡௜௝ is the shortest path between nodes 𝑣௜ and 𝑣௝. The shorter the shortest paths from node 
𝑣௜ to other nodes are, the higher the centrality of node 𝑣௜ is. 
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3.3. PageRank centrality 

PageRank centrality is based on the webpage ranking from information retrieve. Initially, each 
node is given an equal score, which is usually 1/𝑛; then each node passes its score to neighbors. This 
process is iterated a specified number of times or until the rank of nodes stops changing. The definition 
of PageRank centrality for a given node 𝑣௜ is as follows: 

𝐶௣௥ሺ𝑣௜ሻ ൌ ଵିఈ

௡
൅ 𝛼 ∑

஼೛ೝሺ௩ೕሻ

ௗೕ
௩ೕ∈ேሺ௩೔ሻ ,                       (3) 

where 𝛼 is the scaling factor which is used to avoid that the nodes with no neighbors absorb all the 
scores; 𝑁ሺ𝑣௜ሻ is the neighbors of node 𝑣௜; 𝑑௝ is the degree of node 𝑣௝. In practical applications, the 
number of iterations is usually not large to obtain the node ranking. But for large-scale networks, its 
calculation is still time-consuming. 

4. The parallel algorithms for node centrality 

In this section, we firstly introduce the CUDA C programming model that implements parallel 
programming based on GPU, and then present the parallel algorithms for the three node centralities 
described in the previous section. 

4.1. The CUDA C programming model 

The CUDA programming model provides an abstract computer architecture that serves as a bridge 
between an application and the available hardware. It connects the main memory to the GPU memory, 
and allows data to be exchanged between the two memories. A typical CUDA program has the 
following steps: 1) copying data from main memory to GPU memory; 2) calling core function to 
operate on the data stored in GPU memory; and 3) transferring data from GPU memory to main 
memory. The core function is application-driven and is programmed by the designer of parallel 
algorithm according to the application. 

The CUDA programming model is composed of a host and a device (here is the GPU), each 
having its own memory. There are mainly global memory and shared memory in GPU’s memory 
structure. The global memory is used to store global variables and clock count variables, and the shared 
memory is used to store the variables that all the threads are allowed to access. Figure 1 shows a 
memory structure of GPU. The function cudaMemcpy executes the data transmission between the host 
and the GPU; and the cudaMalloc function is used to allocate memory to store the data copied from 
the host.  

In order to facilitate the parallel execution of the core functions in all threads, CUDA requires a 
standardized organization of the threads so that the developer can quickly obtain the threads needed. 
See Figure 1 for an illustration of the thread hierarchy, which is composed of thread blocks and threads. 
All threads share the global memory, and the threads in each block share a piece of shared memory. 



2705 

Mathematical Biosciences and Engineering  Volume 19, Issue 3, 2700–2719. 

 

Figure 1. The memory structure and thread organization of GPU. 

4.2. Parallel algorithms for node centrality 

We classify the three node centralities described in the Section 3 into two groups, according to 
their definitions. The first group contains the betweenness centrality and the closeness centrality, and 
the second group contains the PageRank centrality. Next, we will describe how to calculate these three 
centralities in an undirected and unweighted network in parallel using GPU. 

4.2.1. The parallel calculation of betweenness centrality and closeness centrality 

From their definitions, it can be inferred that both of the betweenness centrality and the closeness 
centrality can be obtained by breadth-first search on the network, since the shortest path between a pair 
of nodes in an undirected and unweighted network is equal to the path obtained by the breadth-first 
search starting from one node to the other node. But there is a main difference: a node’s closeness 
centrality only needs to perform the breadth-first search starting from this node while its betweenness 
centrality needs to perform the breadth-first search starting from all the other nodes. Anyway, both of 
these two centralities of each node can be obtained after performing the breadth-first search starting 
from each node. Thus, the core idea of the parallel computing of the two centralities is to perform the 
breadth-first search (starting from each node) in parallel. To do this, we allocate all the nodes into 
different blocks according to a mapping function set up in advance, and then let each block perform 
the breadth-first search from the allocated nodes in parallel. Based on this idea, the betweenness 
centrality and closeness centrality the can be obtained in parallel. Next, we first describe the parallel 
computing of the betweenness centrality using CUDA and then the parallel computing of the closeness 
centrality, since the later one can be obtained in the first step of the former one. 

The parallel computing of the betweenness centrality. It is easy to understand that the 
betweenness centrality of node 𝑣௜ can be decomposed into to many parts, and each part is the 
ratio of the shortest paths that pass node 𝑣௜  starting from a node 𝑠  to all of the other nodes 
(denoted as 𝛿௦ሺ𝑣௜ሻ), i.e., 𝐶௕௖ሺ𝑣௜ሻ ൌ ∑ 𝛿௦ሺ𝑣௜ሻ௦ஷ௩೔

. As shown in [21], the betweenness centrality can 
be calculated by the approach of reverse deduction, since it has been proved that 𝛿௦ሺ𝑣௜ሻ can be 
calculated as: 
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𝛿௦ሺ𝑣௜ሻ ൌ ∑
ఙೞೡ೔

ఙೞೢ
ሺ1 ൅ 𝛿௦ሺ𝑤ሻሻ௪:௩೔∈௣௥௘ௗሺ௦,௪ሻ ,                     (4) 

where 𝑝𝑟𝑒𝑑ሺ𝑠, 𝑤ሻ is the set of precursor nodes of 𝑤. It means that the betweenness centrality of node 
𝑣௜ can be calculated by finding the precursor nodes in the shortest paths that pass node 𝑣௜, starting 
from other nodes. It is therefore that the betweenness centrality can be calculated by the following 
steps: 1) performing the breadth-first search starting from each node 𝑠 (𝑠 ് 𝑣௜); 2) deducing reversely 
from the farthest node from 𝑠 to obtain 𝛿௦ሺ𝑣௜ሻ according to Eq (4); 3) accumulating 𝛿௦ሺ𝑣௜ሻ for each 
starting node 𝑠 to obtain the betweenness centrality of each node 𝑣௜. To perform the above steps in 
parallel, we can allocate all the nodes into different blocks and let each block to perform the breadth-
first search and the reverse deduction from the nodes allocated to it, i.e., obtain 𝛿∗ሺ𝑣௜ሻ for each node 
𝑣௜ where ∗ denotes any node that is allocated to it. The betweenness centrality of each node 𝑣௜ is 
then obtained by accumulating 𝛿∗ሺ𝑣௜ሻ from each block. It should be noted that we do this at block 
granularity, rather than thread granularity, because that the later one would consume a large amount of 
memory. Let’s look back to Eq (4), there is a 𝛿௦ሺ𝑣௜ሻ for each node 𝑣௜ starting from each node s. If 
here we allocate each node to a thread, then each thread would keep memory as large as n floating-
point numbers (where n is the number of nodes in the network), resulting in a huge amount of memory. 
But in each block the calculation of 𝛿∗ሺ𝑣௜ሻ can be done in parallel, since the breadth-first search is 
performed layer by layer and the search in the same layer can be done in parallel. Assuming node 𝑠 
is allocated to block j with blockdim threads, the 𝛿௦ሺ𝑣௜ሻ for each node 𝑣௜ is calculated in parallel by 
the following 4 steps. Firstly, some variables are required to store important information: a variable 
level represents the current level of the breadth-first search and is initialized to 0; three arrays, denoted 
as dist, sigma, delta, with size n store the length of the shortest paths, the number of shortest paths and 
the 𝛿௦ሺ∗ሻ, respectively, and the dist is initialized to -1 for each node except that 𝑑𝑖𝑠𝑡ሾ𝑠ሿ ൌ 0, the 
sigma is initialized to 0 for each node except that 𝑠𝑖𝑔𝑚𝑎ሾ𝑠ሿ ൌ 1 and delta is initialized to 0 for each 
node. These variables are all stored in the shared memory of block j and can be accessed by all the 
threads in this block. Secondly, the n nodes are allocated to the blockdim threads of this block according 
to 𝑛𝑜𝑑𝑒𝑖𝑑 ൌ  𝑡ℎ𝑟𝑒𝑎𝑑𝑖𝑑 ൅  𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚 ∗  𝑖   where 𝑖 ൌ ሼ0,1, ⋯ ሽ  and 𝑛𝑜𝑑𝑒𝑖𝑑  and 𝑡ℎ𝑟𝑒𝑎𝑑𝑖𝑑 
represent the node id and thread id, respectively. For example, nodes with id of 0 and 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚 are 
allocated to thread 0, nodes with id of 1 and 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚 ൅ 1 are allocated to thread 1. Thirdly, the 
breadth-first search starting from 𝑠 is performed in parallel: for the neighbor nodes of the nodes at 
current level, if they are not visited by the breadth-first search, i.e., their dist values are -1, then their 
corresponding threads change their dist values to 𝑙𝑒𝑣𝑒𝑙 ൅ 1 in parallel; moreover, their sigma values 
are added by the sigma values of their neighbor nodes at current level; then the current level is changed 
to the next level, i.e., 𝑙𝑒𝑣𝑒𝑙 ൌ 𝑙𝑒𝑣𝑒𝑙 ൅ 1. By repeating this process until the last level, the breadth-
first search is done in parallel. Fourthly, the reverse deduction as shown in Eq (4) starting from the 
nodes at the last level is performed in parallel to obtain the delta values of each node (this step is 
similar to the parallel breadth-first search, except that this step starts from the last level to 𝑠). After all 
the blocks finish the above four steps, the betweenness centrality of each node can be obtained by 
accumulating 𝛿∗ሺ∗ሻ from each block. 

For illustration, we list an example for the parallel computing of the breadth-first search and the 
reverse deduction since they are the most two important steps, see Figure 2. There are 8 nodes in the 
network (see Figure 2(a)), and two blocks with four threads for each block (see Figure 2(b)). Nodes 
with id of 0, 2, 4, 6 and 8 are allocated to block 0 and the remained nodes are allocated to block 1. 
Figure 2(c),(d) respectively show the steps of breadth-first search from node 0 and the corresponding 
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reverse deduction in block 0 (the two steps with respect to other nodes are the same). To calculate the 
𝛿଴ሺ𝑣௜ሻ in parallel by block 0, nodes are allocated to the four threads in block 0, e.g., nodes 0 and 4 are 
allocated to thread 0 and nodes 1 and 5 to thread 1, and each thread only handles the nodes that 
allocated to it. At first, node 0 is set to be at level 0 and the breadth-first search begins here: thread 0 
does nothing about node 0 since all of its neighbor nodes have values of -1 on dist; threads 1, 2 and 3 
visit nodes 1, 2 and 3 respectively, resulting in these nodes being set to be at level 1 and their dist 
values and sigma values are updated; subsequently, all the threads move to level 2 and visit nodes 4, 5, 6 
and 7 and update their dist values and sigma values. Next, the reverse deduction starts from level 2, and 
nodes 4, 5, 6 and 7 are respectively handled by threads 0, 1, 2 and 3 to update the delta values of 
nodes 1, 2 and 3; then all the threads move back to level 1 and the process of reverse deduction is end 
since the starting node 0 is at level 0. It is noted that all the threads run in parallel, but a thread can 
move to the current level only if all the nodes at the previous (next) level are visited (handled). It means 
that synchronization is required among the four threads in block 0. Fortunately, CUDA provides 
synchronization mechanism, which is guaranteed by the function “__syncthreads ()”. 

0

2 6

731
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thread2 thread3
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(a)                                 (b) 
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Figure 2. An example for the parallel computing of betweenness centrality. There are 8 
nodes in the network (a), and two blocks with four threads for each block (b); the breadth-
first search starting from node 0 (c) and the corresponding reverse deduction (d) are 
paralleled performed in block 0. The two numerical values in parentheses near the node in 
(c) are the dist and sigma values and the one in (d) is the delta value. 
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The parallel computing of the closeness centrality. It is easy to understand that a node’s 
closeness centrality can be obtained by adding the dist values of other nodes after the breadth-first 
search starting from it. Thus, the parallel computing of the closeness centrality follows 3 steps: firstly, 
allocate all the nodes into different blocks; secondly, each block performs the breadth-first search 
starting from each of the allocated nodes in parallel; thirdly, for each starting node the dist values are 
accumulated to obtain its closeness centrality according to Eq (2). The first two steps are totally the 
same as in the parallel computing of the betweennees centrality, so the details are referred to that part. 

Algorithm 1 Parallel Algorithm I (only the computation within one block is shown) 

Input: 𝐺 ൌ ሺ𝑉, 𝐸ሻ: the network with nodes numbered from 0 to 𝑛 െ 1; 𝑠: the starting node. 
Output: cc: the closeness centrality of 𝑠; delta: an array that stores the 𝛿௦ሺ∗ሻ. 
S1: Initialization: 

1) Define variables in shared memory: an array named as dist storing the distance from the 
starting node; an array named as sigma storing the number of shortest paths; an array named 
as delta storing the 𝛿௦ሺ∗ሻ; an variable named as level indicating the current level at which 
the breadth-first search is; an variable named as repeat controlling the execution of threads.

2) Let 𝑑𝑖𝑠𝑡ሾ𝑠ሿ ൌ 0 , 𝑠𝑖𝑔𝑚𝑎ሾ𝑠ሿ ൌ 1 , and 𝑑𝑖𝑠𝑡ሾ𝑣ሿ ൌ െ1 , 𝑠𝑖𝑔𝑚𝑎ሾ𝑣ሿ ൌ 0  for 𝑣 ് 𝑠 , and 
𝑑𝑒𝑙𝑡𝑎ሾ𝑣ሿ ൌ 0 for each node 𝑣, and 𝑙𝑒𝑣𝑒𝑙 ൌ 0, 𝑟𝑒𝑝𝑒𝑎𝑡 ൌ 𝑇𝑟𝑢𝑒. 

S2: Breadth-first search starting from node s: 
While 𝑟𝑒𝑝𝑒𝑎𝑡 ൌ 𝑇𝑟𝑢𝑒, do: 

If threadid == 0 then repeat = False 
For v = threadid to n-1with interval of threadid, do: //v is the node allocated to threadid. 

For each adjacent node adj of v, do: 
If dist[adj] == level and dist[v] == -1 then dist[v] = level + 1 and repeat = True
If dist[adj] == level and dist[v] == level + 1 then sigma[v] += sigma[adj] 

End for 
End for 
If threadid == 0 then level += 1 // move to the next level 
__syncthreads ()  

End while 
S3: Reverse Deduction: 

While level > 1 do: 
For v = threadid to n-1with interval of threadid, do: 

If dist[v] == level then do: 
For each adjacent node adj of v, do: 

If dist[adj] + 1 == dist[v] then do: 
Atomicadd(delta[adj], sigma[adj]/sigma[v]*(1 + delta[v]) 

End if 
End for 

End if 
End for 
If threadid == 0 then level -= 1 
__syncthreads () 

S4: Compute s’s closeness centrality based on dist according to Eq (2) and store it in cc. 
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From the descriptions above, it can be seen that the parallel computing of the betweenness 
centrality and the closeness centrality can be performed in one implementation. It is so that we 
implement the parallel computing of these two centralities in one parallel algorithm, named as Parallel 
Algorithm I, which is shown in Algorithm 1. It is noted that only the computation within one block 
allocated with one node is shown in Algorithm 1. In the case where the block is allocated with more 
than one node, the steps of S2–S4 are required to execute for each allocated node. And all the blocks 
are executed in parallel to obtain the betweenness centrality and the closeness centrality. See Algorithm 1, 
the first thing is the initialization which defines necessary variables such as dist, sigma, delta, level 
and repeat and assign initial values to them (see S1). The variable repeat is used to control the 
execution of each thread, which we will describe later. Then, the breadth-first search is performed 
starting from the starting node 𝑠 in parallel: each thread iteratively checks the nodes that are allocated 
to it, and visit any of them if it has neighbors at the current level (see the outer for loop in S2). This 
process is repeated several times until each node is visited (corresponds to the case where repeat = 
False). Actually, one execution of this process means that the nodes at the same level have been visited 
by the breadth-first search. Visiting a node means that its dist value and sigma value are updated and 
the variable repeat is assigned to be True once a new node is visited (see the two if statements in the 
inner loop of S2). Besides, a thread that changes the variables repeat and level is required, which is set 
to be thread with id 0 (see the first and the last if statements). __syncthreads () is used to synchronize 
the threads in this block. After the breadth-first search is done, the reverse deduction is performed in 
S3, which calculates the number of the shortest paths of each node from the starting node 𝑠, stored in 
dist, and 𝛿௦ሺ∗ሻ, stored in delta. Finally, the closeness centrality of node 𝑠 is obtained based on the 
dist according to Eq (2) (see S4), which can be also done by one thread, e.g., thread with id 0. 

Time complexity. Suppose there are 𝑛௕ blocks with blockdim threads in each block. For a node 

in a block, the breadth-first search takes time complexity of 𝑂ሺቒ ௡

௕௟௢௖௞ௗ௜௠
ቓ ∙ 𝑙𝑒𝑣𝑒𝑙௠௔௫ ∙ 𝑑̅ሻ since each 

thread handles up to ቒ ௡

௕௟௢௖௞ௗ௜௠
ቓ nodes. In addition, each of these nodes is processed at most 𝑙𝑒𝑣𝑒𝑙௠௔௫ 

rounds, and all the neighbors of a node, which are 𝑑̅ on average, are required to be checked in each 
round of processing. The accumulation of dist values over all the nodes takes time complexity of 

𝑂ሺ ௡

௕௟௢௖௞ௗ௜௠
൅ 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚ሻ. This is because that the dist values of the nodes handled by the same thread 

can be accumulated in this thread in 𝑂ሺ ௡

௕௟௢௖௞ௗ௜௠
ሻ, and summing the cumulative values from different 

threads takes 𝑂ሺ𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚ሻ  since this operation is required to be performed serially. The time 

complexity of the reverse deduction is approximated to 𝑂ሺቒ ௡

௕௟௢௖௞ௗ௜௠
ቓ ∙ 𝑙𝑒𝑣𝑒𝑙௠௔௫ ∙ 𝑑̅ሻ since it is the 

reverse process of the breadth-first search. All the threads can add the delta values to the resulting 
betweenness centrality in parallel since the nodes handled by different threads are different, which 

results in time complexity of Oሺ ௡

௕௟௢௖௞ௗ௜௠
ሻ . All the blocks are running in parallel, so the time 

complexity of Parallel Algorithm I is approximated to 𝑂ሺቒ ௡మ

௡್∙௕௟௢௖௞ௗ௜௠
ቓ ∙ 𝑙𝑒𝑣𝑒𝑙௠௔௫ ∙ 𝑑̅ሻ. It should be 

noted that here we assume that the threads with the same id (e.g., thread0) from different blocks do not 
update a node’s betweenness centrality simultaneously, which is reasonable since a node handled by 
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thread0 is probably at different levels in different blocks. It can be inferred that the corresponding 
serial algorithm takes the time complexity of 𝑂ሺ𝑑̅𝑛ଶሻ, it is thus that the parallel algorithm is much 
faster than the serial one, which is also demonstrated by the experiments (see the experimental part). 
This is because that 𝑛௕, the number of blocks, and blockdim, the number of threads in each block, are 
usually not small, while 𝑙𝑒𝑣𝑒𝑙௠௔௫, the maximal level, and 𝑑̅, the average number of neighbors, are 
commonly small since most real networks display the phenomenon of small world and are scale-free. 

4.2.2. The parallel calculation of PageRank centrality 

Algorithm 2 Parallel Algorithm II 

Input: G = (V, E): the network with nodes numbered from 0 to 𝑛 െ 1; 𝛼: a scaling factor; MaxT: the 
number of iterations. 
Output: pr: an array used to store the PageRank centrality of each node. 
S1: Initialization: 

1) Define global variables: an array named as pr storing the PageRank centrality; a variable named as 
pr_sum storing the sum of PageRank centralities of all the nodes. 
2) Let 𝑝𝑟ሾ𝑣ሿ  ൌ  1/𝑛 for each node v and pr_sum = 0 

S2: Calculation of the PageRank centrality: 
For t = 1 to MaxT with interval of 1, do: 

1) Update PageRank centrality: 
For 𝑣 ൌ 𝑏𝑙𝑜𝑐𝑘𝑖𝑑 ∗ 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚 ൅ 𝑡ℎ𝑟𝑒𝑎𝑑𝑖𝑑 to n-1with interval of 𝑛௕ ∙ 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚, do:  
//v is the node allocated to threadid in blockid, 𝑛௕ is the number of blocks 

newRank = 0  
For each adjacent node adj of v, do: 

newRank += 𝑝𝑟ሾ𝑎𝑑𝑗ሿ/𝑑௔ௗ௝ 
End for 
𝑛𝑒𝑤𝑅𝑎𝑛𝑘 ൌ 𝛼 ∗ 𝑛𝑒𝑤𝑅𝑎𝑛𝑘 ൅ ሺ1 െ 𝛼ሻ/𝑛  
atomicAdd(pr_sum, newRank) //add newRank to pr_sum 
𝑝𝑟ሾ𝑣ሿ ൌ 𝑛𝑒𝑤𝑅𝑎𝑛𝑘  

End for 
__syncthreads () // threads synchronization, all the threads have updated the allocated nodes 

2) Normalize the PageRank centrality: 
For 𝑣 ൌ 𝑏𝑙𝑜𝑐𝑘𝑖𝑑 ∗ 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚 ൅ 𝑡ℎ𝑟𝑒𝑎𝑑𝑖𝑑 to n-1with interval of 𝑛௕ ∙ 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚, do: 

𝑝𝑟ሾ𝑣ሿ  ൌ  𝑝𝑟ሾ𝑣ሿ / 𝑝𝑟_𝑠𝑢𝑚  
End for 
__syncthreads () 

End for 

To update the PageRank centrality of a given node 𝑣௜ , only its neighbors and the PageRank 
centralities of the neighbors are required (see Eq (3)). Thus, to parallelize the PageRank centrality, we 
can directly allocate all the nodes to different threads, rather than blocks, and then each thread performs 
the update operation shown in Eq (3) over the nodes allocated to it. The details of the parallel computing 
of PageRank centrality are referred to Parallel Algorithm II, which is shown in Algorithm 2. The first thing 
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is the initialization which defines necessary variables including pr, storing the PageRank centrality for 
each node, and pr_sum, storing the sum of the PageRank centralities of all the nodes (see S1). Then, 
each thread calculates the PageRank centrality of the nodes that are allocated to it in parallel: the node 
id of the allocated nodes can be obtained according to the block id and thread id (see the first for 
statement in the first substep of S2); for each allocated node, its new PageRank centrality, stored in the 
local varibale newRank, is obtained according to Eq (3); the new PageRank centrality is also added to 
the pr_sum, which is used to normalize the PageRank centrality in the second substep of S2; besides, 
all the threads need to synchronize with each other in the two substeps in S2, which is guaranteed by 
the function “__syncthreads ()”. The PageRank centralities of all the nodes are obtained after the two 
substeps in S2 are successively repeated MaxT times. 

Time complexity. Suppose there are 𝑛௕  blocks with blockdim threads in each block, which 
results in 𝑛௕ ∙ 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚  threads. For a thread, it takes time complexity of 𝑂ሺ𝑑̅ሻ  on average to 
compute the new PageRank value of a node allocated to it, since each node has 𝑑 ഥ neighbors on average. 
All the threads run in parallel, thus the time complexity of Parallel Algorithm II is approximated to 

𝑂ሺቒ ௡

௡್∙௕௟௢௖௞ௗ௜௠
ቓ ∙ 𝑑̅ሻ . It can be inferred that the corresponding serial algorithm takes the time 

complexity of 𝑂ሺ𝑑̅𝑛ሻ, it is thus that the parallel algorithm is faster than the serial one, which is also 
demonstrated by the experiments (see the experimental part). 

5. Experimental result and analysis 

In this section, we conduct experiments to evaluate the parallel algorithms designed in this 
paper. Before presenting the experimental results, we briefly describe the used networks and the 
experimental settings. 

5.1. Datasets and experimental settings 

The networks used in the experiments are shown in Table 1. The first one, i.e., test, is a synthetic 
network and the remained ones are real networks from the Stanford Network Analysis Platform1 and 
the Open Data Visualization website2 . The size of the networks ranges from tens to hundreds of 
thousands of nodes and tens to millions of edges. According to the size, the networks are classified 
into small networks (including test, email-enron and email-univ) and large networks (including muase-
facebook, wave and com-amzon). In addition, we list the average degree and the degree assortativity 
of each network (see the last two columns in Table 1) and show the degree distribution of each network, 
which is shown in Figure 3. From Table 1 it can be seen that the average degree of each network is not 
large, and the used networks are diverse on the degree assortativity. From Figure 3 it can be seen that 
all the networks follow the power law distribution on degree except the networks of test and wave, 
which means that all the networks except test and wave are scale-free. Overall, the used networks are 
diverse on topology. 

 
1 http://snap.stanford.edu/data/index.html  

2 https://networkrepository.com, last accessed 2021/05/23 
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Table 1. Dataset. 

Dataset Number of nodes Number of sides Average Degree Degree Assortativity

test 14 27 3.86 -0.104 

email-enron 143 623 8.72 -0.091 

email-univ 1133 5451 9.62 0.033 

musae-facebook 22,470 171,002 15.20 0.040 

wave 156,317 1,059,331 13.25 -0.38 

com-amazon 334,863 925,872 5.53 -0.62 

 

(a)                      (b)                       (c) 

 

(d)                       (e)                       (f) 

Figure 3. The degree distribution graph of test (a), the degree distribution graph of email-
enron (b), the degree distribution graph of email-univ (c), the degree distribution graph of 
musae-facebook (d), the degree distribution graph of wave (e) and the degree distribution 
graph of com-amazon (f). 

Our focus in this paper is to design parallel algorithms for three widely used centrality metrics 
with the aim of speeding up the calculation. Therefore, we evaluate the designed parallel algorithms 
by comparing their running times with the ones cost by the serial algorithms. The number of iterations, 
the scaling factor for PageRank centrality are respectively set to be 100 and 0.85. All the 
implementations3 are run on a NVIDIA GeForce GTX 1050 (2G). 

 
3 The implementations of the two parallel algorithms have been uploaded to http://github.com/Huyanmei123/Parallel-algorithms 
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5.2. Experimental results and analysis 

5.2.1. Experimental results over small networks 

The running times consumed by different algorithms over the small networks are shown in Figure 4. 
It is noted that the calculation of the betweenness centrality and the closeness centrality are performed 
in one implementation, including the parallel computing, which is implemented in Parallel Algorithm I, 
and the serial computing. It can be seen that, in general, the parallel algorithms have no significant 
advantage over serial algorithms; in details, the Parallel Algorithm I costs more running time over the 
network email-enron, and the Parallel Algorithm II costs more running times over all the small 
networks. This is because that these networks are too small and the calculation of node centrality in 
these small networks only costs a very little time, while the parallel algorithms need extra time to copy 
data between main memory and GPU memory, and manage the GPU and the threads in it, and the extra 
time caused by GPU probably is more than the computing time. 

 

Figure 4. The running times of different algorithms over small networks. 

5.2.2. Experimental results over large networks 

The running times consumed by different algorithms over the large networks are shown in Figure 5. 
It can be seen that the parallel algorithms significantly speed up the calculation of node centrality in 
large networks. Moreover, the time required by serial computing of the betweenness centrality and the 
closeness centrality increases dramatically when the network size becomes large, but the time required 
by Parallel Algorithm I increases much slower. See the left figure in Figure 5, the running time by 
serial algorithm over com-amazon (more than 4 days) is much more than that over wave (about 3.6 
hours), while Parallel Algorithm I does not take that much extra time over com-amazon (about 5.1 
hours) compared with wave (about 1.7 hours). In addition, although the Parallel Algorithm II speeds 
up the calculation of PageRank centrality, the difference between the Parallel Algorithm II and the 
corresponding serial algorithm is relatively small (see the right figure in Figure 5); this is because that 
the serial algorithm is implemented by the PageRank function in igraph [30], which has been 
accelerated by prpack and arpack4. Anyway, from the results we can see that the parallel algorithms 
indeed speed up the calculation of node centralities in large networks which are common in real world. 

 
4 https://www.caam.rice.edu/software/ARPACK 
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Figure 5. The running times of different algorithms over large networks. 

5.2.3. Experimental results over networks with increasing scale 

   

Figuer 6. The Comparison of the running times by the parallel algorithms (left for Parallel 
Algorithm I and right for Parallel Algorithm II) and the corresponding serial algorithms. 

To further test the designed parallel algorithms, we compare the parallel algorithms with the 
corresponding serial algorithms on networks with increasing scale. Particularly, we first use BA model 
to generated several scale-free synthetic networks with 100, 500, 1000, 5000, 10,000, 50,000 and 
100,000 nodes, respectively. Then, we run the parallel algorithms and the corresponding serial 
algorithms on these synthetic networks. The resulting running times are shown in Figure 6. From the 
figures it can be seen that the parallel algorithms are much faster than the corresponding serial 
algorithms on large networks. For the Parallel Algorithm I, it costs running times almost equal to the 
serial algorithm on the networks with nodes no more than 10,000; but with the increase of the network 
scale it becomes faster and faster than the serial algorithm. For Parallel Algorithm II, it costs running 
times almost equal to the serial algorithm on the smallest network, and on other networks it is faster 
than the later one; but the superiority is not that huge as Parallel Algorithm I, which may be because 
that the serial computation of the PageRank centrality is not that slow compared with the ones of 
betweenness centrality and closeness centrality and the used serial implementation is accelerated in 
the igraph package. Anyway, the parallel algorithms are faster than the corresponding serial algorithms 
with the increase of the network scale, which is consistent with the result before. This result means 
that parallel algorithms have superiority over serial algorithms on large networks, but on small 
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networks the former ones have no superiority, which may be because that the parallel algorithms needs 
extra time to manage the blocks and threads and exchange data between GPU and CPU. 

5.2.4. Analysis of different centrality metrics 

To explore the performance of different centrality metrics and observe the relationships between 
different centrality metrics, we take the smallest network, i.e., test, as an example, see Figure 7(a) for 
the network structure of test. Table 2 lists the centrality values of each node. For better illustration, we 
visualize the network test by scaling each node proportional to the centrality value, see Figure 7(c),(d). 
It can be seen that node 6, which is in the overlap between two communities, obtains the highest value 
in terms of the closeness centrality and the betweenness centrality, especially that it achieves 42.666 
on the betweenness centrality. This indicates that node 6 is a crucial node in the network test, as 
evidenced by its location: node 6 is the sole node that links the two communities and connects to 
numerous members of those communities. 

                  

(a)                               (b) 

                

(c)                               (d) 

Figure 7. The network structure of test (a), the visualization of test with each node sized 
proportional to the closeness centrality value (b), the betweenness centrality value (c) and 
the PageRank centrality value (d). 
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Table 2. The centrality values of the nodes in the network test. 

Nodes CC BC PR 

0 0.481 11.166 0.072 

1 0.371 0.5 0.057 

2 0.371 0.5 0.057 

3 0.481 11.166 0.072 

4 0.481 3 0.071 

5 0.394 2.333 0.089 

6 0.619 42.666 0.103 

7 0.500 9.833 0.073 

8 0.406 1 0.059 

9 0.419 12.5 0.083 

10 0.520 17.333 0.074 

11 0.500 2.666 0.072 

12 0.433 3.333 0.092 

In addition, nodes 7 and 10 also have high closeness centrality values since they are very close to 
other members in the same community and are also connected to node 6 which is further close to other 
members of the upper community; node 10 has high betweenness centrality value while node 7 has 
lower betweenness centrality value, this is because that node 10 is connected to nodes 6 and 13 while 
node 7 is connected to node 6 but not node 13, which makes the former one is more important to the 
information propagation between nodes in the upper community and the bottom community; node 6 
has the highest PageRank value than other nodes. 

To further explore the relationships between different centrality metrics, we calculate the Pearson 
correlation coefficients between different centrality values over different networks, see Table 3 for the 
results. We can observe that the three centrality metrics are highly correlated over the small networks, 
especially in the test and email-univ; however, the three centrality metrics are less correlated over the 
large networks, and in certain situations, the correlation is quite low. Moreover, the PageRank 
centrality and the betweenness centrality are the most correlated; although the closeness centrality and 
the betweenness centrality are both based on the shortest paths between, they are only weakly related 
in most situations. 

Table 3. The Pearson’s correlation coefficients between different centralities. 

Networks CC-BC CC-PR BC-PR 

test 0.798216 0.699796 0.607519 

email-enron 0.553832 0.693872 0.85 

email-univ 0.670686 0.814789 0.8927 

musae-facebook 0.205396 0.444965 0.600013 

wave 0.17173 0.040423 0.193564 

com-amazon 0.17056 0.141363 0.521867 
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6. Conclusions 

Node centrality is an important problem in network analysis and can be applied to many 
practical applications such as finding the most important person in Weibo and seeking the fittest 
testers for a new product. However, with the increase of network data, calculating node centrality 
by serial computing cannot meet the requirements of practical applications. On the other hand, 
GPU, as a good alternative to parallelize many tasks, has developed rapidly and has the ability to 
handle large networks. Therefore, we propose to apply GPU to parallelize the calculation of three 
widely used centralities and conduct experiments to evaluate the proposed parallel algorithms over 
several networks. The experimental results show that over small networks the parallel algorithms 
does not have advantage, and in some cases they even consumes more time than serial algorithms; 
while over large networks, the parallel algorithms can speed up the calculation significantly. 
Moreover, we also analyze the correlation between different centralities. The analysis shows that 
the closeness centrality and the betweenness centrality are weakly correlated, although both of 
them are based on the shortest path. 

Compared with related work in the literature, we design and implement the parallel algorithms 
for different centralities using GPU, and conduct experiments over larger networks. However, the 
parallel algorithms are naïve, we will improve the parallel algorithms and conduct more experiments 
over more networks to deeply understand the centralities in future work. 
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