

MBE, 19(3): 2330–2354. DOI: 10.3934/mbe.2022108 Received: 09 October 2021 Revised: 10 November 2021 Accepted: 27 December 2021 Published: 04 January 2022

http://www.aimspress.com/journal/mbe

Research article

The lifetime analysis of the Weibull model based on Generalized Type-I progressive hybrid censoring schemes

M. Nagy*and Adel Fahad Alrasheedi

Department of Statistics and Operation Research, Faculty of Science, King Saud University, KSA

* Correspondence: Email: mnaji@ksu.edu.sa.

Abstract: In this study, we estimate the unknown parameters, reliability, and hazard functions using a generalized Type-I progressive hybrid censoring sample from a Weibull distribution. Maximum likelihood (ML) and Bayesian estimates are calculated using a choice of prior distributions and loss functions, including squared error, general entropy, and LINEX. Unobserved failure point and interval Bayesian predictions, as well as a future progressive censored sample, are also developed. Finally, we run some simulation tests for the Bayesian approach and numerical example on real data sets using the MCMC algorithm.

Keywords: Bayesian inference; Weibull distribution; maximum likelihood; generalized Type-I progressive hybrid sample

1. Introduction

In several lifetime tests, including, industrial, lifetime and clinical applications, progressive censoring is very useful. Progressive censoring permits the removal of the experimental units surviving until the test finishes. Let an experiment of experiment with *n* independent units in which it is not desirable to detect all failure times under the cost and time limitations, so only part of failures of the units are observed and the other part are removed from the experiment, such a sample is called a censored sample. Assume that one of the units was broken by accident after the test began, but before all of the units had burned out. If the experiment is still ongoing, this unit must be removed from the life test. The progressive censoring scheme gives a methodology for analyzing this type of data in this case. Some of the most important works on this subject are Balakrishnan and Aggarwala [1], Balakrishnan [2], and Cramer and Iliopoulos [3].

The experimentation time can be very long if the units are very reliable, which is a disadvantage of progressive Type-II censored schemes. Kundu and Joarder [4] and Childs et al. [5] address this problem by proposing a new type of censoring in which the stopping time of the experiment is minimum value of

 $\{X_{m:m:n}, T\}$, where the time *T* is fixed time before the start of the test. This type of censored sampling is called a progressive hybrid censoring sample (PHCS). The total time of the experiment under a PHCS will not exceed *T*. Several authors have studied PHCSs. See, for example, Panahi in [6], Alshenawy et al. in [7], Hemmati and Khorram in [8], and Lin and Huang in [9].

However, the weakness of a PHCS is that it cannot be implemented when a few failures can be detected before time *T*. For this reason, Cho et al. [10] proposed a general type of censoring, called a generalized Type-I PHCS, in which a smaller number of failures is predetermined. A lifetime test experiment would save the time and costs of failures using this censoring scheme. Moreover, the estimates of the statistical efficiency are improved by the experiment having more failures. In the following section, the generalized Type-I PHCS and its advantages are explained. For recent work on this topic, see, for example, Moihe El-Din et al. [11], Mohie El-Din et al. [12], and Nagy et al. [13].

The Weibull distribution is one of the most important in reliability and life testing, and it is widely utilized in various domains such as reliability theory and clinical trials. For this reason, we used this distribution to express truly real data. The Weibull distribution has the probability density (PD), cumulative distribution (CD), survival (S), and hazard (H) functions given as follows.

$$f(x;\lambda,\mu) = \lambda \mu x^{\mu-1} e^{-\lambda x^{\mu}}, x > 0, \qquad (1.1)$$

$$F(x;\lambda,\mu) = 1 - e^{-\lambda x^{\mu}}, x > 0, \lambda > 0, \mu > 0.$$
(1.2)

$$S(x;\lambda,\mu) = \bar{F}(x;\lambda,\mu) = 1 - F(x;\lambda,\mu), \quad H(x;\lambda,\mu) = \lambda \mu x^{\mu-1}, x > 0, \lambda > 0, \mu > 0.$$
(1.3)

For Bayesian inference on the Weibull distribution, see, for example, Mohie El-Din and Nagy [14], and Lin et al. in [15].

In this paper, we address the development of point and interval estimation and classical and Bayesian inference for the Weibull distribution based on the generalized Type-I PHCS. The Bayesian estimate for any parameter β , denoted by $\hat{\beta}_{BS}$, in terms of the squared error loss function (SELF), is the expected value of the posterior distribution and given by

$$\widehat{\boldsymbol{\beta}}_{BS} = E_{\boldsymbol{\beta}|\underline{\mathbf{x}}} [\boldsymbol{\beta}]. \tag{1.4}$$

The LINEX loss function (LLF) can be expressed as follows.

$$L_{BL}(\widehat{\beta},\beta) = \exp\left[\upsilon\left(\widehat{\beta}-\beta\right)\right] - \upsilon\left(\widehat{\beta}-\beta\right) - 1, \ \upsilon \neq 0, \tag{1.5}$$

The Bayesian estimator of β , denoted by $\widehat{\beta}_{BL}$ under the (LLF), the value $\widehat{\beta}_{BL}$ that minimizes $E_{\beta|\underline{X}} \left[L_{BL} (\widehat{\beta}, \beta) \right]$ is given by

$$\widehat{\beta}_{BL} = \frac{-1}{\upsilon} \ln \left\{ E_{\beta | \underline{\mathbf{x}}} \left[\exp\left(-\upsilon\beta\right) \right] \right\},\tag{1.6}$$

Calabria and Pulcini [16] considered the question of the choice of the value of parameter v.

The general entropy loss function (GELF) is another widely used asymmetric loss function. It is given by

$$L_{BE}\left(\widehat{\beta},\beta\right) \propto \left(\frac{\widehat{\beta}}{\overline{\beta}}\right)^{\kappa} - \kappa \ln\left(\frac{\widehat{\beta}}{\overline{\beta}}\right) - 1.$$
(1.7)

Mathematical Biosciences and Engineering

$$\widehat{\beta}_{BE} = \left\{ E_{\beta|\underline{\mathbf{x}}} \left[\beta \right]^{-\kappa} \right\}^{\frac{-1}{\kappa}}.$$
(1.8)

The remainder of this article is organized as ollows. Section 2 summarizes the model of the generalized Type-I PHCS. Section 3 extracts the maximum likelihood estimates (ML) and the Bayesian estimates for the unknown parameters and SF and HF under three loss functions. Section 4 derives the Bayesian one-sample prediction for all censoring stage failure times of all withdrawn units. In Section 5, we derive the Bayesian prediction for all withdrawn units in the censoring stage { R_i , i = 1, ..., m}, which is called one-sample Bayesian prediction; and in Section 6, we derive the Bayesian prediction of an unobserved future progressive sample from the same distribution, which is called two-sample Bayesian prediction. In Section 7, simulation studies are conducted to compare the efficiency of the proposed inference techniques. In Section 8, a real-life data set is used to demonstrate the theoretical findings. Finally, the paper is concluded in Section 9.

2. The model explanation

Consider lifetime testing in which *n* equivalent units are tested. The generalized Type-I PHCS is as follows. Let T > 0 and $k, m \in \{1, 2, ..., n\}$ be prefixed integers in which k < m with the predetermined censoring scheme $R = (R_1, R_2, ..., R_m)$ satisfying $n = m + R_1 + ... + R_m$. When the first failure occurs, R_1 of the remaining units are randomly eliminated. When the second failure occurs R_2 , of the surviving units are eliminated from the experiment. This process repeats until the termination time $T^* = \max\{X_{k:m:n}, \min\{X_{m:m:n}, T\}\}$ is reached, at which moment the reset surviving units are eliminated from the test. The "generalised Type-I PHCS" modifies the PHCS by allowing the experiment to continue beyond T if only a few failures are observed up to T. Ideally, the experimenters would like to observe m failures within this system, but they will observe at least k failures. D is the number of failures observed up to T (see Figure 1).

Figure 1. Schematic representation of generalized Type-I progressive hybrid censoring scheme.

As mentioned earlier, one of observations from the following types is given under the generalized Type-I PHCS:

- 1. Suppose the k^{th} failure time occurs after *T*. Then, experiment is terminated at $X_{k:m:n}$ and the observations are $\{X_{1:m:n} < ... < X_{k:m:n}\}$.
- 2. Suppose that *T* is reached after the k^{th} failure and before the m^{th} failure. In this case, the termination time is *T* and we observe $\{X_{1:m:n} < ... < X_{k:m:n} < X_{k+1:m:n} < ... < X_{D:m:n}\}$.
- 3. Suppose that the m^{th} fault was discovered after the k^{th} failure and before *T*. Then, the termination time is $X_{m:m:n}$, and we will find $\{X_{1:m:n} < ... < X_{k:m:n} < X_{k+1:m:n} < ... < X_{m:m:n}\}$.

The joint PDF based on the generalized Type-I PHCS for all cases is now given by:

$$f_{\underline{\mathbf{X}}}(\underline{\mathbf{x}}) = \left[\prod_{i=1}^{D^*} \sum_{j=i}^m \left(R_j^* + 1\right)\right] \prod_{i=1}^{D^*} f(x_{i:D^*:n}) \left[\bar{F}(x_{i:D^*:n})\right]^{R_i^*} \left[\bar{F}(T)\right]^{R_\tau^*},$$
(2.1)

where R_{i}^{*} is the j^{th} value of the vector R^{*} ,

$$R^{*} = \begin{cases} \left(R_{1}, \dots, R_{D}, 0, \dots, 0, R_{k}^{*} = n - k - \sum_{j=1}^{D} R_{j} \right), & \text{Case-II}, \\ (R_{1}, \dots, R_{D}), & \text{Case-III}, \\ (R_{1}, \dots, R_{m}), & \text{Case-III}, \end{cases}$$
(2.2)

 R^*_{τ} is the number of units eliminated at time *T*, as determined by

$$R_{\tau}^{*} = \begin{cases} 0, & \text{Case-I,} \\ n - D - \sum_{j=1}^{D} R_{j}, & \text{Case-II,} \\ 0, & \text{Case-III,} \end{cases}$$
(2.3)

$$D^* = \begin{cases} k & \text{Case-I,} \\ D & \text{Case-II,} \\ m & \text{Case-III,} \end{cases}$$
(2.4)

and

$$\underline{\mathbf{x}} = \begin{cases} (x_{1:m:n}, ..., x_{k:m:n}), & \text{Case-I} \\ (x_{1:m:n}, ..., x_{D:m:n}), & \text{Case-II}, \\ (x_{1:m:n}, ..., x_{m:m:n}), & \text{Case-III}. \end{cases}$$
(2.5)

The likelihood function of λ , μ under the generalized Type-I PHCS can be derived using (1.1) and (1.2) in (2.1), as

$$L(\lambda,\mu;\underline{\mathbf{x}}) = \left[\prod_{i=1}^{D^*} \sum_{j=i}^{m} \left(R_j^* + 1\right)\right] \lambda^{D^*} \mu^{D^*} \prod_{i=1}^{D^*} x_i^{\mu-1} \exp\left[-\lambda W\left(\mu|\underline{\mathbf{x}}\right)\right],$$
(2.6)

where $W(\mu|\underline{\mathbf{x}}) = \sum_{i=1}^{D^*} (R_i^* + 1) x_i^{\mu} + R_{\tau}^* T^{\mu}$ and $x_i = x_{i:D^*:n}$ for simplicity of notation.

3. Maximum Likelihood Estimation

From Equation (2.6), the related log-likelihood function can be found as

$$\ln L(\lambda,\mu|\underline{\mathbf{x}}) = const. + D^* (\ln \lambda + \ln \mu) + (\mu - 1) \sum_{i=1}^{D^*} \ln(x_i) - \lambda W(\mu|\underline{\mathbf{x}}), \qquad (3.1)$$

equating the first derivatives of (3.1) with respect to μ and λ to zero, we obtain

$$\frac{\partial \ln L(\lambda,\mu|\underline{\mathbf{x}})}{\partial \lambda} = \frac{D^*}{\lambda} - W(\mu|\underline{\mathbf{x}}) = 0, \qquad (3.2)$$

$$\frac{\partial \ln L(\lambda,\mu|\mathbf{x})}{\partial \mu} = \frac{D^*}{\mu} + \sum_{i=1}^{D^*} \ln(x_i) - \lambda \left[\sum_{i=1}^{D^*} (R_i^* + 1) x_i^{\mu} \ln x_i + R_{\tau}^* T^{\mu} \ln T \right] = 0.$$
(3.3)

The ML estimators of lambda and mu are then obtained by

$$\widehat{\lambda}_{ML}(\mu) = \frac{D^*}{W(\mu|\underline{\mathbf{x}})},\tag{3.4}$$

$$\widehat{\mu}_{ML} = \frac{D^*}{\widehat{\lambda}_{ML}(\mu) \left[\sum_{i=1}^{D^*} \left(R_i^* + 1 \right) x_i^{\mu} \ln x_i + R_{\tau}^* T^{\mu} \ln T \right]}.$$
(3.5)

Mathematical Biosciences and Engineering

By using the numerical technique with the Newton-Raphson iteration method, the ML estimates $\widehat{\lambda}_{ML}$ and $\widehat{\mu}_{ML}$ can be obtained by solving (3.2) and (3.3), respectively. Due to the invariance property, the related ML estimations of the SF and HF are therefore given by

$$\widehat{S}_{ML}(t) = \exp\left(-\widehat{\lambda}_{ML}t^{\widehat{\mu}_{ML}}\right),\tag{3.6}$$

$$\widehat{H}_{ML}(t) = \widehat{\lambda}_{ML} \widehat{\mu}_{ML} t^{\widehat{\mu}_{ML}-1}.$$
(3.7)

3.1. Approximate confidence intervals for λ and μ

The observed Fisher information matrix of parameters *lambda* and *mu* for large D^* , is given by

$$I(\widehat{\lambda},\widehat{\mu}) = \begin{bmatrix} -\frac{\partial^2 \ln L(\lambda,\mu|\underline{\mathbf{x}})}{\partial \lambda^2} & -\frac{\partial^2 \ln L(\lambda,\mu|\underline{\mathbf{x}})}{\partial \lambda \partial \mu} \\ -\frac{\partial^2 \ln L(\lambda,\mu|\underline{\mathbf{x}})}{\partial \mu \partial \lambda} & -\frac{\partial^2 \ln L(\lambda,\mu|\underline{\mathbf{x}})}{\partial \mu^2} \end{bmatrix}_{(\widehat{\lambda}_{ML},\widehat{\mu}_{ML})}$$
(3.8)

where

$$\frac{\partial^2 \ln L(\lambda,\mu|\underline{\mathbf{x}})}{\partial \lambda^2} = -\frac{D^*}{\lambda^2},$$
$$\frac{\partial^2 \ln L(\lambda,\mu|\underline{\mathbf{x}})}{\partial \mu^2} = -\frac{D^*}{\mu^2} - \sum_{i=1}^{D^*} \left[\lambda \left(R_i^* + 1\right) + 1\right] \left[\frac{\left(\ln x_i\right)^2 x_i^{\mu}}{\left(1 + x_i^{\mu}\right)^2}\right],$$
$$\frac{\partial^2 \ln L(\lambda,\mu|\underline{\mathbf{x}})}{\partial \lambda \partial \mu} = -\left[\sum_{i=1}^{D^*} \left(R_i^* + 1\right) \frac{x_i^{\mu} \ln x_i}{\left(1 + x_i^{\mu}\right)}\right],$$

and a $100(1 - \gamma)\%$ two-sided approximate confidence intervals for the parameters λ and μ are then

$$\left(\widehat{\lambda} - z_{\gamma/2}\sqrt{V(\widehat{\lambda})}, \widehat{\lambda} + z_{\gamma/2}\sqrt{V(\widehat{\lambda})}\right),$$
 (3.9)

and

$$\left(\widehat{\mu} - z_{\gamma/2}\sqrt{V(\widehat{\mu})}, \widehat{\mu} + z_{\gamma/2}\sqrt{V(\widehat{\mu})}\right), \qquad (3.10)$$

respectively, where $V(\widehat{\lambda})$ and $V(\widehat{\mu})$ are the estimated variances of $\widehat{\lambda}_{ML}$ and $\widehat{\mu}_{ML}$, which are given by the first and the second diagonal element of $I^{-1}(\widehat{\lambda},\widehat{\mu})$ and $z_{\gamma/2}$ is the upper ($\gamma/2$) percentile of the standard normal distribution.

3.2. Approximate confidence intervals for S(t) and H(t)

Greene [17] used the delta method to construct the approximate confidence intervals for the SF and HF as a function of the MLEs. This method is used in this subsection to determine the variance of the simpler linear function that can be utilized for inference from large samples, as well as the linear approximation of this function. See Greene [17] and Agresti [18].

$$G_1 = \begin{bmatrix} \frac{\partial S(t)}{\partial \lambda} & \frac{\partial S(t)}{\partial \mu} \end{bmatrix} \text{ and } G_1 = \begin{bmatrix} \frac{\partial H(t)}{\partial \lambda} & \frac{\partial H(t)}{\partial \mu} \end{bmatrix}$$
(3.11)

where

Mathematical Biosciences and Engineering

and

$$\frac{\partial H(t)}{\partial \lambda} = \mu t^{\mu-1}, \frac{\partial H(t)}{\partial \mu} = \lambda \left[t^{\mu-1} + \mu t^{\mu-1} \ln(t) \right].$$

The approximate estimates of $V(\widehat{S}(t))$ and $V(\widehat{H}(t))$ are then supplied, respectively, by

$$\begin{split} V\left(\widehat{S}\left(t\right)\right) &\simeq & \left[G_{1}^{t}I^{-1}\left(\lambda,\mu\right)G_{1}\right]_{\left(\widehat{\lambda}_{ML},\widehat{\mu}_{ML}\right)}, \\ V\left(\widehat{H}\left(t\right)\right) &\simeq & \left[G_{2}^{t}I^{-1}\left(\lambda,\mu\right)G_{2}\right]_{\left(\widehat{\lambda}_{ML},\widehat{\mu}_{ML}\right)}, \end{split}$$

where G_i^t is the transpose of G_i , i = 1, 2. These results provide the approximate confidence intervals for S(t) and H(t) are

$$\left(\widehat{S}(t) - z_{\gamma/2}\sqrt{V(\widehat{S}(t))}, \widehat{S}(t) + z_{\gamma/2}\sqrt{V(\widehat{S}(t))}\right)$$
(3.12)

and

$$\left(\widehat{H}(t) - z_{\gamma/2}\sqrt{V\left(\widehat{H}(t)\right)}, \widehat{H}(t) + z_{\gamma/2}\sqrt{V\left(\widehat{H}(t)\right)}\right).$$
(3.13)

4. Bayesian estimations

Assuming that both λ and μ are unknown parameters, a natural choice for the prior distributions of λ and μ is to assume that they are independent gamma distributions $G(a_1, b_1)$ and $G(a_2, b_2)$, respectively. As a result, the following is the joint prior distribution.

$$\pi(\lambda,\mu) \propto \lambda^{a_1-1} \exp\left(-\lambda b_1\right) \mu^{a_2-1} \exp\left(-b_2\mu\right),\tag{4.1}$$

 a_1 , b_1 , a_2 , b_2 are positive constants. If hyperparameters a_1 , b_1 , a_2 , b_2 are set as zero, then the informative priors are reduced to the noninformative priors.

Upon combining (2.6) and (4.1), given the generalized Type-I PHCS, the posterior density function of λ, μ is obtained as

$$\pi^{*}(\lambda,\mu|\underline{\mathbf{x}}) = L(\lambda,\mu|\underline{\mathbf{x}})\pi(\lambda,\mu) / \int L(\lambda,\mu|\underline{\mathbf{x}})\pi(\lambda,\mu)d\lambda d\mu$$

$$= I^{-1}\lambda^{D^{*}+a_{1}-1}\mu^{D^{*}+a_{2}-1}\exp\left(-b_{2}\mu\right) \left(\prod_{i=1}^{D^{*}}x_{i}^{\mu-1}\right)\exp\left\{-\lambda\left[W(\mu|\underline{\mathbf{x}})+b_{1}\right]\right\}, \quad (4.2)$$

where

$$I = \int_{0}^{\infty} \int_{0}^{\infty} \lambda^{D^{*}+a_{1}-1} \mu^{D^{*}+a_{2}-1} \exp\left(-b_{2}\mu\right) \left(\prod_{i=1}^{D^{*}} x_{i}^{\mu-1}\right) \exp\left\{-\lambda\left[W\left(\mu|\underline{\mathbf{x}}\right)+b_{1}\right]\right\} d\lambda d\mu$$
(4.3)

Mathematical Biosciences and Engineering

$$= \Gamma(D^* + a_1) \int_{0}^{\infty} \mu^{D^* + a_2 - 1} \left(\prod_{i=1}^{D^*} x_i^{\mu - 1} \right) \exp(-b_2 \mu) \left[W(\mu | \underline{\mathbf{x}}) + b_1 \right]^{-(D^* + a_1)} d\mu.$$

Thus, from (1.4), the Bayesian estimates of λ and μ under the SELF are as follows.

$$\widehat{\lambda}_{BS} = I^{-1} \Gamma \left(D^* + a_1 + 1 \right) \int_{0}^{\infty} \mu^{D^* + a_2 - 1} \left(\prod_{i=1}^{D^*} x_i^{\mu - 1} \right) \\ \times \exp \left(-b_2 \mu \right) \left[W \left(\mu | \underline{\mathbf{x}} \right) + b_1 \right]^{-(D^* + a_1 + 1)} d\mu,$$
(4.4)

$$\widehat{\mu}_{BS} = I^{-1} \Gamma \left(D^* + a_1 \right) \int_{0}^{\infty} \mu^{D^* + a_2} \left(\prod_{i=1}^{D^*} x_i^{\mu - 1} \right) \\ \times \exp \left(-b_2 \mu \right) \left[W \left(\mu | \underline{\mathbf{x}} \right) + b_1 \right]^{-(D^* + a_1)} d\mu.$$
(4.5)

From (1.6), we obtain the Bayesian estimator of λ and μ under the LLF,

$$\widehat{\lambda}_{BL} = \frac{-1}{\nu} \ln \left\{ I^{-1} \Gamma \left(D^* + a_1 \right) \int_{0}^{\infty} \mu^{D^* + a_2 - 1} \left(\prod_{i=1}^{D^*} x_i^{\mu - 1} \right) \right. \\ \left. \times \exp \left(-b_2 \mu \right) \left[W \left(\mu | \underline{\mathbf{x}} \right) + \nu + b_1 \right]^{-(D^* + a_1)} d\mu \right\},$$
(4.6)

$$\widehat{\mu}_{BL} = \frac{-1}{\upsilon} \ln \left\{ I^{-1} \Gamma \left(D^* + a_1 \right) \int_{0}^{\infty} \mu^{D^* + a_2 - 1} \left(\prod_{i=1}^{D^*} x_i^{\mu - 1} \right) \times \exp \left[-\mu \left(b_2 + \upsilon \right) \right] \left[W \left(\mu | \underline{\mathbf{x}} \right) + b_1 \right]^{-(D^* + a_1)} d\mu \right\}.$$
(4.7)

From (1.8), one obtains the Bayesian estimator of λ and μ under the GELF as follows:

$$\widehat{\lambda}_{BE} = \left\{ I^{-1} \Gamma \left(D^* + a_1 - \kappa \right) \int_{0}^{\infty} \mu^{D^* + a_2 - 1} \left(\prod_{i=1}^{D^*} x_i^{\mu - 1} \right) \right. \\ \left. \times \exp \left(-b_2 \mu \right) \left[W \left(\mu | \underline{\mathbf{x}} \right) + b_1 \right]^{-(D^* + a_1 - \kappa)} d\mu \right\}^{\frac{-1}{\kappa}},$$
(4.8)

$$\widehat{\mu}_{BE} = \left\{ I^{-1} \Gamma \left(D^* + a_1 \right) \int_{0}^{\infty} \mu^{D^* + a_2 - \kappa - 1} \left(\prod_{i=1}^{D^*} x_i^{\mu - 1} \right) \times \exp \left(-\mu b_2 \right) \left[W \left(\mu | \underline{\mathbf{x}} \right) + b_1 \right]^{-(D^* + a_1)} d\mu \right\}^{\frac{-1}{\kappa}}.$$
(4.9)

Since the integrals in (4.4), (4.5), (4.6), (4.7), (4.8), and (4.9) cannot be computed analytically, the Markov chain Monte Carlo method (MCMC) is used to evaluate these integrals. Depending on the

posterior distribution in (4.2), the conditional posterior distributions $\pi_1^*(\lambda | \mu; \underline{\mathbf{x}})$ and $\pi_2^*(\mu | \lambda; \underline{\mathbf{x}})$ of parameters λ and μ can now be computed and written as follows.

$$\pi_1^*(\lambda|\mu;\underline{\mathbf{x}}) = \frac{[W(\mu|\underline{\mathbf{x}}) + b_1]}{\Gamma(D^* + a_1)} \lambda^{D^* + a_1 - 1} \exp\left\{-\lambda \left[W(\mu|\underline{\mathbf{x}}) + b_1\right]\right\}$$
(4.10)

and

$$\pi_{2}^{*}(\mu|\lambda;\underline{\mathbf{x}}) = I^{-1}\Gamma(D^{*} + a_{1})\mu^{D^{*} + a_{2} - 1}\exp\left(-b_{2}\mu\right)\left(\prod_{i=1}^{D^{*}} x_{i}^{\mu - 1}\right)\left[W(\mu|\underline{\mathbf{x}}) + b_{1}\right]^{-(D^{*} + a_{1})}.$$
(4.11)

It is clear that, the posterior density function $\pi_1^*(\lambda | \mu; \underline{\mathbf{x}})$ is a gamma density, therefore, samples of λ can be easily generated. However, the posterior density function $\pi_2^*(\mu | \lambda; \underline{\mathbf{x}})$ is not a specific distribution; therefore, it is not possible to generate samples directly by standard methods. From theorem 2 of Kundu [19], $\pi_2^*(\mu | \lambda; \underline{\mathbf{x}})$ is a log-concave function; therefore, to generate random samples from these distributions, we use the Metropolis-Hastings [20]. The MCMC algorithm can be described as follows.

Algorithm 1 MCMC method.

Step 1, start with $\lambda^{(0)} = \hat{\lambda}_{ML}$ and $\mu^{(0)} = \hat{\mu}_{ML}$ Step 2, set i = 1Step 3, Generate $\lambda^{(i)} \sim GammaDist. \left[D^* + a, W\left(\mu^{(i-1)}|\underline{\mathbf{x}}\right) + b_1\right] = \pi_1^*(\lambda|\mu^{(i-1)}; \underline{\mathbf{x}})$ Step 4, Generate a proposal $\mu^{(*)}$ from $N(\mu^{(i-1)}, V(\mu))$ Step 5, Calculate the acceptance probabilities $d_{\mu} = min\left[1, \frac{\pi_2^*(\mu^{(*)}|\lambda^{(i-1)})}{\pi_1^*(\mu^{(i-1)}|\lambda^{(i-1)})}\right]$ Step 6, Generate u_1 that follows a U(0, 1) distribution. If $u_1 \leq d_{\mu}$, set $\mu^{(i)} = \mu^{(*)}$; otherwise, set $\mu^{(i)} = \mu^{(i-1)}$ Step 7, set i = i + 1, repeat steps 3 to 7, N times and obtain $(\lambda^{(j)}, \mu^{(j)})$, j = 1, 2, ..., N. Step 8, Remove the first *B* values for λ and μ , which is the burn-in period of $\lambda^{(j)}$ and $\mu^{(j)}$, respectively, where j = 1, 2, ..., N - B.

Assuming $g(\lambda, \mu)$ is an arbitrary function in λ and μ , the Bayesian estimates of g are obtained using the MCMC values as follows.

Based on SELF, LLF, and GELF, the Bayesian estimates of g are then, respectively, given by

$$g(\hat{\lambda},\mu)_{BS} = \frac{1}{N-B} \sum_{i=1}^{N-B} g(\lambda^{(i)},\mu^{(i)}), \qquad (4.12)$$

$$g(\hat{\lambda},\mu)_{BL} = \frac{-1}{\nu} Ln \left[\frac{1}{N-B} \sum_{i=1}^{N-B} e^{\nu g(\lambda^{(i)},\mu^{(i)})} \right],$$
(4.13)

$$g(\hat{\lambda},\mu)_{BE} = \left[\frac{1}{N-B}\sum_{i=1}^{N-B} [g(\lambda^{(i)},\mu^{(i)})]^{-\kappa}\right]^{-1/\kappa},$$
(4.14)

The 100(1 – γ)% Bayesian confidence interval or credible interval (*L*, *U*) for parameter β (β is λ or μ) if

Mathematical Biosciences and Engineering

$$\int_{L}^{U} \pi^{*}(\beta|\underline{\mathbf{x}})d\beta = 1 - \gamma, \qquad (4.15)$$

Since the integration in (4.15) cannot be solved analytically, the $100(1 - \gamma)$ MCMC-approximated credibility intervals for λ and μ using the (N - B) using the (N - B) generated values after sorting in ascending order, $(\lambda^{(1)}, \lambda^{(2)}, ..., \lambda^{(N-B)})$ and $(\mu^{(1)}, \mu^{(2)}, ..., \mu^{(N-B)})$, are given as follows,

$$\begin{pmatrix} \lambda_{\left[(N-B)\gamma/2\right]}, \lambda_{\left[(N-B)(1-\gamma)/2\right]} \end{pmatrix} \\ \begin{pmatrix} \mu_{\left[(N-B)\gamma/2\right]}, \mu_{\left[(N-B)(1-\gamma)/2\right]} \end{pmatrix} \end{cases}$$

The absolute difference between the upper and lower bounds determines the length of the credible intervals.

5. One-Sample Bayesian prediction

For $\rho = 1, 2, ..., R_j^*$, let $Z_{\rho:R_j^*}$ denote the ρ^{th} order statistic out of R_j^* removed units at stage *j*. Then, the conditional DF of $Z_{\rho:R_j^*}$, given the observed generalized Type-I PHCS, is given, as in Basak et al.[21], by

$$g(Z_{\rho;R_{j}^{*}}|\underline{\mathbf{x}}) = g(z|\underline{\mathbf{x}}) = \frac{R_{j}^{*}!}{(\rho-1)!(R_{j}^{*}-\rho)!} \frac{\left[G(z) - G(z_{j})\right]^{\rho-1} \left[1 - G(z)\right]^{R_{j}^{*}-\rho} g(z)}{\left[1 - G(z_{j})\right]^{R_{j}^{*}}}, \quad z > z_{j}, \quad (5.1)$$

where

$$j = \begin{cases} 1, ..., k & \text{if } T < X_{k:m:n} < X_{m:m:n,} \\ 1, ..., D, \tau & \text{if } X_{k:m:n} < T < X_{m:m:n,} \\ 1, ..., m & \text{if } X_{k:m:n} < X_{m:m:n} < T, \end{cases}$$

with $z_{\tau} = T$.

By using (1.1) and (1.2) in (5.1), given a generalized Type-I PHCS, the conditional DF of $Z_{\rho:R_j^*}$ is then given as follows:

$$g(z|\underline{\mathbf{x}}) = \sum_{q=0}^{\rho-1} C_q \lambda \mu x^{\mu-1} \exp\left\{-\lambda \left[\varpi_q \left(z^{\mu} - z_j^{\mu}\right)\right]\right\}, \quad z > z_j,$$
(5.2)

where $C_q = \frac{(-1)^q {\binom{\rho-1}{q}} R_j^{*!}}{(\rho-1)! (R_j^* - \rho)!}$ and $\varpi_q = q + R_j^* - \rho + 1$ for $q = 0, ..., \rho - 1$.

Upon combining (4.2) and (5.2) and using the MCMC technique, the Bayesian predictive DF of $Z_{\rho:R^*}$, given a generalized Type-I PHCS, is obtained as

$$g^{*}(z|\underline{\mathbf{x}}) = \int_{0}^{\infty} \int_{0}^{\infty} g(z|\underline{\mathbf{x}}) \pi^{*}(\lambda, \mu|\underline{\mathbf{x}}) d\lambda d\mu$$

= $\frac{1}{N-B} \sum_{i=1}^{N-B} \sum_{q=0}^{\rho-1} C_{q} \lambda^{(i)} \mu^{(i)} z^{\mu^{(i)}-1} \exp\left\{-\lambda^{(i)} \left[\varpi_{q} \left(z^{\mu^{(i)}} - z_{j}^{\mu^{(i)}}\right)\right]\right\}.$ (5.3)

Mathematical Biosciences and Engineering

The Bayesian predictive SF of $Z_{\rho:R_i^*}$, given generalized Type-I PHCS, is given as

$$G^{*}(t|\underline{\mathbf{x}}) = \int_{t}^{\infty} g^{*}(z|\underline{\mathbf{x}}) dx$$

= $\frac{1}{N-B} \sum_{i=1}^{N-B} \sum_{q=0}^{\rho-1} \frac{C_{q}}{\varpi_{q}} \exp\left\{-\lambda^{(i)} \left[\varpi_{q}\left(t^{\mu^{(i)}} - z_{j}^{\mu^{(i)}}\right)\right]\right\}.$ (5.4)

The Bayesian point predictor of $Z_{\rho:R_i^*}$ under the SELF is the mean of the predictive DF, given by

$$\widehat{Z}_{\rho:R_j^*} = \int_0^\infty z g^*(z|\underline{\mathbf{x}}) dx,$$

6. Two-Sample Bayesian prediction

Let $W_{1:\ell:N} \leq W_{2:\ell:N} \leq \ldots \leq W_{\ell:\ell:N}$ be a future independent progressive Type-II censored sample from the same population with censoring scheme $S = (S_1, ..., S_\ell)$. In this section, we develop a general procedure for deriving the point and interval predictions for $W_{s:\ell:N}$, $1 \leq s \leq \ell$, based on the observed generalized Type-I PHCS. The marginal DF of $W_{s:\ell:N}$ is given by Balakrishnan et al. [22] as

$$g_{W_{s:\ell:N}}(w_s|\lambda) = g(w_s|\lambda) = c(N,s) \sum_{q=0}^{s-1} c_{q,s-1} [1 - G(w_s)]^{M_{q,s}-1} g(w_s),$$
(6.1)

where $1 \le s \le \rho$, $c(N, s) = N(N - S_1 - 1) \dots (N - S_1 \dots - S_{s-1} + 1)$, $M_{q,s} = N - S_1 - \dots - S_{s-q-1} - s + q + 1$, and $c_{q,s-1} = (-1)^q \left\{ \left[\prod_{u=1}^q \sum_{\nu=s-q}^{s-q+u-1} (S_\nu + 1) \right] \left[\prod_{u=1}^{s-q-1} \sum_{\nu=u}^{s-q-1} (S_\nu + 1) \right] \right\}^{-1}$.

Upon substituting (1.1) and (1.2) in (6.1), the marginal DF of $W_{s:\ell:N}$ is then obtained as

$$g(w_s|\lambda) = c(N,s) \sum_{q=0}^{s-1} c_{q,s-1} \lambda \mu y_s^{\mu-1} \exp\left\{-\lambda \left[M_{q,s} w_s^{\mu}\right]\right\}, \quad w_s > 0.$$
(6.2)

Upon combining (4.2)and (6.2) and using the MCMC method, given a generalized Type-I PHCS, the Bayesian predictive DF of $W_{s:\ell:N}$ is obtained as

$$g^{*}(w_{s}|\underline{\mathbf{x}}) = \int_{0}^{\infty} \int_{0}^{\infty} g(w_{s}|\underline{\mathbf{x}}) \pi^{*}(\lambda,\mu|\underline{\mathbf{x}}) d\lambda d\mu$$

= $\frac{c(N,s)}{N-B} \sum_{i=1}^{N-B} \sum_{q=0}^{s-1} c_{q,s-1} \lambda^{(i)} \mu^{(i)} w_{s}^{\mu^{(i)}-1} \exp\left\{-\lambda^{(i)} \left[M_{q,s} w_{s}^{\mu^{(i)}}\right]\right\}.$ (6.3)

From (6.3), we simply obtain the predictive SF function of $W_{s:\ell:N}$, given a generalized Type-I PHCS, as

Mathematical Biosciences and Engineering

$$G^{*}(t|\underline{\mathbf{x}}) = \int_{t}^{\infty} g^{*}(w_{s}|\underline{\mathbf{x}}) dy_{s}$$

= $\frac{c(N,s)}{N-B} \sum_{i=1}^{N-B} \sum_{q=0}^{s-1} \frac{c_{q,s-1}}{M_{q,s}} \exp\left\{-\lambda^{(i)} \left[M_{q,s}t^{\mu^{(i)}}\right]\right\}.$ (6.4)

The Bayesian point predictor of $W_{s:l:N}$, $1 \le s \le m$, under the SELF is the mean of the predictive DF, given by

$$\widehat{W}_{s:\ell:N} = \int_{0}^{\infty} w_{s} g^{*}(w_{s}|\underline{\mathbf{x}}) dy_{s}, \qquad (6.5)$$

where $g^*_{W_{s,\ell,N}}(w_s|\underline{\mathbf{x}})$ is given as in (6.3).

By solving the following two equations, the Bayesian predictive bounds of the $100(1 - \gamma)\%$ equitailed (ET)interval for $Z_{\rho:R_i^*}$ and $W_{s:\ell:N}$, $1 \le s \le m$ can be obtained respectively,

$$G^*(L_{ET}|\underline{\mathbf{x}}) = \frac{\gamma}{2}$$
 and $G^*(U_{ET}|\underline{\mathbf{x}}) = 1 - \frac{\gamma}{2},$ (6.6)

where $G^*(t|\mathbf{x})$ is given as in (5.4) and (6.4), where L_{ET} and U_{ET} denote the lower and upper bounds, respectively. Furthermore, for the highest posterior density (HPD) method, the following two equations need to be solved:

$$G^*(L_{HPD}|\underline{\mathbf{x}}) - G^*(U_{HPD}|\underline{\mathbf{x}}) = 1 - \gamma,$$

and

$$g^*(L_{HPD}|\underline{\mathbf{x}}) - g^*(U_{HPD}|\underline{\mathbf{x}}) = 0,$$

where $g^*(z|\underline{\mathbf{x}})$ is as in (5.3) and (6.3), where L_{HPD} and U_{HPD} denote the HPD lower and upper bounds, respectively.

7. Simulation study

In this section, a Monte Carlo simulation study was conducted to compare the efficiency of ML and Bayesian estimates. Using different values of n, m, k and T, 5000 generalized Type-I PHCSs were generated from the Weibull distribution (with $\lambda = 1$ and $\mu = 2$). The values of T are chosen such that the three cases of generalized Type-I PHCS occur. Thus, in the first case, a T that lies in the first quarter of the data such that $T^* = X_{k:m:n}$ is chosen. In the second case, a T that lies in the third quarter such that $T^* = T$ is chosen. Finally, a T that is sufficiently large such that $T^* = X_{m:m:n}$ is chosen. We computed the ML estimate and the Bayesian estimates of λ , μ , S(t), and H(t) (with t = 0.5) under the SELF, LLF (with v=0.5) and GELF (with $\kappa = 0.5$) using IP and NIP. We also calculated the mean squared error (MSE) and the expected bias (EB) for each estimate.

The 90% and 95% asymptotic and Bayesian credible confidence intervals with the average length (AL) and the estimated coverage probabilities (CPs) for $\widehat{\lambda}$, $\widehat{\mu}$, $\widehat{S(t)}$, and $\widehat{H(t)}$ are computed.

Different samples of size (n) with different effective sample sizes (m, k) are used to conduct the simulation study. The process of removing the SF units is performed with these censoring schemes.

- 1. Scheme 1: $R_i = \frac{2(n-m)}{m}$ for odd integers *i* and $R_i = 0$ for even integers of *i*. 2. Scheme 2: $R_i = \frac{2(n-m)}{m}$ for even integers *i* and $R_i = 0$ for add integers of *i*. 3. Scheme 3: $R_i = 0$ for i = 1, 2, ..., m 1, $R_i = n m$ for i = m.

All these cases have been assumed according to the case of generalized Type-I progressive censoring and all Bayesian results are computed based on two different choices for the hyperparameters $(a_1, b_1, a_2, b_2).$

- 1. For the case of IP: $a_1 = 200$, $b_1 = 200$, $a_2 = 200$ and $b_2 = 400$ (by putting the marginal prior distribution of λ with mean $\frac{a_1}{b_1} = 1$ and small variance $\frac{a_1}{b_1^2} = 0.005$ and the marginal prior distribution of μ with mean $\frac{a_2}{b_2} = 1$ and variance $\frac{a_2}{b_2^2} = 0.005$).
- 2. For the case of *NIP* : $a_1 = b_1 = a_2 = b_2 = 0$.

The simulated results are displayed in the Appendix of this paper.

8. Numerical example

To illustrate all conclusions reached for the Weibull distribution, we used a real data consists of 19 values. These data refer to breakthrough times of an offending liquid between electrodes at a voltage of 34 kilovolts, as prepared by Viveros and Balakrishnan in [23] from Table 6.1 of Nelson ([24], p.228). We will use these real data to consider the following progressively censored schemes.

Suppose m = 10, R = (0, 0, 3, 0, 0, 3, 0, 0, 3, 0), Then, we have the following progressive data: 0.19, 0.78, 0.96, 2.78, 3.16, 4.15, 4.85, 7.35, 8.01, and 31.75. If we consider a different T, then we have three different generalized Type-I PHCSs.

- 1. Scheme I: Suppose T = 4. Since $T < X_{7:10:19} < X_{10:10:19}$, then the experiment would have terminated at $X_{7:7:19}$, with $R^* = (0, 0, 3, 0, 0, 0, 9)$ and $R^*_{\tau} = 0$ and we would have the following data: 0.19, 0.78, 0.96, 2.78, 3.16, 4.15, and 4.67.
- 2. Scheme II: Suppose T = 7.5. Since $X_{7:10:19} < T < X_{10:10:19}$, then the experiment would have terminated at T = 8, with $R^* = (0, 0, 3, 0, 0, 3, 0, 0)$ and $R^*_{\tau} = 5$ and we would have the following data: 0.19, 0.78, 0.96, 2.78, 3.16, 4.15, 4.85, and 7.35.
- 3. Scheme III: Suppose k = 7 and T = 35. Since $X_{7:10:19} < X_{10:10:19} < T$, then the experiment would have terminated at $X_{10:10:19}$, with $R^* = R$ and $R^*_{\tau} = 0$ and we would have the following data: 0.19, 0.78, 0.96, 2.78, 3.16, 4.15, 4.85, 7.35, 8.01, and 31.75.

Based on the generated generalized Type-I PHCS and two different choices of hyperparameters (a_1, b_1, a_2, b_2) as in the Monte Carlo simulation, Table 1 shows the point predictor and 95% Bayesian prediction bounds of $Z_{\rho:R_1^*}$ for three different censoring schemes, and Table 2 shows the point predictor and 95% Bayesian prediction bounds of $W_{s:\ell:N}$ from the future progressively censored sample of size $\ell = 10$ from a sample of size N = 20 with progressive censoring scheme S = (0, 0, 3, 0, 0, 3, 0, 0, 3, 1)for the previous four censoring schemes.

9. Conclusion

The Bayesian and ML estimates of the unknown parameters and the SF and HF of the Weibull distribution when the observed sample is a generalized Type-I PHCS sample are obtained. In the

Table 1. Bayesian point predictor and 95% ET and HPD prediction intervals for $Z_{\rho:R_j^*}$ for $\rho = 1, ..., R_j^*$, and $j = 1, ..., D^*, \tau$.

				IP			NIP	
Sch.	j	ρ	$\widehat{X}_{\rho:R_i^*}$	ET interval	HPD interval	$\widehat{X}_{\rho:R_i^*}$	ET interval	HPD interval
1	3	1	4.824	(1.322,21.783)	(1.214,17.062)	6.410	(1.324,23.275)	(1.214,18.034)
		2	10.634	(2.417,42.868)	(1.319,34.499)	14.202	(2.429,46.302)	(1.308,36.810)
		3	22.254	(5.271,86.933)	(2.348,70.530)	29.787	(5.289,94.280)	(2.274,75.524)
	7	1	5.914	(5.943,12.764)	(5.908,11.190)	7.639	(5.944,13.261)	(5.908,11.514)
		2	7.367	(6.254,17.586)	(5.939,15.267)	9.587	(6.258,18.558)	(5.935,15.923)
		3	9.027	(6.817,22.790)	(6.182,19.570)	11.814	(6.821,24.302)	(6.071,20.612)
		4	10.964	(7.581,28.762)	(6.654,24.889)	14.411	(7.581,30.909)	(6.608,26.363)
		5	13.288	(8.553,35.920)	(7.294,31.039)	17.528	(8.544,38.832)	(7.213,33.049)
		6	16.192	(9.782,44.951)	(8.125,38.766)	21.424	(9.761,48.820)	(8.000,41.448)
		7	20.066	(11.390,57.239)	(9.351,48.369)	26.619	(11.351,62.390)	(9.026,52.794)
		8	25.877	(13.657,76.426)	(10.679,65.357)	34.412	(13.592,83.499)	(10.421,70.278)
		9	37.497	(17.494, 118.537)	(12.895,99.972)	49.997	(17.400,129.445)	(12.532,107.555)
2	3	1	4.924	(1.330,21.776)	(1.214,17.251)	6.488	(1.332,22.842)	(1.214,17.983)
		2	10.886	(2.506,42.386)	(1.343,34.584)	14.399	(2.526,44.762)	(1.337,36.266)
		3	22.809	(5.601,85.629)	(5.198,69.693)	30.221	(5.656,90.660)	(5.227,73.313)
	6	1	8.082	(5.365,25.811)	(5.250,21.286)	10.524	(5.367,26.877)	(5.250,22.019)
		2	14.044	(6.541,46.422)	(5.379,38.619)	18.435	(6.562,48.797)	(5.372,40.302)
		3	25.967	(9.637,89.664)	(9.233,73.728)	34.256	(9.691,94.695)	(9.262,77.348)
	9	1	10.305	(10.188,22.456)	(10.120,19.742)	13.284	(10.191,23.096)	(10.120,20.181)
		2	13.285	(10.826,32.161)	(10.192,28.030)	17.239	(10.837,33.440)	(10.190,28.937)
		3	17.260	(12.126,44.641)	(12.105,38.397)	22.513	(12.152,46.768)	(10.856,39.936)
		4	23.220	(14.248,63.813)	(12.029,55.213)	30.425	(14.288,67.225)	(11.978,57.679)
		5	35.144	(18.060,105.916)	(14.149,90.288)	46.246	(18.126,111.946)	(14.055,94.654)
3	3	1	5.061	(1.335,22.283)	(1.214,17.716)	6.661	(1.337,23.291)	(1.214,18.425)
		2	11.226	(2.572,43.235)	(1.356,35.439)	14.832	(2.597,45.441)	(1.351,37.039)
		3	23.556	(5.834,87.257)	(2.664,72.209)	31.172	(5.910,91.905)	(2.639,75.613)
	6	1	8.219	(5.370,26.318)	(5.250,21.752)	10.697	(5.372,27.327)	(5.250,22.460)
		2	14.384	(6.607,47.271)	(5.391,39.474)	18.867	(6.632,49.477)	(5.386,41.075)
		3	26.714	(9.870,91.293)	(6.612,75.361)	35.207	(9.945,95.940)	(6.674,79.648)
	9	1	26.714	(9.870,91.293)	(9.142,75.361)	15.580	(10.255,32.209)	(10.133,27.343)
		2	18.205	(11.490,52.153)	(10.274,44.357)	23.750	(11.515,54.360)	(10.269,45.957)
		3	30.536	(14.752,96.175)	(11.495,80.244)	40.090	(14.828,100.823)	(11.514,83.663)

Bayesian approach, the SELF, LLF and GELF based on IP and NIP distributions are considered. The 90% and 95% asymptotic and credible confidence intervals for the parameters and for the SF and HF are also constructed. The Bayesian point and interval predictions of future order statistics samples from the same population for a progressive Type-II of an unpredictable future sample were also developed. From the numerical results, we derive the following conclusions:

- 1. From Tables 1–2, the HPD prediction intervals appear to be more accurate than the ET prediction intervals, and the means of the Bayesian point predictor inside the Bayesian prediction intervals.
- 2. From Tables 3–6 in the appendix, the Bayesian estimates using the IP are better than the MLEs. Furthermore, the results of the ML estimates are similar to the Bayesian estimators with NIP. Thus, when we have no prior knowledge of the unknown parameters, it is often easier to use the ML instead of the Bayesian estimators, since the computation of the Bayesian estimator is more complicated. Moreover, in most cases, the MSE decreases as *n* and *m* increase.
- 3. From Tables 7–10 in the appendix, the AL of confidence intervals decreases as T increases, and

Table 2. Bayesian point predictor and 95% ET and HPD prediction intervals $W_{s:\ell:N}$ for $s = 1, ..., \ell$.

			IP			NIP	
Sch.	S	$\widehat{Y}_{s:N}$	ET interval	HPD interval	$\widehat{Y}_{s:N}$	ET interval	HPD interval
1	1	0.704	(0.016,2.927)	(0.000,2.255)	0.739	(0.016,3.139)	(0.000,2.393)
	2	0.972	(0.143,4.811)	(0.013,3.858)	1.014	(0.144,5.212)	(0.012,4.127)
	3	1.314	(0.361,6.671)	(0.114,5.470)	1.381	(0.362, 7.270)	(0.106,5.878)
	4	1.760	(0.668,9.119)	(0.299, 7.574)	1.861	(0.668,9.976)	(0.281,8.162)
	5	2.216	(1.036,11.675)	(0.545,9.782)	2.356	(1.032,12.810)	(0.514,10.566)
	6	2.696	(1.457,14.399)	(0.842,12.142)	2.878	(1.448,15.838)	(0.794,13.139)
	7	3.481	(2.039,18.751)	(1.237,15.844)	3.724	(2.023,20.644)	(1.169,17.159)
	8	4.352	(2.726,23.618)	(1.717,20.008)	4.666	(2.702,26.033)	(1.622,21.689)
	9	5.356	(3.544,29.252)	(2.293,24.833)	5.753	(3.509,32.275)	(2.167,26.942)
	10	9.350	(5.264,50.149)	(3.233,41.790)	9.952	(5.218,54.977)	(3.068,45.151)
2	1	0.722	(0.017,2.926)	(0.000, 2.282)	0.750	(0.017,3.077)	(0.000,2.386)
	2	0.978	(0.154,4.751)	(0.016,3.865)	1.060	(0.156,5.028)	(0.016,4.061)
	3	1.308	(0.391,6.536)	(0.134,5.450)	1.423	(0.396,6.943)	(0.131,5.742)
	4	1.738	(0.727,8.892)	(0.350,7.520)	1.898	(0.734,9.468)	(0.341,7.938)
	5	2.172	(1.132,11.338)	(0.638,9.684)	2.382	(1.140,12.097)	(0.622,10.237)
	6	2.627	(1.596,13.939)	(0.984,11.990)	2.890	(1.606,14.898)	(0.959,12.690)
	7	3.380	(2.238,18.128)	(1.444,15.628)	3.726	(2.249,19.387)	(1.408,16.549)
	8	4.213	(3.000,22.800)	(2.003,19.709)	4.650	(3.011,24.402)	(1.954,20.885)
	9	5.168	(3.905,28.199)	(2.675,24.436)	5.714	(3.916,30.202)	(2.608,25.909)
	10	9.146	(5.795,48.785)	(3.750,41.359)	10.042	(5.814,52.007)	(3.667,43.723)
3	1	0.748	(0.017,2.998)	(0.000,2.348)	0.775	(0.018,3.142)	(0.000, 2.449)
	2	1.042	(0.162,4.847)	(0.018,3.964)	1.051	(0.164,5.104)	(0.017,4.150)
	3	1.386	(0.412,6.650)	(0.146,5.579)	1.405	(0.419,7.024)	(0.144,5.854)
	4	1.836	(0.768,9.030)	(0.380,7.686)	1.867	(0.779,9.557)	(0.374,8.077)
	5	2.288	(1.196,11.496)	(0.691,9.887)	2.335	(1.211,12.187)	(0.680,10.403)
	6	2.761	(1.690,14.117)	(1.066,12.229)	2.825	(1.708,14.987)	(1.050,12.881)
	7	3.551	(2.371,18.349)	(1.564,15.931)	3.637	(2.394,19.492)	(1.541,16.788)
	8	4.418	(3.181,23.064)	(2.170,20.083)	4.534	(3.209,24.515)	(2.137,21.175)
	9	5.414	(4.142,28.510)	(2.897,24.888)	5.563	(4.176,30.322)	(2.855,26.255)
	10	9.635	(6.145,49.504)	(4.051,42.221)	9.839	(6.198,52.438)	(4.002,44.426)

the credible intervals perform well compared to the asymptotic confidence intervals. Finally, in all cases AL of the confidence intervals, the 95% intervals are larger than the 90% intervals.

Funding

This work is supported by Researchers Supporting Project number (RSP-2021/323), King Saud University, Riyadh, Saudi Arabia.

Acknowledgments

We are grateful to the referees and the editor for their careful reading and their constructive comments, which leads to this greatly improved paper.

The authors acknowledge financial support from the Researchers Supporting Project number (RSP-2021/323), King Saud University, Riyadh, Saudi Arabia.

Conflict of interest

The authors declare there is no conflict of interest.

References

- 1. N. Balakrishnan, R. Aggarwala, *Progressive censoring: theory, methods, and applications*, Springer Science & Business Media, (2000). https://doi.org/10.1007/978-1-4612-1334-5.
- 2. N. Balakrishnan, Progressive censoring methodology: An appraisal, *Test*, **16** (2007), 211–259. https://doi.org/10.1007/s11749-007-0061-y.
- 3. E. Cramer, G. Iliopoulos, Adaptive progressive Type-II censoring, *Test*, **19** (2010), 342–358. https://doi.org/10.1007/s11749-009-0167-5.
- 4. D. Kundu, A. Joarder, Analysis of Type-II progressively hybrid censored data, *Comput. Stat. Data Anal.*, **50** (2006), 2509–2528. https://doi.org/10.1016/j.csda.2005.05.002.
- A. Childs, B. Chandrasekar, N. Balakrishnan, Exact likelihood inference for an exponential parameter under progressive hybrid censoring schemes, In: *Statistical Models and Methods for Biomedical and Technical Systems*, Birkhäuser Boston, (2008), 319–330. https://doi.org/10.1007/978-0-8176-4619-6_23.
- H. Panahi, Estimation methods for the generalized inverted exponential distribution under type II progressively hybrid censoring with application to spreading of micro-drops data, *Commun. Math. Stat.*, 5 (2017), 159–174. https://doi.org/10.1007/s40304-017-0106-9.
- R. Alshenawy, M. A. Sabry, E. M. Almetwally, H. M. Almongy, Product Spacing of Stress–Strength under Progressive Hybrid Censored for Exponentiated-Gumbel Distribution. *Comput. Mater. Contin.*, 66 (2021), 2973–2995. doi:10.32604/cmc.2021.014289.
- 8. F. Hemmati, E. Khorram, Statistical analysis of the log-normal distribution under Type-II progressive hybrid censoring schemes, *Commun. Stat. Simul. Comput.*, **42** (2013), 52–75. https://doi.org/10.1080/03610918.2011.633195.
- 9. C. T. Lin, Y. L. Huang, On progressive hybrid censored exponential distribution, *J. Stat. Comput. Simul.*, **82** (2012), 689–709. https://doi.org/10.1080/00949655.2010.550581.
- Y. Cho, H. Sun, K. Lee, Exact likelihood inference for an exponential parameter under generalized progressive hybrid censoring scheme, *Stat. Methodol.*, 23 (2015), 18–34. https://doi.org/10.1016/j.stamet.2014.09.002.
- 11. M. M. El-Din, A. R. Shafay, M. Nagy, Statistical inference under adaptive progressive censoring scheme, *Comput. Stat.*, **33** (2018), 31–74. https://doi.org/10.1007/s00180-017-0745-z.
- M. M. El-Din, M. Nagy, M. H. Abu-Moussa, Estimation and prediction for gompertz distribution under the generalized progressive hybrid censored data, *Ann. Data Sci.*, 6 (2019), 673–705. https://doi.org/10.1007/s40745-019-00199-3.
- M. Nagy, K. S. Sultan, M. H. Abu-Moussa, Analysis of the generalized progressive hybrid censoring from Burr Type-XII lifetime model. *AIMS Math.*, 6 (2021), 9675–9704. doi: 10.3934/math.2021564.

- 14. M. M. El-Din, M. Nagy, Estimation for Inverse Weibull distribution under Generalized Progressive Hybrid Censoring Scheme. J. Stat. Appl. Prob. Lett., 4 (2017), 1–11. doi: org/10.18576/jsapl/paper.
- 15. C. T. Lin, C. C. Chou, Y. L. Huang, Inference for the Weibull distribution with progressive hybrid censoring, *Comput. Stat. Data Anal.*, **56** (2012), 451–467. https://doi.org/10.1016/j.csda.2011.09.002.
- R. Calabria, G. Pulcini, Point estimation under asymmetric loss functions for lefttruncated exponential samples, *Commun. Stat. Theory Methods*, 25 (1996), 585–600. https://doi.org/10.1080/03610929608831715.
- 17. W. H. Greene, *Econometric analysis*, Pearson Education India, (2003). https://spu.fem.uniag.sk
- 18. A. Agresti, *Categorical data analysis*, John Wiley & Sons, Inc, (2002). https://onlinelibrary.wiley.com/doi/book/10.1002/0471249688
- 19. D. Kundu, Bayesian inference and life testing plan for the Weibull distribution in presence of progressive censoring. *Technometrics*, **50** (2008), 144–154. https://doi.org/10.1198/00401700800000217.
- 20. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Equation of state calculations by fast computing machines, *J. Chem. Phys.*, **21** (1953), 1087–1092. https://doi.org/10.1063/1.1699114.
- I. Basak, P. Basak, N. Balakrishnan, On some predictors of times to failure of censored items in progressively censored samples, *Comput. Stat. Data Anal.*, **50** (2006), 1313–1337. https://doi.org/10.1016/j.csda.2005.01.011.
- N. Balakrishnan, A. Childs, B. Chandrasekar, An efficient computational method for moments of order statistics under progressive censoring, *Stat. Probab. Lett.*, **60** (2002), 359–365. https://doi.org/10.1016/S0167-7152(02)00267-5.
- 23. R. Viveros, N. Balakrishnan, Interval estimation of parameters of life from progressively censored data, *Technometrics*, **36** (1994), 84–91. https://doi.org/10.2307/1269201.
- 24. W. Nelson, Applied life data analysis. Wiley, New York, (1982). doi: 10.1002/0471725234.

Appendix

Tables 3-6 show the MSE and EB values of the ML and Bayesian estimates for λ , μ , S(x), and H(t), respectively. Tables 7-10 show the average length (AL) of the 95% confidence intervals and the corresponding coverage probabilities (CPs) $\widehat{\lambda}$, $\widehat{\mu}$, $\widehat{S(t)}$, and $\widehat{H(t)}$, respectively.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\widehat{\lambda}_{BE}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NIP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$T = 0.3 (40,20,15) 0.5186 0.0192 0.5693 0.0187 0.3517 0.019 \\ (60,30,20) 0.4127 0.0173 0.4355 0.0170 0.2675 0.0173 \\ \end{array}$	43 0.3739
(60,30,20) 0.4127 0.0173 0.4355 0.0170 0.2675 0.017	0 0 4026
(00,30,20) 0.1127 0.0173 0.1333 0.0170 0.2073 0.01	71 0 3403
(30, 20, 15) 0.2879 0.0259 0.2666 0.0252 0.2114 0.024	$\frac{71}{55}$ 0.2243
(50,20,15) $(50,207)$ $(50,207)$ $(50,207)$ $(50,200)$ $(50,200)$ $(50,200)$ $(50,200)$ $(50,201)$	0.22+3
5cn = 1 $1 = 0.7$ (40,20,13) 0.0400 0.0205 0.0240 0.0179 0.0700 0.020	0.4404
(00,50,20) 0.2110 0.0172 0.2007 0.0170 0.1040 0.017	$\frac{72}{15}$ 0.1708
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-15 0.2198
I = 1.5 (40,20,15) 0.3891 0.0220 0.3975 0.0222 0.3720 0.0220 0.3720 0.0220 0.3720 0.0220 0.3720 0.0220 0.3720 0.0220 0.3720 0.0220 0.3720 0.0220 0.3720 0.0220 0.3720 0.0220 0.3720 0.0220 0.3720 0.0200 0.020 0.020 0.0200	23 0.4423
(00,30,20) 0.2526 0.0175 0.2440 0.0171 0.1921 0.0171	72 0.2030 50 0.2860
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3809
I = 0.5 (40,20,15) 0.5489 0.0197 0.5772 0.0194 0.5044 0.015	77 0.4139 74 0.2450
(60,30,20) 0.3080 0.0174 0.3002 0.0172 0.2285 0.017	14 0.2459
(30,20,15) 0.3489 0.0255 0.3314 0.0247 0.2473 0.025	0 0.2673
Sch - II = 0.7 (40,20,15) 0.5221 0.0191 0.5308 0.0187 0.3333 0.019	90 0.3778
(60,30,20) 0.2269 0.0164 0.2135 0.0160 0.1734 0.0160 0.01734 0.00160	52 0.1794
(30,20,15) $(0.3369$ (0.0265) (0.3188) (0.0256) (0.2451) (0.025)	59 0.2584
T = 1.5 (40,20,15) 0.6190 0.0205 0.66/6 0.0198 0.3925 0.020	0 0.4631
(60,30,20) 0.2130 0.0177 0.2087 0.0173 0.1658 0.017	74 0.1737
(30,20,15) 0.5166 0.0252 0.5284 0.0245 0.3486 0.0252	50 0.3869
T = 0.3 (40,20,15) 1.4205 0.0173 2.3081 0.0169 0.7138 0.017	71 1.1274
(60,30,20) 0.3416 0.0162 0.3652 0.0159 0.2586 0.016	61 0.2772
(30,20,15) 0.5049 0.0246 0.5692 0.0238 0.3290 0.024	41 0.4095
Sch - III $T = 0.7$ (40,20,15) 1.2471 0.0183 1.7174 0.0179 0.6258 0.018	31 0.9441
(60,30,20) 0.3569 0.0152 0.3705 0.0149 0.2577 0.013	51 0.2792
(30,20,15) 0.4781 0.0246 0.5283 0.0238 0.3279 0.0246	41 0.3805
T = 1.5 (40,20,15) 1.4825 0.0182 2.0789 0.0179 0.6943 0.018	81 1.0823
(60,30,20) 0.3832 0.0164 0.4044 0.0161 0.2737 0.016	63 0.3012
EB	
	21 0.0855
(30,20,15) 0.1962 0.0036 0.1983 0.0069 0.1024 0.012	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0715
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79 0.0715 57 0.0502
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	79 0.0715 57 0.0502 80 0.0274
$Sch-I = 0.7 \begin{array}{ccccccccccccccccccccccccccccccccccc$	79 0.0715 57 0.0502 80 0.0274 89 0.1086
$Sch-I = 0.3 \begin{array}{cccccccccccccccccccccccccccccccccccc$	79 0.0715 57 0.0502 80 0.0274 89 0.1086 90 0.0403
$Sch-I = \begin{array}{ccccccccccccccccccccccccccccccccccc$	79 0.0715 57 0.0502 80 0.0274 89 0.1086 90 0.0403 53 0.0516
$Sch-I = \begin{array}{ccccccccccccccccccccccccccccccccccc$	79 0.0715 57 0.0502 80 0.0274 89 0.1086 90 0.0403 53 0.0516 19 0.0935
$Sch-I = \frac{(30,20,15)}{T=0.3} \begin{array}{c} 0.1962 \\ (40,20,15) \\ (60,30,20) \\ (60,30,20) \\ (60,30,20) \\ (60,30,20) \\ (60,30,20) \\ (1114 \\ (1$	79 0.0715 57 0.0502 80 0.0274 89 0.1086 90 0.0403 53 0.0516 19 0.0935 58 0.0647
$Sch-I = \frac{(30,20,15)}{T=0.3} \begin{array}{c} 0.1962 \\ (40,20,15) \\ (60,30,20) \\ (60,30,20) \\ (60,30,20) \\ (60,30,20) \\ (60,30,20) \\ (60,30,20) \\ (60,30,20) \\ (1114 \\ $	$\begin{array}{rrrr} 79 & 0.0715 \\ 57 & 0.0502 \\ 80 & 0.0274 \\ 89 & 0.1086 \\ 90 & 0.0403 \\ 53 & 0.0516 \\ 19 & 0.0935 \\ 58 & 0.0647 \\ 22 & 0.0894 \end{array}$
$Sch-I = \frac{(30,20,15)}{T=0.3} \begin{array}{c} 0.1962 \\ (40,20,15) \\ (60,30,20) $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$Sch-I = 1.5 \begin{array}{c} (30,20,15) & 0.1962 & 0.0036 & 0.1983 & 0.0069 & 0.1024 & 0.012 \\ (40,20,15) & 0.1816 & 0.0052 & 0.1950 & 0.0036 & 0.0900 & 0.000 \\ (60,30,20) & 0.1219 & 0.0057 & 0.1268 & 0.0019 & 0.0649 & 0.002 \\ (30,20,15) & 0.1114 & 0.0075 & 0.0936 & 0.0029 & 0.0436 & 0.008 \\ (60,30,20) & 0.0984 & 0.0019 & 0.0884 & 0.0054 & 0.0519 & 0.009 \\ (60,30,20) & 0.0984 & 0.0019 & 0.0884 & 0.0054 & 0.0519 & 0.009 \\ (30,20,15) & 0.1340 & 0.0092 & 0.1151 & 0.0012 & 0.0662 & 0.006 \\ (30,20,15) & 0.1235 & 0.0052 & 0.1125 & 0.0021 & 0.0748 & 0.0051 \\ (60,30,20) & 0.1235 & 0.0052 & 0.1125 & 0.0021 & 0.0748 & 0.0051 \\ T = 0.3 & (40,20,15) & 0.1772 & 0.0006 & 0.1840 & 0.0079 & 0.0827 & 0.012 \\ (60,30,20) & 0.1107 & 0.0002 & 0.1118 & 0.0072 & 0.0542 & 0.010 \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$Sch-I = \frac{(30,20,15)}{T=0.3} \begin{array}{c} 0.1962 \\ (40,20,15) \\ (60,30,20) \\ (60,30,20) \\ (60,30,20) \\ (60,30,20) \\ (60,30,20) \\ (114) \\ (30,20,15) \\ (114)$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$Sch-I = 1.5 (40,20,15) 0.1962 0.0036 0.1983 0.0069 0.1024 0.012 \\ (60,30,20) 0.1219 0.0057 0.1268 0.0019 0.0649 0.000 \\ (60,30,20) 0.1219 0.0057 0.1268 0.0019 0.0649 0.000 \\ (30,20,15) 0.1114 0.0075 0.0936 0.0029 0.0436 0.009 \\ (60,30,20) 0.0984 0.0019 0.0884 0.0054 0.0519 0.009 \\ (60,30,20) 0.0984 0.0019 0.0884 0.0054 0.0519 0.009 \\ (30,20,15) 0.1340 0.0092 0.1151 0.0012 0.0662 0.000 \\ (60,30,20) 0.1235 0.0052 0.1125 0.0021 0.0748 0.001 \\ (60,30,20) 0.1235 0.0052 0.1125 0.0021 0.0748 0.005 \\ T = 1.5 (40,20,15) 0.2021 0.0034 0.2015 0.0070 0.1070 0.012 \\ (60,30,20) 0.1235 0.0002 0.11840 0.0079 0.0827 0.012 \\ T = 0.3 (40,20,15) 0.1772 0.0006 0.1840 0.0079 0.0827 0.012 \\ (60,30,20) 0.1107 0.0002 0.1118 0.0072 0.0542 0.010 \\ (30,20,15) 0.1516 0.0109 0.1333 0.0007 0.0785 0.009 \\ Sch-II T = 0.7 (40,20,15) 0.2083 0.0036 0.2028 0.0049 0.1182 0.009 \\ \end{array}$	79 0.0715 57 0.0502 80 0.0274 89 0.1086 90 0.0403 53 0.0516 19 0.0935 58 0.0647 22 0.0894 22 0.0649 09 0.0379 44 0.0645 91 0.1067
$Sch-I = 1.5 (40,20,15) 0.1962 0.0036 0.1983 0.0069 0.1024 0.012 \\ (40,20,15) 0.1816 0.0052 0.1950 0.0036 0.0900 0.000 \\ (60,30,20) 0.1219 0.0057 0.1268 0.0019 0.0649 0.003 \\ (30,20,15) 0.1114 0.0075 0.0936 0.0029 0.0436 0.009 \\ (60,30,20) 0.0984 0.0019 0.0884 0.0054 0.0519 0.009 \\ (60,30,20) 0.0984 0.0019 0.0884 0.0054 0.0519 0.009 \\ (30,20,15) 0.1340 0.0092 0.1151 0.0012 0.0662 0.000 \\ (60,30,20) 0.1235 0.0052 0.1125 0.0021 0.0748 0.005 \\ (60,30,20) 0.1235 0.0052 0.1125 0.0070 0.1070 0.012 \\ (60,30,20) 0.1235 0.0052 0.1125 0.0070 0.1070 0.012 \\ (60,30,20) 0.1107 0.0002 0.1118 0.0079 0.0827 0.012 \\ (60,30,20) 0.1107 0.0002 0.1118 0.0072 0.0542 0.014 \\ (60,30,20) 0.1107 0.0002 0.1118 0.0072 0.0542 0.004 \\ (60,30,20) 0.1107 0.0002 0.1118 0.0072 0.0542 0.004 \\ (60,30,20) 0.1107 0.0002 0.1118 0.0072 0.0542 0.004 \\ (60,30,20) 0.1205 0.0036 0.2028 0.0049 0.1182 0.009 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.005 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.005 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.005 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.005 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.005 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.005 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.005 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.005 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.005 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.005 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.005 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.005 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.005 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.005 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$Sch-I = \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$Sch-I = 0.3 \begin{array}{c} (30,20,15) \\ T = 0.3 (40,20,15) \\ (60,30,20) \\ (60,30,20) \\ (60,30,20) \\ (60,30,20) \\ (60,30,20) \\ (70,20,15) \\ (71,20,$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$Sch-II = 0.3 \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$Sch-II = 0.3 \begin{array}{c} (30,20,15) \\ T = 0.3 (40,20,15) \\ (60,30,20) \\ (60,30,20) \\ (60,30,20) \\ (60,30,20) \\ (30,20,15) \\$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$Sch - II = 0.3 (30,20,15) 0.1962 0.0036 0.1983 0.0069 0.1024 0.012 \\ (40,20,15) 0.1816 0.0052 0.1950 0.0036 0.0900 0.007 \\ (60,30,20) 0.1219 0.0057 0.1268 0.0019 0.0649 0.003 \\ (30,20,15) 0.1114 0.0075 0.0936 0.0029 0.0436 0.0036 \\ (60,30,20) 0.0984 0.0019 0.0884 0.0046 0.1182 0.0036 \\ (60,30,20) 0.0984 0.0019 0.0884 0.0054 0.0519 0.009 \\ (30,20,15) 0.1340 0.0092 0.1151 0.0012 0.0662 0.006 \\ (60,30,20) 0.1235 0.0052 0.1125 0.0071 0.1037 0.011 \\ (60,30,20) 0.1235 0.0052 0.1125 0.0071 0.1070 0.017 \\ (60,30,20) 0.1235 0.0052 0.1125 0.0070 0.1070 0.017 \\ (60,30,20) 0.1107 0.0002 0.1118 0.0072 0.0542 0.016 \\ (30,20,15) 0.1516 0.0109 0.1333 0.0007 0.0785 0.004 \\ (30,20,15) 0.1516 0.0109 0.1333 0.0007 0.0785 0.004 \\ (30,20,15) 0.1205 0.0051 0.1060 0.0021 0.0684 0.005 \\ (30,20,15) 0.1205 0.0051 0.1060 0.0021 0.0684 0.005 \\ (30,20,15) 0.1597 0.0103 0.1411 0.0001 0.0889 0.005 \\ T = 1.5 (40,20,15) 0.2560 0.0116 0.2477 0.0030 0.1533 0.007 \\ (30,20,15) 0.1597 0.0103 0.1411 0.0016 0.0636 0.007 \\ (30,20,15) 0.1928 0.0034 0.2015 0.0070 0.1070 0.017 \\ T = 0.3 (40,20,15) 0.1928 0.0034 0.2015 0.0070 0.1070 0.017 \\ T = 0.3 (40,20,15) 0.1928 0.0034 0.2015 0.0070 0.1070 0.017 \\ T = 0.3 (40,20,15) 0.1928 0.0034 0.2015 0.0070 0.1070 0.017 \\ T = 0.3 (40,20,15) 0.1928 0.0034 0.2015 0.0070 0.1070 0.017 \\ T = 0.3 (40,20,15) 0.1928 0.0034 0.2015 0.0070 0.1070 0.017 \\ (30,20,15) 0.1928 0.0034 0.2015 0.0070 0.1070 0.017 \\ T = 0.3 (40,20,15) 0.3861 0.0032 0.4732 0.0048 0.2402 0.008 \\ (30,20,15) 0.1928 0.0034 0.2015 0.0070 0.1070 0.017 \\ (30,20,15) 0.1928 0.0034 0.2015 0.0070 0.1070 0.017 \\ (30,20,15) 0.1928 0.0034 0.2015 0.0070 0.1070 0.017 \\ (30,20,15) 0.3861 0.0032 0.4732 0$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$Sch - II = 0.3 (30,20,15) 0.1962 0.0036 0.1983 0.0069 0.1024 0.011 \\ (40,20,15) 0.1816 0.0052 0.1950 0.0036 0.0900 0.000 \\ (60,30,20) 0.1219 0.0057 0.1268 0.0019 0.0649 0.003 \\ (30,20,15) 0.1114 0.0075 0.0936 0.0029 0.0436 0.003 \\ (60,30,20) 0.0984 0.0019 0.0884 0.0054 0.0519 0.009 \\ (60,30,20) 0.0984 0.0019 0.0884 0.0054 0.0519 0.009 \\ (30,20,15) 0.1340 0.0092 0.1151 0.0012 0.0662 0.000 \\ (60,30,20) 0.1235 0.0052 0.1151 0.0012 0.0662 0.000 \\ (60,30,20) 0.1235 0.0052 0.1125 0.0021 0.0748 0.001 \\ (60,30,20) 0.1235 0.0052 0.1125 0.0070 0.1070 0.017 \\ (60,30,20) 0.1107 0.0002 0.1118 0.0072 0.0542 0.014 \\ (60,30,20) 0.1107 0.0002 0.1118 0.0072 0.0542 0.014 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.009 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.009 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.009 \\ (60,30,20) 0.1101 0.0089 0.1011 0.0016 0.0889 0.001 \\ (60,30,20) 0.1101 0.0089 0.1001 0.0166 0.0021 0.0684 0.001 \\ (60,30,20) 0.1101 0.0089 0.1001 0.0016 0.0636 0.002 \\ (60,30,20) 0.1101 0.0089 0.1001 0.0016 0.0636 0.002 \\ (60,30,20) 0.1101 0.0089 0.1001 0.0016 0.0636 0.002 \\ (60,30,20) 0.1101 0.0089 0.1001 0.0016 0.0636 0.002 \\ (60,30,20) 0.1101 0.0089 0.1001 0.0016 0.0636 0.002 \\ (60,30,20) 0.1101 0.0032 0.4732 0.0048 0.2402 0.008 \\ (60,30,20) 0.1597 0.0022 0.1710 0.0046 0.1106 0.0021 \\ (60,30,20) 0.1597 0.0022 0.1710 0.0046 0.1106 0.0032 \\ (60,30,20) 0.1597 0.0022 0.1710 0.0046 0.1106 0.0036 \\ (60,30,20) 0.1597 0.0022 0.1710 0.0046 0.1106 0.0036 \\ (60,30,20) 0.1597 0.0022 0.1710 0.0046 0.1106 0.0088 \\ (60,30,20) 0.1597 0.0022 0.1710 0.0046 0.1106 0.0088 \\ (60,30,20) 0.1597 0.0022 0.1710 0.0046 0.1106 0.0088 \\ (60,30,20) 0.1597 0.0022 $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$Sch-II = 0.3 \begin{array}{c} (30,20,15) \\ T = 0.3 (40,20,15) \\ (60,30,20) \\ (60,30,20) \\ (60,30,20) \\ (60,30,20) \\ (1219 \\ (30,20,15) \\ (30,$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$Sch-II = 0.3 (30,20,15) 0.1962 0.0036 0.1983 0.0069 0.1024 0.011 \\ (40,20,15) 0.1816 0.0052 0.1950 0.0036 0.0900 0.000 \\ (60,30,20) 0.1219 0.0057 0.1268 0.0019 0.0649 0.001 \\ (30,20,15) 0.1114 0.0075 0.0936 0.0029 0.0436 0.000 \\ (50,30,20) 0.0984 0.0019 0.0884 0.0054 0.0519 0.006 \\ (60,30,20) 0.0984 0.0019 0.0884 0.0054 0.0519 0.000 \\ (50,30,20) 0.0984 0.0019 0.0884 0.0054 0.0519 0.000 \\ (50,30,20) 0.1235 0.0052 0.1151 0.0012 0.0662 0.000 \\ (60,30,20) 0.1235 0.0052 0.1151 0.0012 0.0662 0.000 \\ (60,30,20) 0.1235 0.0052 0.1125 0.0070 0.1070 0.011 \\ (60,30,20) 0.1235 0.0052 0.1125 0.0070 0.1070 0.011 \\ (60,30,20) 0.1205 0.0006 0.1840 0.0079 0.0827 0.011 \\ (60,30,20) 0.1107 0.0002 0.1118 0.0072 0.0542 0.011 \\ (60,30,20) 0.1107 0.0002 0.1118 0.0072 0.0542 0.001 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.009 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.009 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.009 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.009 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.009 \\ (60,30,20) 0.1597 0.0103 0.1411 0.0001 0.0889 0.009 \\ (60,30,20) 0.1597 0.0103 0.1411 0.0001 0.0889 0.009 \\ (60,30,20) 0.1597 0.0034 0.2015 0.0070 0.1070 0.017 \\ T = 0.3 (40,20,15) 0.3861 0.0032 0.4732 0.0048 0.2402 0.008 \\ (50,30,20) 0.1597 0.0022 0.1710 0.0046 0.1106 0.0036 \\ (50,30,20) 0.1597 0.0022 0.1710 0.0046 0.1106 0.0036 \\ (50,30,20) 0.1597 0.0022 0.1710 0.0046 0.1106 0.0036 \\ (50,30,20) 0.1597 0.0022 0.1710 0.0046 0.1106 0.0036 \\ (50,30,20) 0.1597 0.0017 0.1846 0.0008 0.1130 0.004 \\ (50,30,20) 0.1597 0.0017 0.1846 0.0008 0.1130 0.004 \\ (50,30,20) 0.1597 0.0017 0.1846 0.0008 0.1130 0.004 \\ (50,30,20) 0.1597 0.0107 0.18$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$Sch - II = 0.3 (30,20,15) \\ Sch - II = 0.3 (40,20,15) \\ T = 0.3 (40,20,15) \\ (60,30,20) \\ (60,30,20) \\ (30,20,15) \\ (30,20,15) \\ (30,20,15) \\ (40,20,15) \\ (30,20,15) \\ (40,20,15) \\ (30,20,15) \\ (40,20,15) \\ (30,20,15) $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$Sch - II = 0.3 (30,20,15) 0.1962 0.0036 0.1983 0.0069 0.1024 0.012 \\ (40,20,15) 0.1816 0.0052 0.1950 0.0036 0.0900 0.002 \\ (60,30,20) 0.1219 0.0057 0.1268 0.0019 0.0649 0.003 \\ (30,20,15) 0.1114 0.0075 0.0936 0.0029 0.0436 0.009 \\ (30,20,15) 0.2209 0.0041 0.2048 0.0046 0.1182 0.006 \\ (60,30,20) 0.0984 0.0019 0.0884 0.0054 0.0519 0.009 \\ (30,20,15) 0.1340 0.0092 0.1151 0.0012 0.0662 0.006 \\ (30,20,15) 0.1235 0.0052 0.1125 0.0021 0.0748 0.007 \\ (30,20,15) 0.1235 0.0052 0.1125 0.0021 0.0748 0.001 \\ (60,30,20) 0.1235 0.0052 0.1125 0.0070 0.1070 0.017 \\ (60,30,20) 0.1107 0.0002 0.1118 0.0072 0.0542 0.011 \\ (60,30,20) 0.1107 0.0002 0.1118 0.0072 0.0542 0.011 \\ (60,30,20) 0.1107 0.0002 0.1118 0.0072 0.0542 0.011 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.003 \\ (30,20,15) 0.1516 0.0109 0.1333 0.0007 0.0785 0.004 \\ (30,20,15) 0.1507 0.0103 0.1411 0.0001 0.0889 0.003 \\ (60,30,20) 0.1101 0.0089 0.1001 0.0016 0.0636 0.003 \\ (60,30,20) 0.1101 0.0089 0.1001 0.0016 0.0636 0.003 \\ (50,30,20) 0.1597 0.0103 0.1411 0.0001 0.0889 0.003 \\ (50,30,20) 0.1597 0.0022 0.1710 0.0046 0.1100 0.008 \\ (60,30,20) 0.1597 0.0022 0.1710 0.0046 0.1106 0.003 \\ (60,30,20) 0.1597 0.0022 0.1710 0.0046 0.1106 0.003 \\ (50,30,20) 0.1597 0.0022 0.1710 0.0048 0.2402 0.004 \\ (60,30,20) 0.1597 0.0022 0.1710 0.0046 0.1106 0.004 \\ (60,30,20) 0.1597 0.0022 0.1710 0.0046 0.1106 0.004 \\ (60,30,20) 0.1597 0.0022 0.1710 0.0046 0.1106 0.004 \\ (60,30,20) 0.1597 0.0022 0.1710 0.0046 0.1106 0.004 \\ (60,30,20) 0.1597 0.0022 0.1710 0.0046 0.1106 0.004 \\ (60,30,20) 0.1597 0.0017 0.1846 0.0008 0.1130 0.004 \\ (60,30,20) 0.1597 0.0017 0.1846 0.0008 0.1130 0.004 \\ (60,30,20) 0.1610 0.0039 0.1703 0.0030 $	79 0.0715 57 0.0502 30 0.0274 39 0.1086 90 0.0403 53 0.0516 19 0.0935 58 0.0647 22 0.0894 22 0.0649 09 0.0379 44 0.0645 01 0.1067 57 0.0573 51 0.0757 12 0.0894 38 0.2642 31 0.1052 0.6894 38 0.2642 0.1002 40 0.1052 06 0.2268 54 0.1009 41 0.1140
$Sch - II = 0.3 (30,20,15) 0.1962 0.0036 0.1983 0.0069 0.1024 0.011 \\ T = 0.3 (40,20,15) 0.1816 0.0052 0.1950 0.0036 0.0900 0.001 \\ (60,30,20) 0.1219 0.0057 0.1268 0.0019 0.0649 0.001 \\ (30,20,15) 0.1114 0.0075 0.0936 0.0029 0.0436 0.000 \\ (60,30,20) 0.0984 0.0019 0.0848 0.0046 0.1182 0.000 \\ (60,30,20) 0.0984 0.0019 0.0884 0.0051 0.0519 0.000 \\ (60,30,20) 0.1235 0.0092 0.1151 0.0012 0.0662 0.000 \\ (60,30,20) 0.1235 0.0052 0.1151 0.0012 0.0662 0.000 \\ (60,30,20) 0.1235 0.0052 0.1125 0.0070 0.1070 0.017 \\ (60,30,20) 0.1235 0.0052 0.1125 0.0070 0.1070 0.017 \\ (60,30,20) 0.1107 0.0002 0.1118 0.0072 0.0542 0.011 \\ (60,30,20) 0.1107 0.0002 0.1118 0.0072 0.0542 0.011 \\ (60,30,20) 0.1107 0.0002 0.1118 0.0070 0.0785 0.009 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.009 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.009 \\ (60,30,20) 0.1205 0.0051 0.1060 0.0021 0.0684 0.009 \\ (60,30,20) 0.1101 0.0089 0.1001 0.0889 0.001 \\ T = 1.5 (40,20,15) 0.2560 0.0116 0.2477 0.0030 0.1533 0.001 \\ (60,30,20) 0.1101 0.0089 0.1001 0.0016 0.0636 0.001 \\ T = 0.3 (40,20,15) 0.1597 0.0103 0.1411 0.0001 0.0889 0.002 \\ T = 1.5 (40,20,15) 0.1597 0.0103 0.1411 0.0001 0.0889 0.000 \\ (60,30,20) 0.1101 0.0089 0.1001 0.0016 0.0636 0.001 \\ (30,20,15) 0.1597 0.0103 0.1411 0.00046 0.1106 0.006 \\ (50,30,20) 0.1597 0.0103 0.1411 0.00046 0.1106 0.006 \\ (50,30,20) 0.1597 0.0102 0.1770 0.0146 0.1106 0.006 \\ (50,30,20) 0.1597 0.0107 0.1846 0.0008 0.1130 0.004 \\ (60,30,20) 0.1597 0.0107 0.1846 0.0008 0.1130 0.004 \\ (60,30,20) 0.1597 0.0107 0.1846 0.0008 0.1106 0.006 \\ (30,20,15) 0.1982 0.0107 0.1950 0.0007 0.1223 0.004 \\ (30,20,15) 0.1982 0.0107 0.1950 0.0007 0.1223 0.004 \\ (30,20,15) 0$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Table 3. MSE and EB of ML and Bayesian estimates for λ based on the different censoring schemes.

						Baye	esian			
				$\widehat{\mu}_{l}$	3S	$\widehat{\mu}$	BL	μ	BE	_
Sch.	Т	(n, m, k)	$\widehat{\mu}_{ML}$	IP	NIP	IP	NIP	IP	NIP	_
				MS E						_
		(30,20,15)	0.0410	0.0066	0.0361	0.0065	0.0337	0.0064	0.0320	_
	T = 0.3	(40,20,15)	0.0307	0.0051	0.0270	0.0051	0.0257	0.0050	0.0250	
		(60,30,20)	0.0236	0.0046	0.0214	0.0046	0.0207	0.0046	0.0203	
		(30.20.15)	0.0287	0.0070	0.0246	0.0068	0.0235	0.0066	0.0229	
Sch - I	T = 0.7	(40, 20, 15)	0.0304	0.0054	0.0259	0.0053	0.0248	0.0051	0.0239	
5 6 1	1 0.7	(10, 20, 10) (60, 30, 20)	0.0187	0.0047	0.0163	0.0046	0.0158	0.0046	0.0155	
		(30,20,15)	0.0301	0.0017	0.0257	0.0010	0.0130	0.0010	0.0133	_
	T = 1.5	(30,20,15)	0.0301	0.0009	0.0257	0.0007	0.0240	0.0000	0.0230	
	I = 1.5	(40,20,13)	0.0299	0.0000	0.0259	0.0039	0.0240	0.0036	0.02+0	
		(00, 30, 20)	0.0105	0.0047	0.0101	0.0040	0.0130	0.00+0	0.0152	_
	T = 0.2	(30,20,13)	0.0439	0.0009	0.0409	0.0007	0.0362	0.0000	0.0304	
	I = 0.5	(40, 20, 13)	0.0510	0.0034	0.0272	0.0034	0.0239	0.0035	0.0235	
		(60,30,20)	0.0215	0.0046	0.0190	0.0045	0.0184	0.0044	0.0180	_
	T 0 T	(30,20,15)	0.0287	0.0066	0.0248	0.0066	0.0237	0.0064	0.0228	
$Sch - \Pi$	T = 0.7	(40,20,15)	0.0256	0.0052	0.0220	0.0051	0.0210	0.0050	0.0202	
		(60,30,20)	0.0176	0.0042	0.0153	0.0041	0.0148	0.0041	0.0144	_
		(30,20,15)	0.0308	0.0069	0.0268	0.0067	0.0255	0.0066	0.0246	
	T = 1.5	(40,20,15)	0.0279	0.0053	0.0243	0.0053	0.0231	0.0052	0.0221	
		(60,30,20)	0.0161	0.0046	0.0140	0.0045	0.0136	0.0044	0.0133	_
		(30,20,15)	0.0459	0.0069	0.0409	0.0067	0.0382	0.0066	0.0364	
	T = 0.3	(40,20,15)	0.0462	0.0046	0.0423	0.0046	0.0393	0.0046	0.0370	
		(60,30,20)	0.0248	0.0043	0.0226	0.0042	0.0216	0.0042	0.0207	
		(30,20,15)	0.0350	0.0062	0.0304	0.0062	0.0286	0.0061	0.0272	_
Sch - III	T = 0.7	(40,20,15)	0.0428	0.0051	0.0394	0.0050	0.0369	0.0049	0.0348	
		(60,30,20)	0.0232	0.0041	0.0208	0.0040	0.0199	0.0040	0.0192	
		(30,20,15)	0.0401	0.0067	0.0354	0.0066	0.0333	0.0065	0.0318	_
	T = 1.5	(40.20.15)	0.0469	0.0050	0.0420	0.0050	0.0392	0.0049	0.0371	
	1 110	(60, 30, 20)	0.0254	0.0045	0.0224	0.0044	0.0214	0.0043	0.0205	
		(**,**,=*)		EB						_
		(30.20.15)	0.0556	0.0107	0.0453	0.0083	0.0378	0.0038	0.0247	_
	T = 0.3	(40.20.15)	0.0338	0.0057	0.0263	0.0039	0.0204	0.0006	0.0095	
		(60.30.20)	0.0248	0.0047	0.0194	0.0032	0.0150	0.0003	0.0069	
		(30.20.15)	0.0335	0.0084	0.0246	0.0061	0.0194	0.0015	0.0096	_
Sch - I	T = 0.7	(40, 20, 15)	0.0446	0.0077	0.0333	0.0059	0.0285	0.0025	0.0198	
Sen 1	1 - 0.7	(10, 20, 10) (60, 30, 20)	0.0269	0.0064	0.0210	0.0050	0.0203	0.0023	0.0118	
		(30,20,15)	0.0207	0.0004	0.0210	0.0050	0.0170	0.0021	0.0110	_
	T = 1.5	(30,20,15)	0.0420	0.0000	0.0327	0.0007	0.0275	0.0022	0.0205	
	I = 1.5	(40,20,13)	0.0439	0.0092	0.0357	0.0074	0.0291	0.00+1	0.0203	
		(00, 30, 20)	0.0519	0.0003	0.0200	0.0048	0.0229	0.0020	0.0171	_
	T 02	(30,20,13)	0.0392	0.0104	0.0460	0.0061	0.0405	0.0030	0.0272	
	I = 0.5	(40, 20, 15)	0.0350	0.0081	0.0258	0.0064	0.0200	0.0030	0.0093	
		(60, 30, 20)	0.0262	0.0073	0.0200	0.0058	0.0157	0.0030	0.0077	_
	T 0 T	(30,20,15)	0.0438	0.0082	0.0348	0.0059	0.0293	0.0015	0.0194	
$Sch - \Pi$	I = 0.7	(40,20,15)	0.0426	0.0073	0.0339	0.0056	0.0291	0.0023	0.0203	
		(60,30,20)	0.0305	0.0056	0.0224	0.0042	0.0192	0.0014	0.0133	_
		(30,20,15)	0.0473	0.0086	0.0378	0.0062	0.0327	0.0018	0.0234	
	T = 1.5	(40,20,15)	0.0494	0.0045	0.0384	0.0028	0.0335	0.0005	0.0248	
		(60,30,20)	0.0239	0.0031	0.0184	0.0017	0.0153	0.0011	0.0095	_
		(30,20,15)	0.0592	0.0104	0.0480	0.0081	0.0403	0.0036	0.0272	
	T = 0.3	(40,20,15)	0.0701	0.0073	0.0608	0.0057	0.0534	0.0026	0.0413	
		(60,30,20)	0.0404	0.0066	0.0353	0.0051	0.0310	0.0024	0.0233	
		(30,20,15)	0.0516	0.0070	0.0422	0.0048	0.0360	0.0005	0.0252	_
Sch - III	T = 0.7	(40,20,15)	0.0656	0.0084	0.0581	0.0068	0.0510	0.0037	0.0391	
		(60,30,20)	0.0388	0.0054	0.0332	0.0040	0.0291	0.0013	0.0215	
		(30,20,15)	0.0561	0.0073	0.0464	0.0050	0.0402	0.0007	0.0296	_
	T = 1.5	(40,20,15)	0.0685	0.0077	0.0595	0.0061	0.0524	0.0030	0.0404	
natical Bioscien	ces and Er	18 100.30120)	0.0444	0.0082	0.0375	0.0068	0.03320	ol um004 19,	188,0256	2330-2

Table 4. MSE and EB of the ML and Bayesian estimates for μ based on the different censoring schemes.

				Bayesian						
				$\widehat{S(t)}_{F}$	s	$\widehat{S(t)}_{I}$	а.	$\widehat{S(t)}_{Bl}$	E	
Sch.	Т	(n, m, k)	$\widehat{S(t)}_{MI}$	IP	NIP	IP	NIP	IP	NIP	
		(,,.)	~ (*/ML	MS	 F					
		(30.20.15)	0.0005	3.90×10^{-6}	0.0016	3.90×10^{-6}	0.0014	2.60×10^{-6}	0.0003	
	T = 0.3	(40, 20, 15)	0.0010	3.90×10^{-6}	0.0026	3.90×10^{-6}	0.0025	1.30×10^{-6}	0.0004	
	1 0.5	(10, 20, 10) (60, 30, 20)	0.0007	3.90×10^{-6}	0.0016	3.90×10^{-6}	0.0014	2.60×10^{-6}	0.0004	
		(30,20,15)	0.0005	5.20×10^{-6}	0.0012	$\frac{5.90\times10}{5.20\times10^{-6}}$	0.0010	2.00×10^{-6}	0.0003	
Sch = I	T = 0.7	(30,20,15) (40,20,15)	0.0005	3.20×10^{-6}	0.0012	3.20×10^{-6}	0.0010	2.00×10^{-6}	0.0003	
5 cn - 1	I = 0.7	(40,20,13) (60,30,20)	0.0007	5.90×10^{-6}	0.0014	5.90×10^{-6}	0.0014	2.00×10^{-6}	0.0004	
		(00, 30, 20)	0.0003	$\frac{3.20\times10}{2.00\times10^{-6}}$	0.0007	$\frac{3.20\times10}{2.00\times10^{-6}}$	0.0007	$\frac{2.00\times10}{2.60\times10^{-6}}$	0.0003	
	T = 1.5	(30,20,13)	0.0005	5.90×10^{-6}	0.0008	5.90×10^{-6}	0.0008	2.00×10^{-6}	0.0003	
	I = 1.5	(40, 20, 15)	0.0005	5.20×10 °	0.0012	5.20×10 °	0.0012	2.60×10^{-6}	0.0004	
		(60,30,20)	0.0003	5.20×10 °	0.0005	5.20×10 °	0.0005	$\frac{2.60 \times 10^{-6}}{2.60 \times 10^{-6}}$	0.0001	
	T 0.0	(30,20,15)	0.0007	3.90×10 °	0.0018	3.90×10 °	0.0017	2.60×10 °	0.0004	
	T = 0.3	(40,20,15)	0.0012	3.90×10^{-6}	0.0029	3.90×10^{-6}	0.0027	2.60×10 ⁻⁶	0.0005	
		(60,30,20)	0.0008	3.90×10 ⁻⁶	0.0017	3.90×10 ⁻⁶	0.0016	2.60×10^{-6}	0.0005	
		(30,20,15)	0.0005	5.20×10^{-6}	0.0010	5.20×10^{-6}	0.0010	2.60×10^{-6}	0.0004	
Sch - II	T = 0.7	(40,20,15)	0.0005	3.90×10^{-6}	0.0012	3.90×10^{-6}	0.0012	2.60×10^{-6}	0.0003	
		(60,30,20)	0.0003	5.20×10^{-6}	0.0005	5.20×10^{-6}	0.0005	2.60×10^{-6}	0.0001	
		(30,20,15)	0.0004	5.20×10^{-6}	0.0008	5.20×10 ⁻⁶	0.0008	2.60×10^{-6}	0.0003	
	T = 1.5	(40,20,15)	0.0004	3.90×10^{-6}	0.0009	3.90×10^{-6}	0.0009	2.60×10^{-6}	0.0003	
		(60, 30, 20)	0.0003	5.20×10^{-6}	0.0004	5.20×10^{-6}	0.0004	2.60×10^{-6}	0.0001	
		(30.20.15)	0.0007	3.90×10^{-6}	0.0018	3.90×10^{-6}	0.0017	2.60×10^{-6}	0.0004	
	T = 0.3	(40.20.15)	0.0007	2.60×10^{-6}	0.0017	2.60×10^{-6}	0.0016	1.30×10^{-6}	0.0004	
	1 0.0	(60, 30, 20)	0.0004	3.90×10^{-6}	0.0008	3.90×10^{-6}	0.0008	2.60×10^{-6}	0.0003	
		(30,20,15)	0.0003	$\frac{3.90\times10^{-6}}{3.90\times10^{-6}}$	0.0007	$\frac{3.90\times10^{-6}}{3.90\times10^{-6}}$	0.0007	2.00×10^{-6}	0.0003	
Sch - III	T = 0.7	(30,20,15) (40,20,15)	0.0003	3.90×10^{-6}	0.0007	3.90×10^{-6}	0.0007	1.30×10^{-6}	0.0003	
5 cn - 111	I = 0.7	(40,20,13) (60,30,20)	0.0007	3.90×10^{-6}	0.0017	3.90×10^{-6}	0.0010	1.50×10^{-6}	0.0004	
		(00, 30, 20)	0.0003	$\frac{3.90\times10}{2.00\times10^{-6}}$	0.0007	$\frac{3.90\times10}{2.00\times10^{-6}}$	0.0007	$\frac{2.00\times10}{2.60\times10^{-6}}$	0.0001	
	T 15	(30,20,13)	0.0005	3.90×10^{-6}	0.0007	3.90×10^{-6}	0.0007	2.00×10^{-6}	0.0001	
	I = 1.5	(40, 20, 15)	0.0008	3.90×10 °	0.0018	3.90×10 °	0.0017	1.30×10 °	0.0004	
		(60,30,20)	0.0003	3.90×10 °	0.0007	3.90×10 °	0.0007	2.60×10 °	0.0001	
		(20.20.15)		EB	0.0070	0.0014	0.00(0	0.0007	0.001.4	
	-	(30,20,15)	0.0070	0.0014	0.0270	0.0014	0.0260	0.0007	0.0014	
	T = 0.3	(40,20,15)	0.0120	0.0014	0.0350	0.0014	0.0340	0.0007	0.0003	
		(60,30,20)	0.0090	0.0013	0.0250	0.0013	0.0250	0.0007	0.0004	
		(30,20,15)	0.0069	0.0014	0.0220	0.0013	0.0210	0.0007	0.0009	
Sch - I	T = 0.7	(40,20,15)	0.0073	0.0013	0.0230	0.0013	0.0230	0.0007	0.0007	
		(60,30,20)	0.0049	0.0014	0.0150	0.0013	0.0150	0.0005	0.0003	
		(30,20,15)	0.0045	0.0012	0.0170	0.0012	0.0170	0.0008	0.0004	
	T = 1.5	(40,20,15)	0.0069	0.0014	0.0220	0.0014	0.0220	0.0007	0.0001	
		(60,30,20)	0.0032	0.0012	0.0120	0.0012	0.0120	0.0007	0.0008	
		(30,20,15)	0.0082	0.0014	0.0280	0.0014	0.0280	0.0007	0.0003	
	T = 0.3	(40,20,15)	0.0130	0.0014	0.0360	0.0014	0.0350	0.0007	0.0010	
		(60, 30, 20)	0.0096	0.0014	0.0250	0.0014	0.0250	0.0007	0.0010	
		(30,20,15)	0.0055	0.0012	0.0190	0.0012	0.0190	0.0008	0.0010	
Sch - H	T = 0.7	(40.20.15)	0.0062	0.0013	0.0210	0.0013	0.0210	0.0007	0.0008	
~		(60, 30, 20)	0.0039	0.0013	0.0140	0.0013	0.0140	0.0007	0.0003	
		(30,20,15)	0.0045	0.0013	0.0170	0.0012	0.0160	0.0008	0.0003	
	T - 1.5	(40, 20, 15)	0.0038	0.0012	0.0190	0.0012	0.0180	0.0008	0.0021	
	1 = 1.5	(60, 30, 20)	0.0034	0.0012	0.0130	0.0012	0.0120	0.0007	0.0021	
		(00, 30, 20)	0.0034	0.0013	0.0130	0.0013	0.0120	0.0007	0.0003	
	T = 0.2	(30,20,13)	0.0082	0.0014	0.0260	0.0014	0.0260	0.0007	0.0005	
	I = 0.3	(40,20,13)	0.0074	0.0013	0.0200	0.0013	0.0200	0.0008	0.0025	
		(00,30,20)	0.0000	0.0013	0.0170	0.0013	0.0170	0.0007	0.0010	
a 1	— • –	(30,20,15)	0.0035	0.0013	0.0170	0.0012	0.0160	0.0008	0.0020	
Sch – III	T = 0.7	(40,20,15)	0.0070	0.0013	0.0260	0.0013	0.0260	0.0008	0.0027	
		(60,30,20)	0.0041	0.0013	0.0150	0.0013	0.0150	0.0007	0.0018	
		(30,20,15)	0.0039	0.0012	0.0170	0.0012	0.0160	0.0008	0.0017	
	T - 15	(40.20.15)	0.0080	0.0014	0.0270	0.0013	0.0260	0.0007	0.0020	
matical Ria	r = 1.5	nd Engineer	. 0.0000	0.0014	0.0270	0.0015	1/01	ime 10 Teerre	3.2440	

Table 5. MSE and EB of the ML and Bayesian estimates for S(t) at the different censoring schemes.

				Bayes	ian				
a 1	T		$\widehat{\mathbf{n}}$	$H(t)_{I}$	BS NUE	$H(t)_{l}$	BL NUD	$H(t)_B$	E
Sch.	T	(n,m,k)	$H(t)_{ML}$		NIP	IP	NIP	IP	NIP
		(20.20.15)	0.0250	<u>MS1</u>	5	4.20: 10-5	0.0220	4.20: 10-5	0.0200
	T 0.2	(30,20,15)	0.0250	4.20×10^{-5}	0.0390	4.20×10^{-5}	0.0320	4.20×10^{-5}	0.0200
	T = 0.3	(40,20,15)	0.0220	4.20×10^{-5}	0.0350	4.20×10^{-5}	0.0300	4.20×10^{-5}	0.0190
		(60, 30, 20)	0.0250	$\frac{5.60 \times 10^{-5}}{5.60 \times 10^{-5}}$	0.0370	$\frac{5.60 \times 10^{-5}}{5.60 \times 10^{-5}}$	0.0270	$\frac{5.60 \times 10^{-5}}{7.00 \times 10^{-5}}$	0.0240
	T 0 T	(30,20,15)	0.0110	5.60×10 ⁻⁵	0.0130	5.60×10 ⁻⁵	0.0130	7.00×10 ⁻⁵	0.0095
Sch - I	T = 0.7	(40,20,15)	0.0290	5.60×10 ⁻⁵	0.0400	5.60×10^{-5}	0.0330	5.60×10^{-5}	0.0220
		(60,30,20)	0.0084	8.40×10 ⁻⁵	0.0110	8.40×10 ⁻⁵	0.0100	8.40×10 ⁻⁵	0.0081
	T 15	(30, 20, 15)	0.0120	7.00×10 ⁻⁵	0.0150	7.00×10 ⁻⁵	0.0140	7.00×10^{-5}	0.0110
	I = 1.5	(40, 20, 15)	0.0240	5.00×10^{-5}	0.0350	5.60×10 ⁻⁵	0.0300	5.00×10^{-5}	0.0210
		(60, 30, 20)	0.0100	$\frac{7.00 \times 10^{-5}}{4.20 \times 10^{-5}}$	0.0130	$\frac{8.40 \times 10^{-5}}{4.20 \times 10^{-5}}$	0.0120	$\frac{8.40 \times 10^{-5}}{5.60 \times 10^{-5}}$	0.0095
	T 0.2	(30, 20, 15)	0.0260	4.20×10 ⁻⁵	0.0390	4.20×10 ⁻⁵	0.0340	5.60×10^{-5}	0.0220
	I = 0.3	(40, 20, 15)	0.0220	4.20×10 ⁻⁵	0.0340	4.20×10^{-5}	0.0300	4.20×10^{-5}	0.0190
		(60, 30, 20)	0.0120	$\frac{5.60 \times 10^{-5}}{5.60 \times 10^{-5}}$	0.0170	$\frac{5.60 \times 10^{-5}}{5.60 \times 10^{-5}}$	0.0150	$\frac{5.60 \times 10^{-5}}{7.00 \times 10^{-5}}$	0.0110
	T 07	(30, 20, 15)	0.0130	5.60×10 ⁻⁵	0.0180	5.60×10 ⁻⁵	0.0170	7.00×10 ⁻⁵	0.0120
$Sch - \Pi$	I = 0.7	(40,20,15)	0.0190	5.60×10 ⁻⁵	0.0280	5.60×10 ⁻⁵	0.0250	5.60×10 ⁻⁵	0.0160
		(60, 30, 20)	0.0086	7.00×10 ⁻⁵	0.0110	7.00×10 ⁻⁵	0.0110	8.40×10 ⁻⁵	0.0081
	T 15	(30, 20, 15)	0.0130	7.00×10 ⁻⁵	0.0170	7.00×10 ⁻⁵	0.0160	7.00×10^{-5}	0.0120
	I = 1.5	(40, 20, 15)	0.0260	4.20×10 ⁻⁵	0.0420	4.20×10 ⁻⁵	0.0330	5.00×10^{-5}	0.0230
		(60, 30, 20)	0.0076	7.00×10 ⁻⁵	0.0100	7.00×10 ⁻⁵	0.0096	$\frac{7.00 \times 10^{-9}}{5.00 \times 10^{-5}}$	0.0074
	T 0.2	(30, 20, 15)	0.0260	4.20×10 ⁻⁵	0.0390	4.20×10 ⁻⁵	0.0340	5.60×10^{-5}	0.0220
	I = 0.3	(40, 20, 15)	0.0750	4.20×10 ⁻⁵	0.2200	4.20×10 ⁻⁵	0.1100	4.20×10^{-5}	0.0680
		(60,30,20)	0.0150	5.60×10 ⁻⁵	0.0230	5.60×10 ⁻⁵	0.0210	5.60×10 ⁻⁵	0.0140
	T 07	(30,20,15)	0.0260	5.60×10^{-5}	0.0430	5.60×10^{-5}	0.0340	5.60×10^{-5}	0.0240
Sch - III	I = 0.7	(40, 20, 15)	0.0660	4.20×10 ⁻⁵	0.1500	4.20×10 ⁻⁵	0.0910	4.20×10^{-5}	0.0570
		(60,30,20)	0.0160	5.60×10 ⁻⁵	0.0230	5.60×10 ⁻⁵	0.0210	5.60×10 ⁵	0.0140
	TT 1 5	(30,20,15)	0.0250	5.60×10 ⁻⁵	0.0430	5.60×10 ⁻⁵	0.0340	5.60×10 ⁻⁵	0.0230
	T = 1.5	(40,20,15)	0.0870	4.20×10^{-5}	0.2000	4.20×10^{-5}	0.1000	4.20×10 ⁻⁵	0.0700
		(60,30,20)	0.0170	$\frac{5.60 \times 10^{-5}}{EB}$	0.0260	5.60×10 ⁻⁵	0.0230	5.60×10 ⁻⁵	0.0150
		(30.20.15)	0.0600	1.70×10^{-4}	0.0880	3.20×10^{-4}	0.0800	0.0027	0.0320
	T = 0.3	(40.20.15)	0.0510	3.60×10^{-4}	0.0810	5.20×10^{-4}	0.0730	0.0028	0.0240
		(60.30.20)	0.0360	2.80×10^{-5}	0.0540	1.10×10^{-4}	0.0490	0.0024	0.0180
		(30.20.15)	0.0330	3.80×10^{-4}	0.0400	5.20×10^{-4}	0.0370	0.0028	0.0110
Sch - I	T = 0.7	(40,20,15)	0.0610	9.80×10 ⁻⁵	0.0810	5.60×10^{-5}	0.0740	0.0024	0.0370
		(60.30.20)	0.0290	1.10×10^{-5}	0.0370	1.50×10^{-4}	0.0350	0.0024	0.0160
		(30.20.15)	0.0400	2.40×10^{-4}	0.0480	9.80×10 ⁻⁵	0.0450	0.0021	0.0200
	T = 1.5	(40.20.15)	0.0550	1.50×10^{-4}	0.0740	3.10×10^{-4}	0.0680	0.0025	0.0330
		(60.30.20)	0.0340	5.90×10^{-4}	0.0440	4.50×10^{-4}	0.0420	0.0017	0.0230
		(30,20,15)	0.0640	3.40×10 ⁻⁴	0.0920	4.90×10 ⁻⁴	0.0840	0.0028	0.0350
	T = 0.3	(40,20.15)	0.0510	3.50×10^{-4}	0.0780	5.00×10^{-4}	0.0700	0.0028	0.0230
		(60,30.20)	0.0330	1.40×10^{-5}	0.0490	1.40×10^{-4}	0.0450	0.0024	0.0140
		(30.20.15)	0.0440	3.80×10^{-4}	0.0550	2.20×10^{-4}	0.0510	0.0021	0.0240
Sch - H	T = 0.7	(40.20.15)	0.0550	4.20×10^{-5}	0.0770	1.10×10^{-4}	0.0720	0.0024	0.0340
		(60.30.20)	0.0330	4.90×10^{-4}	0.0410	3.50×10^{-4}	0.0390	0.0018	0.0190
		(30.20.15)	0.0460	2.50×10^{-4}	0.0570	1.10×10^{-4}	0.0540	0.0021	0.0280
	T = 1.5	(40.20.15)	0.0670	4.20×10^{-4}	0.0920	2.80×10^{-4}	0.0850	0.0020	0.0450
		(60.30.20)	0.0280	1.30×10^{-4}	0.0370	1.10×10^{-5}	0.0350	0.0023	0.0160
		(30.20.15)	0.0640	3.40×10^{-4}	0.0920	4.90×10^{-4}	0.0840	0.0028	0.0350
	T = 0.3	(40.20.15)	0.1100	3.40×10^{-4}	0.2000	1.80×10^{-4}	0.1600	0.0021	0.0860
	- 0.0	(60.30.20)	0.0460	3.90×10^{-4}	0.0700	2.40×10^{-4}	0.0650	0.0020	0.0340
		(30,20,15)	0.0560	1.30×10^{-4}	0.0770	1.10×10^{-5}	0.0710	0.0024	0.0370
Sch – III	T = 0.7	(40.20.15)	0.0970	2.90×10^{-4}	0.1700	1.40×10^{-4}	0.1400	0.0023	0.0740
500 111	- 0.7	(60.30.20)	0.0460	3.60×10^{-4}	0.0680	2.10×10^{-4}	0.0640	0.0021	0.0330
		(30,20,15)	0.0600	1.10×10^{-4}	0.0830	4.20×10^{-5}	0.0760	0.0024	0.0410
				+++V/\+V	0.00000		5.0700	0.0021	0.0110
	T = 1.5	(40.20.15)	0.1100	8.40×10^{-5}	0.1800	7.00×10^{-5}	0.1500	0.0024	0.0810

Table 6. MSE and EB of the ML and Bayesian estimates for H(t) at different censoring schemes.

						$\widehat{\lambda}_B$							
			$\widehat{\lambda}_{i}$	ML			Ι	Р			N	IP	
		90)%	95	5%	90)%	95	5%	90)%	95	5%
Т	(n, m, k)	AL	CP	AL	CP	AL	CP	AL	CP	AL	CP	AL	CP
						Sch.I							
	(30,20,15)	2.733	0.918	3.161	0.950	0.911	0.940	1.078	0.965	2.683	0.863	3.138	0.928
T = 0.3	(40,20,15)	2.871	0.930	3.309	0.945	0.828	0.947	0.986	0.970	2.810	0.879	3.317	0.925
	(60,30,20)	2.135	0.907	2.544	0.941	0.769	0.948	0.920	0.969	2.098	0.867	2.511	0.922
	(30,20,15)	1.665	0.873	1.935	0.943	0.741	0.934	0.877	0.965	1.614	0.851	1.864	0.927
T = 0.7	(40,20,15)	2.012	0.924	2.417	0.935	0.674	0.945	0.803	0.964	1.956	0.877	2.360	0.892
	(60,30,20)	1.393	0.878	1.638	0.946	0.623	0.931	0.737	0.969	1.355	0.856	1.596	0.918
	(30,20,15)	1.420	0.901	1.692	0.942	0.658	0.945	0.780	0.965	1.378	0.871	1.634	0.927
T = 1.5	(40,20,15)	1.748	0.931	2.067	0.945	0.602	0.946	0.708	0.965	1.707	0.864	2.015	0.907
	(60,30,20)	1.208	0.907	1.461	0.940	0.554	0.937	0.656	0.965	1.173	0.889	1.420	0.913
						S ch.II							
	(30,20,15)	2.727	0.908	3.181	0.940	0.909	0.930	1.079	0.965	2.653	0.858	3.143	0.912
T = 0.3	(40,20,15)	2.917	0.920	3.260	0.937	0.824	0.955	0.972	0.965	2.883	0.867	3.243	0.923
	(60,30,20)	2.098	0.899	2.499	0.930	0.766	0.946	0.908	0.968	2.047	0.865	2.456	0.907
	(30,20,15)	1.648	0.886	1.984	0.942	0.738	0.944	0.876	0.961	1.592	0.858	1.930	0.917
T = 0.7	(40,20,15)	2.328	0.905	2.408	0.943	0.673	0.944	0.795	0.964	2.296	0.848	2.355	0.913
	(60,30,20)	1.367	0.901	1.661	0.941	0.616	0.947	0.734	0.970	1.334	0.875	1.612	0.913
	(30,20,15)	1.481	0.879	1.726	0.935	0.654	0.934	0.782	0.959	1.455	0.858	1.683	0.907
T = 1.5	(40,20,15)	1.866	0.938	2.224	0.951	0.596	0.948	0.710	0.966	1.811	0.863	2.189	0.922
	(60,30,20)	1.203	0.900	1.442	0.946	0.547	0.945	0.653	0.965	1.169	0.881	1.407	0.913
						Sch.II	I						
	(30,20,15)	2.425	0.915	3.181	0.940	0.887	0.927	1.079	0.965	2.382	0.879	3.143	0.912
T = 0.3	(40,20,15)	3.676	0.928	4.329	0.951	0.798	0.948	0.945	0.974	3.932	0.857	4.748	0.912
	(60,30,20)	2.083	0.913	2.451	0.945	0.742	0.951	0.875	0.964	2.057	0.854	2.459	0.911
	(30,20,15)	1.771	0.919	2.142	0.949	0.721	0.940	0.855	0.966	1.727	0.866	2.120	0.920
T = 0.7	(40,20,15)	3.077	0.924	3.378	0.952	0.656	0.942	0.773	0.968	3.272	0.844	3.600	0.916
	(60,30,20)	1.670	0.913	1.993	0.949	0.601	0.949	0.715	0.967	1.669	0.859	1.986	0.917
	(30,20,15)	1.544	0.924	1.920	0.951	0.644	0.925	0.762	0.970	1.512	0.886	1.913	0.907
T = 1.5	(40,20,15)	2.793	0.927	3.096	0.943	0.580	0.948	0.685	0.967	2.910	0.837	3.291	0.896
	(60,30,20)	1.517	0.913	1.792	0.955	0.534	0.937	0.634	0.957	1.502	0.844	1.792	0.917

Table 7. The AL of 90% and 95% confidence intervals and corresponding	CP for $\widehat{\lambda}_{ML}$	and
$\widehat{\lambda}_B$ based on the different censoring schemes.		

					Bayesian								
			$\widehat{\mu}_{i}$	ML			Ι	Р			N	IP	
		90)%	95	5%	90)%	95	5%	90)%	95	5%
Т	(n, m, k)	AL	СР	AL	СР	AL	СР	AL	СР	AL	СР	AL	СР
						Sch.I							
	(30,20,15)	0.933	0.901	1.101	0.983	0.456	0.955	0.541	0.989	0.910	0.891	1.055	0.961
T = 0.3	(40,20,15)	0.833	0.904	0.979	0.968	0.393	0.940	0.466	0.991	0.804	0.876	0.937	0.951
	(60,30,20)	0.710	0.915	0.837	0.963	0.366	0.952	0.427	0.987	0.695	0.890	0.805	0.931
	(30,20,15)	0.726	0.917	0.855	0.962	0.423	0.963	0.496	0.984	0.706	0.898	0.819	0.942
T = 0.7	(40,20,15)	0.688	0.916	0.814	0.960	0.364	0.957	0.432	0.990	0.671	0.896	0.783	0.931
	(60,30,20)	0.556	0.895	0.661	0.945	0.335	0.939	0.396	0.986	0.542	0.882	0.642	0.927
	(30,20,15)	0.645	0.918	0.766	0.959	0.387	0.952	0.457	0.983	0.632	0.901	0.739	0.938
T = 1.5	(40,20,15)	0.614	0.928	0.735	0.966	0.331	0.954	0.393	0.970	0.594	0.893	0.707	0.930
	(60,30,20)	0.500	0.917	0.599	0.949	0.306	0.954	0.363	0.987	0.488	0.899	0.578	0.927
						Sch.II							
	(30,20,15)	0.931	0.908	1.106	0.973	0.455	0.955	0.537	0.990	0.900	0.893	1.061	0.935
T = 0.3	(40,20,15)	0.820	0.905	0.971	0.971	0.388	0.955	0.462	0.983	0.797	0.882	0.929	0.949
	(60,30,20)	0.700	0.918	0.834	0.975	0.362	0.962	0.426	0.982	0.681	0.905	0.798	0.949
	(30,20,15)	0.719	0.912	0.858	0.972	0.417	0.958	0.494	0.991	0.703	0.888	0.834	0.952
T = 0.7	(40,20,15)	0.757	0.918	0.816	0.970	0.358	0.957	0.423	0.985	0.735	0.899	0.785	0.956
	(60,30,20)	0.555	0.907	0.662	0.969	0.334	0.960	0.391	0.983	0.545	0.879	0.637	0.947
	(30,20,15)	0.654	0.909	0.768	0.966	0.384	0.952	0.456	0.984	0.640	0.874	0.744	0.933
T = 1.5	(40,20,15)	0.633	0.907	0.751	0.971	0.331	0.960	0.388	0.980	0.615	0.874	0.721	0.954
	(60,30,20)	0.506	0.890	0.593	0.971	0.307	0.939	0.357	0.988	0.490	0.872	0.578	0.953
						Sch.II	I						
	(30,20,15)	0.915	0.926	1.106	0.973	0.447	0.941	0.537	0.990	0.891	0.891	1.061	0.935
T = 0.3	(40,20,15)	0.918	0.906	1.080	0.970	0.377	0.942	0.445	0.987	0.884	0.862	1.031	0.937
	(60,30,20)	0.693	0.925	0.832	0.972	0.351	0.960	0.417	0.990	0.675	0.900	0.801	0.934
	(30,20,15)	0.772	0.922	0.914	0.980	0.415	0.955	0.485	0.997	0.750	0.902	0.884	0.964
T = 0.7	(40,20,15)	0.834	0.925	0.990	0.974	0.345	0.950	0.411	0.987	0.806	0.876	0.941	0.935
	(60,30,20)	0.641	0.919	0.760	0.968	0.326	0.955	0.383	0.992	0.623	0.890	0.729	0.947
	(30,20,15)	0.704	0.921	0.842	0.971	0.382	0.942	0.446	0.992	0.686	0.896	0.808	0.947
T = 1.5	(40,20,15)	0.773	0.914	0.911	0.963	0.318	0.956	0.377	0.979	0.739	0.878	0.860	0.923
	(60,30,20)	0.589	0.928	0.702	0.970	0.297	0.949	0.354	0.987	0.573	0.904	0.677	0.940

Table 8. The AL of 90% and 95% confidence intervals and corresponding CP for $\hat{\mu}_{ML}$ and $\hat{\mu}_{B}$ based on the different censoring schemes.

						$\widehat{S(t)}_B$							
			$\widehat{S(t)}$	\tilde{D}_{ML}			Ι	Р			N	IP	
		90)%	95	5%	90)%	95	5%	90)%	95	5%
Т	(n,m,k)	AL	СР	AL	СР	AL	СР	AL	СР	AL	CP	AL	СР
						Sch.I							
	(30,20,15)	0.088	0.736	0.110	0.797	0.021	0.980	0.026	0.985	0.138	0.922	0.185	0.949
T = 0.3	(40,20,15)	0.113	0.771	0.140	0.813	0.022	0.987	0.026	0.993	0.164	0.919	0.215	0.948
	(60,30,20)	0.091	0.803	0.110	0.849	0.021	0.976	0.026	0.978	0.123	0.907	0.158	0.945
	(30,20,15)	0.068	0.789	0.088	0.856	0.020	0.965	0.024	0.963	0.099	0.903	0.133	0.946
T = 0.7	(40,20,15)	0.069	0.727	0.092	0.799	0.020	0.954	0.024	0.948	0.105	0.926	0.144	0.919
	(60,30,20)	0.057	0.812	0.069	0.875	0.019	0.980	0.023	0.985	0.075	0.914	0.097	0.929
	(30,20,15)	0.058	0.790	0.069	0.838	0.018	0.965	0.022	0.918	0.084	0.918	0.108	0.939
T = 1.5	(40,20,15)	0.066	0.758	0.083	0.809	0.018	0.954	0.022	0.985	0.098	0.909	0.132	0.934
	(60,30,20)	0.049	0.833	0.058	0.856	0.018	0.980	0.021	0.903	0.066	0.948	0.083	0.929
						S ch.II							
	(30,20,15)	0.089	0.743	0.113	0.769	0.021	0.980	0.026	0.985	0.140	0.921	0.188	0.943
T = 0.3	(40,20,15)	0.111	0.754	0.143	0.802	0.021	0.965	0.026	0.963	0.159	0.904	0.215	0.954
	(60,30,20)	0.092	0.814	0.110	0.859	0.021	0.954	0.026	0.948	0.125	0.921	0.156	0.934
	(30,20,15)	0.068	0.794	0.080	0.802	0.020	0.943	0.024	0.933	0.098	0.910	0.124	0.944
T = 0.7	(40,20,15)	0.105	0.730	0.088	0.802	0.020	0.932	0.024	0.918	0.150	0.912	0.139	0.940
	(60,30,20)	0.055	0.821	0.066	0.836	0.019	0.980	0.023	0.985	0.074	0.913	0.094	0.930
	(30,20,15)	0.054	0.765	0.067	0.793	0.018	0.943	0.022	0.888	0.078	0.905	0.104	0.928
T = 1.5	(40,20,15)	0.063	0.735	0.073	0.781	0.018	0.932	0.022	0.985	0.096	0.895	0.123	0.950
	(60,30,20)	0.048	0.827	0.059	0.884	0.018	0.980	0.021	0.873	0.064	0.913	0.085	0.934
						Sch.III	<u>I</u>						
	(30,20,15)	0.101	0.782	0.113	0.769	0.021	0.979	0.026	0.985	0.144	0.919	0.188	0.943
T = 0.3	(40,20,15)	0.089	0.668	0.114	0.730	0.021	0.943	0.026	0.933	0.132	0.888	0.180	0.926
	(60,30,20)	0.070	0.778	0.085	0.808	0.021	0.932	0.025	0.918	0.093	0.901	0.120	0.936
	(30,20,15)	0.065	0.766	0.074	0.815	0.020	0.921	0.024	0.903	0.093	0.908	0.119	0.951
T = 0.7	(40,20,15)	0.088	0.684	0.105	0.758	0.020	0.910	0.024	0.888	0.129	0.891	0.170	0.933
	(60,30,20)	0.063	0.803	0.074	0.830	0.019	0.980	0.023	0.985	0.083	0.906	0.107	0.937
	(30,20,15)	0.058	0.788	0.069	0.797	0.018	0.921	0.022	0.858	0.084	0.947	0.109	0.941
T = 1.5	(40,20,15)	0.078	0.684	0.099	0.747	0.018	0.910	0.023	0.985	0.116	0.883	0.158	0.927
	(60,30,20)	0.057	0.787	0.069	0.803	0.018	0.980	0.022	0.903	0.077	0.899	0.098	0.939

Table 9. The AL of 90% and 95% confidence intervals and corresponding CP for $\widehat{S(t)}_{ML}$ and $\widehat{S(t)}_B$ based on the different censoring schemes.

g CP for	$\widehat{H(t)}_{ML}$

			$H(t)_B$										
			$\widehat{H(t)}$	\tilde{D}_{ML}			Ι	Р		NIP			
		90)%	95	5%	90)%	95	5%	90)%	95	5%
Т	(n, m, k)	AL	СР	AL	СР	AL	СР	AL	СР	AL	СР	AL	СР
						Sch.I							
	(30,20,15)	0.472	0.716	0.537	0.769	0.078	0.961	0.093	0.966	0.475	0.943	0.556	0.963
T = 0.3	(40,20,15)	0.473	0.750	0.533	0.784	0.078	0.980	0.092	1.000	0.474	0.933	0.559	0.956
	(60,30,20)	0.344	0.781	0.408	0.819	0.078	1.000	0.091	1.000	0.345	0.922	0.416	0.959
	(30,20,15)	0.310	0.767	0.354	0.825	0.074	1.031	0.087	1.000	0.300	0.924	0.343	0.953
T = 0.7	(40,20,15)	0.344	0.707	0.417	0.770	0.067	0.963	0.080	0.955	0.339	0.946	0.417	0.925
	(60,30,20)	0.256	0.790	0.301	0.843	0.072	1.000	0.086	1.000	0.249	0.926	0.294	0.937
	(30,20,15)	0.288	0.768	0.343	0.808	0.072	1.000	0.085	1.000	0.280	0.931	0.332	0.938
T = 1.5	(40,20,15)	0.332	0.737	0.397	0.780	0.067	0.975	0.079	0.995	0.330	0.930	0.395	0.942
	(60,30,20)	0.243	0.810	0.296	0.825	0.071	1.000	0.084	1.000	0.235	0.959	0.290	0.931
						S ch.II							
	(30,20,15)	0.470	0.722	0.546	0.742	0.078	0.927	0.093	0.975	0.466	0.936	0.562	0.949
T = 0.3	(40,20,15)	0.485	0.733	0.527	0.773	0.078	0.967	0.092	0.989	0.494	0.924	0.547	0.955
	(60,30,20)	0.333	0.792	0.398	0.828	0.077	1.035	0.091	1.000	0.329	0.937	0.401	0.945
	(30,20,15)	0.310	0.773	0.375	0.773	0.074	0.967	0.088	1.000	0.299	0.925	0.369	0.955
T = 0.7	(40,20,15)	0.429	0.710	0.438	0.773	0.074	0.967	0.087	0.959	0.434	0.935	0.440	0.949
	(60,30,20)	0.253	0.798	0.308	0.806	0.073	1.007	0.086	1.000	0.247	0.926	0.300	0.940
	(30,20,15)	0.315	0.744	0.357	0.765	0.072	0.956	0.085	1.000	0.314	0.925	0.350	0.935
T = 1.5	(40,20,15)	0.387	0.715	0.455	0.753	0.073	0.941	0.086	0.965	0.380	0.926	0.461	0.961
	(60,30,20)	0.248	0.805	0.290	0.852	0.071	1.000	0.084	1.000	0.239	0.925	0.285	0.941
						Sch.II	I						
	(30,20,15)	0.417	0.761	0.546	0.742	0.078	0.927	0.093	1.000	0.420	0.935	0.562	0.949
T = 0.3	(40,20,15)	0.663	0.649	0.779	0.704	0.078	0.880	0.093	0.877	0.771	0.906	0.944	0.933
	(60,30,20)	0.348	0.756	0.412	0.779	0.077	0.973	0.091	1.000	0.349	0.917	0.427	0.948
	(30,20,15)	0.362	0.745	0.429	0.786	0.074	0.983	0.088	1.000	0.358	0.930	0.437	0.962
T = 0.7	(40,20,15)	0.607	0.666	0.665	0.731	0.075	0.914	0.089	0.898	0.695	0.912	0.758	0.946
	(60,30,20)	0.332	0.781	0.394	0.800	0.074	1.000	0.087	1.000	0.338	0.923	0.405	0.952
	(30,20,15)	0.338	0.766	0.429	0.769	0.073	0.961	0.086	1.000	0.335	0.962	0.443	0.953
T = 1.5	(40,20,15)	0.621	0.666	0.689	0.720	0.073	0.900	0.087	0.898	0.686	0.903	0.796	0.936
	(60,30,20)	0.331	0.765	0.394	0.774	0.072	0.968	0.086	1.000	0.333	0.923	0.408	0.950

Table 10. The AL of 90% and 95% confidence intervals and corresponding and $\widehat{H(t)}_B$ based on the different censoring schemes.

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)